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RELATIVE POWER OF ¢ TYPE TESTS FOR STATIONARY AND UNIT
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Abstract. This paper shows numericall i
¢ y that the lack of power and size distorti
?f the Dxckey—Ful_lcr type tests for unit roots (very well documented in the llfn(i)tn :'22:
iterature) are similar to and in many situations even smaller than the lack of power

and size distortions of the stand i
ard Student t tests f
autoregressive model. S SRR S SN

Keywords. Dickey-Fuller tests: Student ¢ tests; unit roots.

1. INTRODUCTION

If we open a contest to select the most mentio in ti i

econometric'_s or even applied macroeconomics,nilclt;r?s;tetﬁie ll«'::t“l;:]e S:: N
a]n_mst certaufly the winner would be something like ‘the lack of power gf thé
unit root tffst s Many papers have shown numerically this lack of power and
alsg the size distortions of the unit root tests. A partial list includes
A_glakloglou and Newbold (1992), Bierens (1993), DeJong et al. (1992a, b)
?;f:(:: a:;c;BFullégs )(1%79, 1981), Elliot et al. (1992), Hall (1992), Ng and

e , 1995), Perron (1989), Said and Dic -

Phillips (1992), Schwert (1989) and a survey by Stol(:y(lggg)"ros illl'l?]g;s? 1'1(;
our knowledge, no paper has considered whether this lack of power is typicgl

worse performance than the Dickey~Full
: This paper does not claim that testing for a unit root is the same as testin
d(?r a s?ano?ary root._ There are two main differences. First, the limi%
lstr]butlf)n in the unit root case is nonstandard and it depends h
§pe<:1ﬁcatr(?n of the deterministic component of the analyzed van!:;eble SOrl tde
1N €conomics, to be able to tell between 1.0 and 0.9 is more im ortan-t ticon '
be able to distinguish between 0.0 and non-zero or betwees .5 andag 310

Nonrejection of the h i i i
ypothesis of a unit root implies the exi
permanent shocks and also the possibility : o og

'I'l-lerf:-fore all the effort and interest that has
case is understandable, but these two differences are not enough to explain
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38 J. GONZALO AND T.-H. LEE

the huge amount of papers that have been trying to convince the profession
that the DF test has a big lack of power and awful size distortions. This paper
only tries to show that the sentence ‘lack of power of the unit root tests’,
although accurate in absolute terms, is totally inaccurate in relative terms.
The power of a test should be judged in both dimensions.

In order to show our claim, we re-do the experiments produced in the unit
root literature, but this time to test not only for a root that equals one but
also for a stationary root of an AR model. We compare the power and size
distortions of the t tests in both scenarios, I(1) and I(0). The analysis
concentrates only on the  type tests because they are the most commonly
used in practice, specially the DF test for unit roots.

This paper is neither a survey on unit roots nor does it propose a new unit
root test. The paper is organized as follows. Section 2 introduces the notation
and the models used in the Monte Carlo experiment. Section 3 investigates
the power of the ¢ tests for the null hypotheses of I(1) and 1(0), in a model
with AR errors. Section 4 analyzes the size distortion of the ¢ tests for the
same null hypotheses as in Section 3, first in a model with moving-average
(MA) errors, and second in a model with heteroskedastic (GARCH) errors.

Section 5 concludes.

2. NOTATION AND MODELS

Let the time series {y} be the stochastic process generated by the linear
model

yvw=d, +x (1

d, = Py + Pt )

(1 - al)x, =u (3)
(1- pL)u,= (1 — 6L)e, (4)

where L is the lag operator. We assume that xo =0, ¢ i.i.d N0, 0%), p=<1
and 6 <1.
Lemma 1. Let C(L) = X, juoc;L/. Then
(i)
c(L) = €(1) - (1 = L)E(L) &)

where C(L) = 3 mot; L, with & = 2 k=jriCk-
(ii) Provided o # 0,

C(L) = C(1/a) = (1 — aL)C*(L) (6)
where C*(L) = >, jmocfL*!, with cf= (1/ag)c; and L* = e L.
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A proof of the algebraic decomposition (i) can be found in Gelfand (1989
p. 160). This decomposition was used by Beveridge and Nelson (1981) tc;
decompose economic variables into permanent and transitory components.

Thfa Proof of part (ii) follows from applying (i) to the polynomial C*(L*).

Philli smanczj Solo (1992) show that a sufficient condition for (5) to make
sense (2, j=o¢j < *) is that the polynomial C(L) is 1/2-summable,

2%l < . )

j=1
It can be shown that condition (7) is sufficient for »,—o(2})?
own / or D, io(¢7) <. All t
cases treated in this paper satisfy condition (7). i=o7) e

Substituting (4), (3) and (2) into (1), usin ing gi
s ; 5 g Lemma 1, and rearranging give
the above data-generating process (DGP) as a single equation model% BEE

(1— aoL)y, = po + mt + Ay,.y + 2.8(1 = apL)y,; + ¢ ¢))

i=1
where the parameter of interest is
0 =1
z=(1——) (1—i)a—
a’o = (& = a). ®
The null hypothesis that {y,} has an autoregressive root that equals a,,
H,: o= a
can be tested by the ¢ ratio
it
A sd(4)
whf.tre A and sd(A), the standard error of 1, are obtained by applying
ordinary least squares (OLS) to the following regressions R1, R2 and R3
respectively, ’
RI: Dy, = Ay, + 218Dy, + ¢
R2: Dy = o+ Ay + 2lidDy,i + &
R3: Dy, = po + mt + Ay, + 218D, + e

where D = (1 - ayL).

_ The 5% critical values of the t,, t, and ¢; tests, for T = 100, are tabulated
in Table I for different values of a;. To generate these critical values it is
assumed that d,=0, p=6=0 and p=0. Under the null hypothesis of
o= 1.'0’ the tests ¢;, t, and t; have nonstandard asymptotic distributions, see
Hamilton (1994, p. 486) for a complete summary. These distributions del’)end
on the specification of the deterministic component included in the regres-
sions. The distributions are skewed to the left and have too many negative
values relative to the Student ¢ distribution. The asymptotic distribution of ¢,

t:

i=1,2,3 (10)
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TABLEI
CrimicaL VALUEs (5% LeveL, T = 100)

a t t ty
1.0 —1.933 —2.889 -3.451
0.9 -1.795 —2.209 —=2.609
0.8 —1.764 =2.050 -2.339
0.7 -1.739 —1.965 -2.197
0 -1.724 -1.915 -2.113
0.5 -1.716 -1.878 —2.048
0.4 -1.704 —1.847 —-1.993
0.3 —1.689 —1.819 —1.948
0.2 -1.674 -1.792 —-1.912
0.1 —1.664 —-1.770 —1.880
0.0 —1.657 —1.756 —1.846

Notes: {y,} is generated by y, = ay,_, + e, ¢ is i.i.d. N(0,1), r=1, ..., T=100 and y, =0.
Three ¢ ratios for the OLS estimate of A are computed: , from the regression (1 — aL)y, =
Ay, +e, t; from the regression (1—aL)y, =g+ iy, +e and t; from (1-al)y =
Mo+ mt + Ay, + €. The 5% critical values are computed from 50000 replications.

1, and f; is Normal (0, 1), for testing for a hypothesis of a stationary root
(le] <1.0).

The critical values of Table I will be used in the next two sections to
evaluate the power and size of the ¢ tests.

3. POWER COMPARISONS

In this section we compare numerically the power of the one-sided t tests (¢;,
t; and t3) for nonstationary (NS) and stationary (S) roots. This comparison
has been done for different values of the null hypothesis (&, = 1.0, 0.9, . . .,
0.0) and different alternatives (ap — a = 0.3, 0.2, 0.1, 0.05 and 0.01),

(NS)H,: ap = 1 versus H,: & < 1
S)Hy: = ag, ag < 1, versus H;: o < aq.
In Table II the DGP is
(1—al)y =e (11)

and the regressions R1, R2 and R3 do not contain lags (p=0) of
(1—agL)y,. We only report results for ay=1.0, 09, ..., 0.0 and
(a9 — @) = 0.1 and 0.05. Other results are available upon request.

The main feature of Table II is the drastic decrease in power of the DF test
when the regression contains a trend and/or a constant term. This is a
well-known result (see Stock, 1995). The reason for this decrease in power is
the random collinearity that exists in the unit root case between a constant
and y,_; and between a deterministic trend and y,_,. For the stationary roots
the power is very uniform across regressions, and although there is also a
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TABLEII
Power oF TESTING VARIOUS AUTOREGRESSIVE Roots
- a,=-0.1 @ — ap = —0.05

ap o 1 1, 1y @ @ N t t

1.0 0.9 07766 0.3083 0.1826 1.0 0.95 03356 0.1150 0.0836
0.9 0.8 04659 0.3789 0.3032 0.9 0.85 0.1966 0.1601 0.1334
0.8 0.7 03605 03277 0.2846 0.8 0.75 0.1569 0.1430 0.1314
0.7 0.6 03140 0.2964 0.2691 0.7 0.65 0.1416 0.1351 0.1273
0.6 0.5 02878 0.2737 0.2564 0.6 0.55 0.1316 0.1305 0.1237
0.5 0.4 0.2693 02610 0.2470 0.5 0.45 0.1269 0.1255 0.1208
0.4 0.3 02608 0.2531 0.2425 0.4 0.35 0.1263 0.1235 0.1200
0.3 0.2 02534 0.2466 0.2435 0.3 0.25 0.1248 0.1226 0.1217
0.2 0.1 02513 0.2490 0.2445 0.2 0.15 0.1241  0.1236  0.1205
0.1 0.0 0.2534 0.2508 0.2470 0.1 0.05 01262 0.1231 0.1197
0.0 -0.1 02564 0.2495 0.2515 0.0 -0.05 0.1254 0.1231 0.1224

Notes: 5% level, T =100, 10000 replications, d,=0 (fy=p,=0), p=6=0. a is the true
autoregressive root in the DGP (i.e. under the alternative hypothesis) and aj is the value of a
claimed under the null hypothesis, Hy: @ = a;. The difference (a — a,) measures the departure
from the null hypothesis. The critical values in Table I are used.

random collinearity between a deterministic trend and y,_,, this collinearity
does not show up in the limit distribution.

Comparing both situations (NS and S) the only case where the DF test has
clearly lower power than the ¢ test for a stationary root « is when there is a
trend in the regression (;). Many will argue (see Campbell and Perron, 1991)
that this is the relevant case in practice because it is never known whether y,
has a drift or not, and the ¢; test is invariant to that. Therefore in applied
research we are forced to run the regression R3. In Table III, we investigate
if this finding of lower power of the DF ¢, test is robust to other standard
misspecifications that occur in practice, like misspecifications in the number
of lags p. In the stationary case, the inclusion of irrelevant lags of
(1 = agL)y,_, introduces collinearity in the regression models. This collinear-
ity is not random but causes similar power problems (under local alternatives)
to the ones created by a deterministic trend in the DF ¢; test.

To make the paper shorter and without loss of generality, we only report
(through the rest of the paper) results for the following two cases,

(NS) Hy: @ = 1 versus H;: a = 0.9
(S) Hy: ay = 0.5 versus H,: & = 0.4.

The selection of a metric, the distance between the null and the alternative
hypotheses, to compare power in NS and S is not clear. There are several
distance measures for stochastic processes in the literature (see Zinde-Walsh
(1992) for a comparison of some of them). We have selected the one
proposed by Piccolo (1990), that in our case is equivalent to the absolute
distance (|ag — a| =0.1). We could also have chosen as a metric, the
standard deviation of the finite sample distribution of & under the different
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TABLE III
Power WiTH AR(1) ERRORS

a=09,a =10 a=04, a;=05

p I t, 13 H 1 13
Using p=0
0.0 0.7766 0.3083 0.1826 0.2693 0.2610 0.2470
0.1 0.6251 0.1711 0.0856 0.0648 0.0627 0.0606
0.3 0.2767 0.0273 0.0120 0.0005 0.0005 0.0004
0.5 0.0526 0.0018 0.0013 0.0000 0.0000 0.0000
0.7 0.0026 0.0000 0.0011 0.0000 0.0000 0.0000
0.9 0.0000 0.0012 0.0092 0.0000 0.0000 0.0000
1.0 0.0000 0.1345 0.0481 0.0000 0.0000 0.0000
Using p=1
0.0 0.7409 0.2997 0.1804 0.1347 0.1333 0.1297
0.1 0.7320 0.2961 0.1778 0.1219 0.1199 0.1155
0.3 0.7071 0.2824 0.1716 0.0862 0.0861 0.0851
0.5 0.6666 0.2589 0.1624 0.0513 0.0549 0.0540
0.7 0.5855 0.2230 0.1364 0.0263 0.0290 0.0302
0.9 0.3428 0.1308 0.0961 0.0088 0.0098 0.0112
1.0 0.0551 0.0673 0.0614 0.0033 0.0043 0.0070

i o
E?)mg g 0.6277 0.2361 0.1405 0.0535 0.0561 0.0549
0.1 0.6270 0.2342 0.1394 0.0531 0.0542 0.0563
0.3 0.6044 0.2246 0.1363 0.0491 0.0528 0.0530
0.5 0.5743 0.2105 0.1310 0.0473 0.0501 0.0513
0.7 0.5123 0.1880 0.1185 0.0445 0.0473 0.0494
0.9 0.3185 0.1221 0.0899 0.0421 0.0452 0.0469
1.0 0.0552 0.0703 0.0704 0.0354 0.0359 0.0428

Notes: 5% level, T =100, 10000 replications, d,=0 (B, =, = 0), 8= 0: « is the true
autoregressive root in the DGP (i.e. under the alternative hypothesis) and a; is the value of o
claimed under the null hypothesis, Hy: @ = ar. The difference (& — ay) measures the departure
from the null hypothesis. Three ¢ ratios for A are computed: ¢, from the regression Dy, = Ay, +
>e.8Dy,_;+e, t, from the regression Dy, = p+ Ay, + Zf’.lé,-Dy,_,- +e and t; from
Dy, = o + iyt + Ay, + 218, Dy,_; + e, where D =1—aoL. p is the number of lagged Dy,;
in the regressions. If p =0 is used when p >0, the number of lzggs‘ is undcrparamel‘enzed. If
p=1, the number of lags is correctly parameterized. If p > 1, it is overparameterized. The
critical values in Table I are used.

null hypotheses. In this case the metric would have depended on T as wel_l as
on ay. The main conclusions of this paper are invariant to the chosen metric.
In Table III, the DGP is :
(1= aL)y,=(-pL) e (12)
with p= (0.0, 0.1, ..., 1.0). By Lemma 1, (12) can be re-written as
(1 = aL)y, = (1 = p/ag)(@ — &)y, + (pa/a)(1 — agL)y,—; + €. (13)

Table III considers situations where the number of lags p is correctly
specified (p = 1), underparametrized (p =0) and overparametrized (p = 4).
The case of p =4 is extremely important because as we mentioned before,
the irrelevant variables (1 — ayL)y,_;, i =2, 3, 4, are correlated with y,_,, if
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Y: is stationary. This case is in some sense similar to the DF t, where the
deterministic trend is correlated with y,_,.

Several features of Table III stand out. For example, the power of the DF
type tests is always higher than the power of the ¢ ratio for the null
hypothesis of a 0.5 root, when there are some lags in the regression model
(p=1or p=4). This is true even for p =0. When there are no lags in the
regressions, the only situation where the power of the DF is lower is for 15
with p =0 (the result previously mentioned in Table II and so much cited in
the unit root literature). These results indicate the strong conclusion, that in
general the DF ¢ type tests do not have less power than the ¢ ratio tests for a
stationary root, even if we include a deterministic trend in the regression
model.

4. SIZE COMPARISONS

The most influential Monte Carlo study in the unit root literature is Schwert’s
(1989), who found large size distortions in several unit root tests (DF is one
of them) when the errors u, have an MA component. In this section following
Schwert’s DGP we compare the size distortions of DF tests with the ¢ tests
for the null hypothesis that a; = 0.5.

The DGP in Table IV is

(I = apL)y, = (1 - 8L)e, (14)

with 6= (0.1, 0.3, 0.5, 0.7 and 0.9). Only positive values of  have been
considered, not because we think they are the most relevant values in practice
(maybe it is the opposite) but because these are the ones that produce higher
size distortions in Schwert (1989). For the same reason Agiakloglou and
Newbold (1992) consider only positive values for 8.

Following Schwert (1989) and Agiakloglou and Newbold (1992) the tests
are based on the OLS estimates of the approximating autoregressive regres-
sions R1, R2 and R3. We also report the results of the tests based on the
regression models selected by the Akaike information criteria (AIC). The
most striking feature of Table IV is that the ¢ test for the stationary root
(a9 = 0.5) has even larger size distortions than the DF test. This is even true
for 6 = 0.9, if we choose the autoregressive model selected by the AIC.

Recently there has been some concern about the size distortions when
there is conditional heteroskedasticity in the errors. Kim and Schmidt (1993)

show that the DF tests tend to overreject in the presence of GARCH errors.
The DGP in Table V is

(1= al)y = e (15)
el is N(O, h)) (16)
h’r = ¢D 7+ ¢183—1 + %h:—l (17)
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TABLEIV
Size With MA(1) ErrORs

ap = 1.0 ap = 0.5
6 1 1 ty fn 1y 13
giing = 0.0723 0.0775 0.1007 0.2498 0.2538 0.2730
L (0.98) (1.00) (1.03) 0.77) (0.82) (0.90)
(1.72) (1.80] (1.91] (1.67] (1.72] (1.86]
0.0810 0.0963 0.1486 0.7105 0.7062 0.7264
o (1.81) (1.78) (1.66) (0.80) (0.84) (0.89)
[1.68] (1.74] (1.85] (1.67) (1.72) (1.83]
0.1060 0.1301 0.2077 0.8840 0.8816 0.8964
e 2.57) (2.48) (2.16) 0.77) (0.81) 0.92)
(1.69] (1.74] (1.79] (1.66) (1.71] (1.85]
0.1735 0.2519 0.4343 0.9532 0.9523 0.9531
> (3.62) (3.22) 237 (1.62) (1.66) (1.89)
1.89) (1.95] (1.96] (2.01] [2.04] [2.19]
0.4364 0.759 0.9136 0.9766 0.9729 0.9673
. (3.79) (2.00) (1.02) (4.13) (4.14) (4.29)
[2.92) [2.48] (1.88] [2.47) [2.47] [2.51]
giing p=0 0.0813 0.0832 0.0954 0.2248 0.2239 02177
0.3 0.2137 0.2376 0.3551 0.8863 0.8794 3'3334
0.5 0.4465 0.5847 0.7987 0.9996 0.9996 0.9904
0.7 0.7916 0.9371 0.9952 1.0000 1.0000 10000
09 - 0.9946 1.0000 1.0000 1.0000 1.0000 i
Hsling =3 0.0531 0.0506 0.0578 0.0658 0.0650 0'083?
0.3 0.0829 0.0788 0.1039 0.2092 0.2046 02007
0.5 0.1889 0.2100 0.3082 0.7226 0.7080 0.68833
0.7 0.4686 0.6203 0.8170 0.9902 0.9872 gggg 3
0.9 0.8771 0.9986 1.0000 0.9998 0.9997 .
T
o 0.0531 0.0542 0.0536 0.0467 0.0505 o.osg;
03 0.0553 0.0543 0.0534 0.0499 0.0527 0.05
0.5 0.0648 0.0618 0.0645 0.0791 0.0773 0.0778
0.7 0.1311 0.1334 0.1711 0.2696 0.2549 0.:43%3
0.9 0.4429 0.7259 0.7891 0.7430 0.6882 0.6
g r =3 0.0615 0.0621
0.0585 0.0619 0.0621 0.0581 .
03 0.0598 0.0614 0.0605 0.0586 0.0585 gxﬁ
0.5 0.0591 0.0617 0.0578 0.0598 0.0612 0614
0.7 0.0652 0.0689 0.0682 0.0743 0.0770 00779
0.9 0.1694 0.2486 0.2506 0.2697 0.2387 0.207

Notes: 5% level, T =100, 10000 replications, d,=0(=p=0),p=0.a=0ax to_ cxami;nzsgée
size. The number of lags p,; is chosen qsil:lg thef AIC _ami)ggog = ][:).l't:ag;;::rh;-:; ,-:q—w f:;d 5 the‘
the mean of p,. and the standard deviation of pyc 1n repli -2 Sy e
ively. The 95% confidence interval of the empir
parentheses and brackets, respectively. 95% B xS toow 1he
0456, 0.0544), since if the true nominal size is § (s = 0.05), ows
s:y[)::gtotic norrzmal distribution with mean s and variance s(1 - 5)/10000 for 10000 replications.
The critical values in Table I are used.
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TABLE V
Size with GARCH(1, 1) ErRrORS
@ = 1.0 a; =05
(%0 & ) f t ty L f ty
When ¢y + ¢ <land p=1- ¢, — ¢
(1 0 0 ) 0.0493 0.0500 0.0503 0.0481 0.0490 0.0483
(0.1 03 0.6) 0.0518 0.0761 0.0777 0.1011 0.1007 0.0998
(0.05 0.3 0.65) 0.0499 0.0825 0.0824 0.1063 0.1055 0.1041
(0.05 0.1 0.85) 0.0506 0.0620 0.0586 0.0610 0.0617 0.0626
When ¢, + ¢, =1and ¢, =0.3 :
(0.0001 0.3 0.7) 0.0412 0.0956 0.0939 0.1131 0.1112 0.1074
(0.01 0.3 0.7) 0.0505 0.0956 0.0939 0.1131 0.1112 0.1074
(1 0.3 0.7) 0.0535 0.0956 0.0939 0.1131 0.1112 0.1074
(100 0.3 0.7) 0.0535 0.0956 0.0939 0.1131 0.1112 0.1074
When ¢, + ¢, =1and ¢, =0.1
(0.0001 0.1 0.9) 0.0469 0.0710 0.0657 0.0647 0.0642 0.0647
(0.01 0.1 0.9) 0.0503 0.0627 0.0597 0.0635 0.0642 0.0646
(1 0.1 0.9) 0.0493 0.0623 0.0599 0.0637 0.0642 0.0642
(100 0.1 0.9) 0.0497 0.0623 0.0599 0.0637 0.0642 0.0642

Notes: 5% level, T = 100, 10000 replications, d,=0 (8, = f, =0), p= 6 =0. a = &, to examine
the size. h, = ¢ + ¢ e}_, + ¢yh,_;. hy=1. The critical values in Table I are used. ¢, is simply a
scale parameter when ¢ > 0. This is true only if a fairly large number of initial observations are
discarded. When ¢ is very small, h; =1 is initialized too far in the right tail of the stationary
distribution of the process h,, and so h, tends to decline as ¢ gets large. Thus, in order for the
results not to depend on ¢ for fixed hy, the first 500 observations were discarded.

where I,_; is the information available at time t — 1. Let z, =g, h:ﬂ be i.i.d.
N(0,1) and hy=1. Nelson (1990) shows that the h, process has a strictly
stationary and ergodic distribution if and only if ¢, >0 and E{In(¢, +
qblzz} < 0. By Jensen’s inequality and the strict concavity of In (x), E{In(¢, +
120} <In{p, + ¢, E(zD)}. If E(z})=1, then ¢,>0 and ¢, + ¢, <1 are
sufficient conditions for the process h, to be strictly stationary and ergodic.
When ¢, > 0 and ¢; + ¢, =<1, it is seen from Table V that the size distortions
are slightly larger for the stationary root tests than for the unit root tests.

Summarizing, the results in this section show that in general the size
distortions of the DF type tests are similar or even smaller than the size
distortions of the standard ¢ ratio tests for a stationary root.

5. CONCLUSIONS

In this paper we compare numerically the lack of power and size distortions
of the DF ¢ type tests, with the lack of power and size distortions of the
standard ¢ ratio tests for stationary AR roots.

Two clear conclusions emerge from our analysis. First, the DF ¢ type tests
do not have less power than the ¢ ratio tests for a stationary root, when the
number of lags is unknown (in practice always). This is true even if we
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include a deterministic trend in the regression. In other words, the well-
known result of lack of power of the DF test when there is a deterministic
trend in the regression model is not robust (in relative terms) to correlated
errors. Second, the size distortions of the ¢ tests for stationary roots are as big
as the ones of the DF tests for unit roots. This is the case with MA errors as
well as GARCH errors.
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