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Chapter 1 Definitions and Basic Inequalities

In this book, we always assume that {X,, n > 1} is a sequence of
random variables defined on a probability space (£, F, P). There are many
ways to describe weak dependence or asymptotic independence of {X,,}.
In Section 1.1, we give some common and important definitions of this
kind. In Section 1.2, some basic inequalities on covariances of {X,} are
established, which are useful for studying limit properties of {X,}. In
these sections, we also discuss the relations between each other for different
definitions.

1.1 Definitions

Let A and B be sub-o-fields of F,L,(A) a set of all A—measu.rable
random variables with p-th moments. Define

a(A,B)= sup |P(AB)- P(A)P(B)|,

AEABeB
' |[EXY — EXEY|
A,B) = su
ol ) XELz(A),geLz(B) v VarX VarY
v(A,B) = sup |P(B|A) — P(B},
AEA,BEB,P(A)>0
B(AB) = sup |P(4B) — P(A)P(B)|

ACA,BEB,P(A)P(B)>0 P(A)P(B) ’
B(A, B) = E(tvarpes| P(B|A) — P(B))),

|EXY — EXEY|
A(A,B) = sup ,
(4.8) = XeLya(A),YeLys8) N XHyallY ll1ys

where tvar means total variation and || X||, = (E|X]P)"/P. Let 7t =
o(X;,a < ¢ < b),Z a set of all integers, Z+ a set of all non-negative
integers, N a set of all positive integers. Some commom and important
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definitions of mixing sequences are as follows:

Definition 1.1.1. A sequence {X,,, n > 1} is said to be o-mixing or
strong mixing if

a(n) = supa(}'{“,}‘ﬁin) —0 asn — oo.
kEN

Definition 1.1.2. A sequence {X,, n > 1} is said to be p-mixing if

p(n) = sup p(Ff, Fitn) = 0 asn— co.
&N

Definition 1.1.3. A sequence {X,, n > 1} is said to be (-mixing or
uniformly strong mixing if

p(n) = sup p(F7,F53,.) = 0 asn — oco.
kEN

Definition 1.1.4. A sequence {X,,, n > 1} is said to be $-mixing or
*-mixing if
P(n) = supY(FF, F3,) = 0 asn — oo,
keN

Definition 1.1.5. A sequence {X,, n > 1} is said to be absolutely
regular if '

B(n) = sﬁp,@(?{“,fﬁiﬂ) — 0 asn— oo.
keN

Definition 1.1.6. Let0< a,8<1,a+8 = 1. A sequence {Xn,n 2>
1} is said to be (o, 8) -mixing if

A(n) = sup \(FF, F2,) = 0 asn — oo.
keN

Remark 1.1.1. The versions of the above definitions for a sequence
with time-parameter set R or R or Z are trivial.

Remark 1.1.2. The concept of a-mixing was introduced by Rosen-
blatt (1956). The concept of p-mixing was introduced by Kolmogorov
and Rozanov (1960). Dobrushin (1956) first introduced the definition of
w-mixing for a Markov process. This definition for a stationary process
was presented by Ibragimov(1959) and Rozanov and Volconski (1959) re-
spectively (one can also trace back to Hirschfeld 1935 and Gebelein 1941).
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1.1 Definitions 5

Absolute regularity was introduced by Kolmogorov (1959),(cf. Rosanov
and Volconski 1959). Blum, Hanson and Koopmans (1963) presented the
concept of Y-mixing. (a, 3)-mixing was introduced by Bradley (1985a) and
Shao(1989a) independently.

Remark 1.1.3. Doob(1953) showed that a Déeblin irreducible Markov
chain is -mixing with p(n) < ab™ for some a > 0 and 0 < b < 1; Rosen-
blatt (1971) showed that a purely non-deterministic Markov chain is a-
mixing; Davydov (1973) gave a class of Markov chains which are S-mixing.

Remark 1.1.4. For simplicity, we always assume that the mixing
coefficients a(n), p(n), - - -, A(n) all are non-increasing.
It is clear from the definitions that

p(n) = Ayjza72(n),  Arpn) = p(n) < P(n),

and further
a(n) < p{n)
by taking X =14 and Y = 1p in the definition of p-mixing.
Kolmogorov and Rozanov (1960) investigated the relation between a-
mixing and p-mixing for a Gaussian sequence.

Theorem 1.1.1. For a Gaussian sequence {Xn, n > 1}, we have
a(FL, Fin) < p(FF, Fiin) < 2l FF, i),

Proof. The former inequality is obvious.
For any ¢ > 0, there exist two normal random variables X € Ly(F¥),Y
€ Ly(Fg3,) such that EX = EY = 0,VarX = VarY = 1 and

r:=EXY > p(ff,f,‘é’_‘j_n) — €.
Noting that A := {X >0} € Ff, B:={Y >0} € 73, we have

1 1
P(4B) = 7 + - arcsinr, P(A4)P(B) = i (1.1.1)

by elementary calculations (see Cramér 1946, p.290). If a(FE, on) > 5
it is clear that

™
2
if a(F¥, F3,,) < 1, by (1.1.1) we obtain

21ra(.7:{“,.7‘—ﬁn) > 2 P(ff,fi?in)§

o(Ft, FE3.) 2 P(AB) - P(A)P(B) = - arcsinr,
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which implies
p(FF, F2,) — e < r < sin2ma < 2ra.

The theorem is proved by arbitrariness of ¢.

Kolmogorov and Rozanov (1960) also studied the relation between the
spectral function of a (weakly) stationary sequence and p-mixing property.
At first, we give some notations and concepts about a stationary sequence
{X,, n € N}. Let the covariance function of {X,}

R(n) = EXpXmn-

By the'-Herglotz theorem, there exists the spectral resolution for R(n) as
follows:

R(n) = f " ém gr(),

b

where F'() is called the spectral function of the stationary sequence. When
the spectral function is absolutely continuous, its derivative f(A) = F'())
is called the spectral density of the stationary sequence.

Theorem 1.1.2. If the speciral funciion of a stalionary sequence is
not absolutely continuous, then p(n) = 1, i.e. the sequence is not p-mizing.
Conversely, if the spectral function is absolutely continuous, then

pln) = inf ess sup|F(3) — e¥h(e=N)|/7(N),
A

where the inf is extended over all functions which is analg}tically continuable
in unit circle; and further, if there exists an analytic function ho(2) in unit
circle with the boundary value ho(e™™*) such that |f(\)/ hole™)| > e >0
and (f(A)/ho(e™*))®) is bounded uniformly, then

p(n) <en™*
for some ¢ > 0. In particular, when f()) is a rational function of ",
p(n) =e

for some ¢ > 0.
The Proof of Theorem 1.1.2 is omitted(Kolmogorov, Rozanov 1960).
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1.2 Basic inequalities 7

1.2 Basic inequalities

Let X be F foo measurable and Y be kqn Teasurable.
In this section, we establish some bounds of the covariance Cov(X,Y) =
EXY — EXEY for the various mixing sequences.

At first, we consider the a-mixing case.

Lemma 1.2.1. Let {X,,n € Z} be an a-mizing sequence, X € F* __
andY € F33,, with |X| < Cy and [Y]| < Cy. Then

|[EXY — EXEY| < 4C1Cya(n). (1.2.1)

Proof. By the property of conditional expectation, we have

|[EXY — EXEY|= |E{X(E(Y|ffoo) — EY)}l
< CE|E(Y|FE ) — EY|
= CIB¢{E(Y|FE,,) - EY}|,

where £ = sgn(E(Y|F* )~ EY) € F¥, ie.
|EXY — EXEY| < C1|EEY — EE€EY|.
With the same argument procedure it follows that
\BeY — E¢EY| < CalBen ~ BEEn),
where 1 = sgn (E(¢|F5S.,,) — E€). Therefore
|[EXY — EXEYI < C1ColEtn — EtEn)|. (1.2.2)

Put A= {¢ =1},B={n=1}. It is clear that A € ¥, B € F2,.. Using
the definition of a-mixing, we obtain

|Eén—E{En)| -
= |P(AB) + P(A°B°) — P(A°B) — P(AB°)
~{P(A4) — P(A°))(P(B) — P(B))|
< dafn).

Inserting it into (1.2.2) yields (1.2.1).
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Lemma 1.2.2. Let {X,,n € Z} be an a-mizing sequence, X € F*_,
and Y € 75, with E|X|P < 0o for somep> 1 and |Y| < C. Then

|[EXY — EXEY| < 6C|| X ||p(c(n))?, (1.2.3)

where 1/p+1/qg=1.
Proof. Let Xy = XI(|X| < N), Xy = X — Xy. Write

|EXY — EXEY| < |[EXNY — EXNEY |+ |EXyY — EXyEY)|.

By Lemma 1.2.1, [EXyY — EXNEY| < 4CNa(n). For the second term
of the right hand side of the above inequality, we have

|[EXNY — EXyEY| < 2CE|Xy| < 2CN-PHE|XP.

Taking N = || X||p(c(n))~V/? yields (1.2.3).
For a random variable X and a continuous non-decreasing function
f(x) on R* with f(0) = 0, which doesn’t identically equal to zero, define

Xl = inf{t > 0, Ef(1X|/t) < 1}.
From this definition, it is easy to know that
|Xllf =0<= X =0 as. (1.2.4)

and if 0 < || X[l < oo, then E£(IX|/||X|l;) < 1. Moreover, if |Xi| < |X,|
a.s., then {| X1y < || X2||4.

Lemma 1.2.3. Let {X,, n € Z} be an oa-mizing sequence, X €
Fror Y € FS,., f(z) and g(z) be two continuous functions on R*
with f(0) = ¢g(0) = 0, f(m)/m”r":li /" oo and gr(q:)/xr_-:'s2 /' oo for some
r>0,8>0,[|X|ly <oo,||Y]ly < co. Then

|EXY - EXEY| < 10inv f(a(%)) inv g(a—}ﬂ)a(n)nxu ATl (1.2.5)
Proof. It is easy to see that E|X|'**/" < 0o and E[Y|'t/® < oo by
the conditions of the lemma . If either [X|l; = 0 or ||V, = 0, (1.2.4)
implies that (1.2.5) holds. If a(n) = 0, (1.2.5) is trivial by independence of
X and Y. Now we assume that || X|; > 0,(|Y||; > 0 and a(n) > 0. There
are M > 0 and N > 0 such that

afn) = 1/f(M/IX|l5) = 1/g(N/IIY{lg)-
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1.2 Basic inequalities 9

Let
Xy = XI(|X| < M), Xy =X— X,

Yn =YI([Y|<N), Yy=Y —Yu.
We have

|EXY — EXEY|
< |EXyYn - EXyEYN| + |EX YN — EX 3 EYnN]|
+ |EXyYy — EXyEYy| + |EX Yy — EXy EYy|
=L+ L+I3+ I, (1.2.6)

By Lemma 1.2.1, I} < 4M Na(n). Noting that f(z)/z / oo and g(z)/z /

00, we have

E| X3l = EOXpal/1 X0l 1)1 X a5
< B (Xl /| Xaell )M/ £(M/ 1 Xl 5)
< M/f(M/[XIl¢)-

Therefore

1
a(n)
Similarly, we have the same estimation for I5.

Furthermore, noting that f(x)[xr‘t_‘ /" oo and g(m)/xtli /" 00, we
have

I, < 2MN/f(M/||X|ls) = 2inv £ (=) invg(a—(lﬁ)a(n)uxnflmu-

r

EXp Yy < (B0 X/ Xaellp) )7
(BYal M1 ) = 1 Xaa 1Yl

< (BF1X3l/1Xad110)) ™5 (Bo(1Yal MY l)) ™

- MN/(FMN1X3 1)) (s 1Yallg)) ™

< MN/(f(M/1X19)) 7 (9V/Y 1)) .

Hence

1, < aMN/ (#0111 ) (oM7Y 1))

< 2inv f(a—(1n~)-) v g(a—(ln—))a(n)”X” A -
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Now, inserting these estimations into (1.2.6) yields (1.2.5).
As some consequences of this lemma, we have

Lemma 1.2.4. Let {X,, n € Z} be an a-mizing sequence, X € F*__
and Y € F3,, with E|XP < 0o and E|Y]? < 00,1 + 1 < 1. Then

[EXY - EXEY| < 0| X[V | ()54 (127)

Lemma 1.2.5. Let {X,, n € Z} be an a-mizing sequehce, X e Fr
and Y € Fg3,, with E|1X|** < C, E|Y|?*8 < Cp. Then

|EXY — EXEY| < 10(C1C2) 7 (a{n)) 7. (1.2.8)

For an (a, 8)-mixing sequence and a p-mixing sequence, we have the
following lemmas.

' Lemma 1.2.6. Let {Xn, n € Z} be an (o, )-mizing sequence, X €
Lp(F*,) and Y € Ly(F2,) withp,q>1 and 1/p+1/g=1. Then

|EXY — EXEY} < 4X(n) 757 | X lpl|Y - (1.2.9)

Proof. Without loss of generality, assume that ap > 1, which implies
that g < 1. Put

Y, =YI(Y|<C), H=Y-N,
where C is a positive constant specified later on. Write
|[EXY — EXEY| < |EXY; - EXEYy| + |[EXY, — EXEY,]. (1.2.10)
By the definition of (a, )-mixing and the Hélder inequality
|EXY1 — EXEY1| < X(n)[|X|1/al¥all1/

< A(n)CYP9|. XL, |||,

|EXYs| < (E|Y2l)' " (B|X [*?|Ya /)=
< (B|Y|?)' "% (E|X|PE[Y,[* + A(n)(EIX P)*(|¥2])") ™
< (BIY 1)~ (BIX|"PBIY 1027 + Mn)(ELXP) (BIY[7)) ™
< XY ISCT + A% ()| X oY 1lg
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1.2 Basic inequalities 11

and

|[EXEY,| < | X|,|YHiC /7.

Inserting these estimations into (1.2.10) and taking C = 1Y [l (A(n)) ™/
we obtain (1.2.9).

Let p =g = 2 in (1.2.9). It is easy to see that
p(n) < A\(n)2"28, (1.2.11)

As a consequence. of Lemma 1.2.6, noting that p(n) = Ay/31/2(n), we
have

Lemma 1.2.7. Let{X,, n € Z} be a p-mizing sequence, X € Lp(F* )
and Y € Ly(Fg3,) withp,q> 1 and 1/p+1/q=1. Then

|EXY ~ EXEY| < 4p(n)»"3 | X |l,][Y |-

For the p-mixing case, we have the following three results.

Lemma 1.2.8. Let {X,, n € Z} be a p-mizing sequence, X € Ly(F¥ )
andY € Lo(F2, ) withp,q > 1 and 1/p+1/q=1. Then

[EXY — EXEY| < 2(p(n))? | X lp]Y llg (1.2.12)

Proof. At first, we assume that Xand Yare simple functions, i.e.

X = ZaiIA,-; Y = ijIBj,
i i

-where both 3~; and }°; are finite sums and A;NAx =@ (i # k), B;NDB; =

0 (j#1U), AieF*,, B; € F2,. So

EXY — EXEY = Y a;b;P(A;B;) — Y a:b; P(A;)P(B;).

4 Y
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By the Holder inequality we have

|[EXY—EXEY|
= ’Zai(P(Ai))”” D_(P(Bj|A:) — P(B;))b(P(A:))™1]

< (TlalP(a)) " (X P Y b (P(B,14) - P(B;))I) "
% < IXT| 3 P (3 I(P(B;140)

+ P(8;))) (X 1P(B;14) - P(B)I) 3|

7

< 2K llymax (30 1P(Bs140) - P(BI) . (12.13)

Note that

>_|P(BjlA:) - P(B;)| = (P(U} B;|A;) — P(U} B;))
J
— (P(U] Bj|A;) - P(U; By))
< 2¢(n), (1.2.14)
where the union U;-"(UJ-_ ) is carried out over j such that P(B;|4;)—P(B;) >
0 (P(Bj|As) — P(B;) < 0). Inserting (1.2.14) into (1.2.13) yields (1.2.12)
for the simple function case.
In order to complete the proof of the lemma, let
_fo if | X| > N.
YT\ RN i k/N < X < (k4 1)/N, [X| < N;

_Jo if Y| > N.
YT\R/N i k/N <Y <(k+1)/N, |Y|<N.
We have showed that (1.2.12) is true for Xx and Yy. Moreover, note

E|X —XnIP -0, ElY —Yn|? =0, as N — co.

Letting N ~ oo, we obtain (1.2.12) for the general case.
Let p=¢=21in (1.2.12). It is easy to see that

p(n) < 2pY3(n). (1.2.15)

From the proof of Lemma 1.2.8, we can see that
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Lemma 1.2.9. Let {X,, n € Z} be a p-mizing sequence, X € F*__
and Y € F5, with |[X| < C1 and |Y| < Cy. Then

IEXY — EXEYI __<_ 26102(,0(11). (1.2.16)

Let p=1and ¢ = o0 in (1.2.12). From Lemma 1.2.8, we also have

Lemma 1.2.10. Let {X,, n € Z} be a p-mizing sequence, X € F*__
andY € Fi3,, with E|X| < oo and |[Y| < C. Then

|EXY — EXEY} < 2Cp(n)E|X)|. (1.2.17)

Finally, we consider the 1-mixing case.

Lemma 1.2.11. Let {X,, n € Z} be a v-mizing sequence, X € F*__
and Y € Fg3,, with E|X| < 0o and E|Y| < co. Then E|XY| < 00 and

|EXY - EXEY| < %(n)E|X|E|Y]. (1.2.18)

Proof. At first, we assume that X and Y are non-negative simple
functions. We have

|EXY — EXEY| = Za,-bj(P(A,-Bj) — P(A;)P(B;))]
< Z asbjp(n)P(A;) P(B;)
= &n)EXEY.

From this, (1.2.18) holds for non-negative random variables X and Y.
For the general case, write X = Xt — X, Y =Y+ —Y~. We have

|EXY -EXEY)|
<|EXYYt — EXTEYY|+|EXTY™ — EX*EY ™|
+|EX"Y* —EX EY*|+|EX Y~ — EX~EY™|
< Y(n)(EX*t+EX)EY* +EY")
< (n)E|X|E[Y|.

Finally, we summarize the relations between one and another of variaous
mixing properties. It is easy to verify that

2a(n) < B(n) < ¢(n). (1.2.19)
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With a necessary and sufficient condition for Markov processes to be -
mixing, one can show that a ¢-mixing (Markov) sequence is not -mixing
(Blum, Hanson and Koopmans 1963). Ibragimov and Solev (1969) given an
example of a stationary a-mixing Gaussian process which is not -mixing;
such a process is p-mixing but not S-mixing. Davydov (1973) constructed
a stationary a-mixing Markov process with less than geometric rate of
decay of the mixing coefficients, which is not p-mixing. It is possible that
a geometrically ergodic Markov process which is not Doeblin recurrent is
B-mixing and not @-mixing (Andrews 1984). Combining these results and
recalling Remark 1.1.4, (1.2.11) and (1.2.15) we have

( = ..
J mixing{ }a — mixing
1/’—mixin{=>}—mixi {z” ¥ =
g . P ng #ﬁ _
k,o— mixing{#}a— mixing
ft
A — mixing
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