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ON THE EXACT MOMENTS OF ASYMPTOTIC DISTRIBUTIONS
IN AN UNSTABLE AR(1) WITH DEPENDENT ERRORS*

By JESGS GONZALG AND JEAN-YVES Prraraksis'!

Uniuversidad Carlos IIT de Madrid, Spain
University of Reading, United Kingdom

In this paper we derive the exact moments of asymptotic distributions of the
OLS estimate and ¢ — statistic in an unstable AR{1} with dependent errors. We
also study the relationship between the number of lagged dependent variables
required for matching the distribution moments in the ‘approximately iid.
errors’ model with those oceutring in the ‘purely i.id." model.

1. INTRODUCTION

Many results regarding the impact of dependent errors on test statistics and
coefficient estimates in the context of nonstationary time series have been estab-
lished via Monte-Carlo simulations. In an extensive empirical study Schwert (1989),
for instance, considered the distortions induced by the presence of moving average
errors on various test statistics within a nonstationary AR(1) model. Mare recently,
Agiakoglou and Newbold (1992) studied the size properties of the augmented
Dickey-Fuller (ADF) test under a moving average error structure. Since the relevant
asymptotic distributions are expressed in terms of stochastic integrals involving
Wiener processes, they are not directly usable for comgutational purposes. This
partly explains why most studies adopted the computationally demanding simulation
approach.

However, since most quantities of interest are expressed in terms of ratios of
stochastic integrals, which themselves are the limits of properly normalized quadratic
forms, it is possible to obtain their exact moements using their joint moment
“generating function (MGF thereafter). The recent unit root literature contains many
attempts to obtain exact distributional results via the relevant characteristic function
and the use of Gurland’s (1948) inversion theorem (Evans and Savin 1981, 1984,
Perron 1989, Hisamatsu and Maekawa 1994, and Abadir 1993a, 1995a and 1995b,
among others). Most of these studies, however, used the i.id. errors assumption and
focused solely on the normalized ordinary least squares (OLS) estimate of the
autoregressive coefficient. More recently Perran {1994) also considered MA and AR
error structures in a near integrated framewark. His objectives differed from ours in
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72 GONZALO AND PITARAKIS

that he focused mainly on obtaining exact distributional results for the normalized
OLS coefficient and on studying the adequacy of the asymptotic approximations.

Typically, the two most important quantities arising in the nonstandard asymp-
totic distributions are [fW(r)dW(r) and [IW(r)?dr, where W(r) denotes a stan-
dard Brownian Motion. In this paper we will analyze the impact of the presence of
dependent errors on auntoregressive coefficient estimates and corresponding
t — statistics by focusing on the influence of the error process on the exact moments
of the asymptotic distributions and indirectly on inferences. Thus, we will establish
theoretically and exactly various empirically observed facts with the aim of better
understanding the behavior of these asymptotic distributions when the error struc-
ture is not Li.d. Our framework allows us to distinguish explicitly between different
types of error processes.

It is important to point out that this paper is not an alternative to finite sample
methods such as Monte-Carlo or bootstrapping, but rather a complementary frame-
work that provides an exact analysis of the asymptotic behavior of the relevant test
statistics. This is particularly important given the difficulty of quantifying the
distortions persisting at the asymptotic level with simulation methaods.

As a byproduct, we extend a result by Le Breton and Pham (1989) regarding the
exact asymptotic bias of the OLS estimate in a nonstationary AR(1), ta the case
where the error process is not iid. In addition, we investigate the connection
between the magnitude of the coefficients of the error process and the number of
lags of the dependent variable necessary to dampen their effects on the original
asymptotic distribution. Our results can also be viewed as a preliminary step for the
design of Bartlett corrections to the test statistics in the context of nonstationary
processes.

The plan of this paper is as follows. Section 2 presents the general framework and
theoretical tools. Section 3 focuses on quantitative results, and Section 4 concludes.

2. FRAMEWORK AND METHODOQLOGY

We consider the following first-order autoregressive process
(1) AX,=aX, | +u,
(2} d(Lyu, = 0(L)e,

where $(L)=1-pL, 8(L)=1+ 6L and X,=0. We further assume that e is
i.i.d. Gaussian with mean zera and variance a2, and that the two polynomials in the
lag operator L have no roots in common and satisfy the usuval stability and
invertibility assumptions. For notational simplicity, and with no loss of generality we
also put a2 = 1. The quantities of interest are the OLS estimate of « in (1) and the
corresponding ¢ — statistic denoted r,. In what follows, we distinguish between an
AR(1) process for u, (e, §=0), an MA(1) and mixed ARMA(L, 1) process,
respectively. The various asymptotic distributions of the quantities of interest when
a={( are gathered in the following lemma where ‘="' denotes convergence in
distribution.
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LevMa 2.1, Case p= 0 (MA(1) erors).
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where the functions f; (i = 1,2,3) abouve are defined as follows

(0t p)(1+p8)

fl(P,f’)—m,
_(1+p)” (1+8)

Faop,8) (1-p)7 (1+62+2p6‘)1ﬂ’

i pr6) = (L+p0)}(p+8)

(1) = ) (L 0)(1+ 07+ 208)

ProoF. Follows from Phillips (1987, Theorem 3.1).

Noting that when the errors are i.i.d. the asymptotic distributions are
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for T(&—1) and ¢;, respectively. The extra compenents appearing in the above
lemma illustrate the impact of dependent errors on inferences, when we mistakenly
assume them to be Lid. Clearly, the signs and magnitudes of the parameters of the
error processes will play a crucial role.

All the above distributions are expressed in terms of ratios of stochastic integrals.
Indeed, letting O, = fiW(r) dW(r) and Q, = [§W(r)*dr, the ratios of interest are

0./, O/ @, 1/0Q, and 1/ 1/Q_2, respectively.

Lemma 2.2, The joint moment generating function ¢{u,v) of Q, and Q, has the
Jollowing representation

U . 172 i
-2

Proor. Follows from White (1958, p. 1193). 0

G(u,p) =e/? [cosh( —20) —

We can now apply a result found by Sawa (1978). Letting ¢(u, v) denote the joint
MGE of @, and @,, the mth order moment of @, /Q, is given by

Q,
provided the moments exist, and where ['(-) is the gamma function, and m is a
positive integer. Given the form of the ratios of interest to us, the above expression
is not directly applicable for obtaining the exact moments of quantities such as

/@, or @;". However, using a result found in Davies et al. (1985), we can
extend Sawa's result to the above cases as well.

" (u,—v)

FE =11 = =1
r (m)fﬂu [ e L=de

LEmma 2.3,
o m"_ Y LR W ey 8"b{u, — )
[ R T e e I

' E_( 1/;—2 )m- =I‘_l(-’;)f:umﬂ'l[cﬁ(u,—u)]u:ﬂ dv.

PrRoOoOF. Writing Qf = [d™e*%i/u™],_, and Q;"/*=T"Ym/2)
foum /7 1em v dy, the result follows from Fubini’s theorem noting that E[Q7e*@1]
= E[g7e Q%027 gym), = [47(u,~ v)/du™],_,. 0

We can therefore directly use the joint moment generating function of Q, and Q,
in Lemma 2.2 to salve the above integrals. This is the objective of the next section,
where we also investigate the behavior of the moments with 6 and p. It is important
to point out that the existence of any one side of the expressions appearing in
Lemma 2.3 implies the existence of the other (see Evans and Savin 1981, p. 768).
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3. NUMERICAL RESULTS

3.1. Original ( Nonaugmented) Model. The following lemma presents the ex-
act numerical value of the expectations (moments) of the ratios of interest. We use
the following notational convention, letting (A /B) denote E{(A/B)™}. In what
follows, we will focus solely on the first moment and variance. Higher order
moments can also be easily obtained using Lemma 2.3.

LEMMA 3.1.  Letting x = Qu}'/? and w(n) ={(—1)"I'(% + n)/n!, we have
1 e X 1 ,= sinhx
"2 3

X = ———ydx + -
Houra, 2% (cosh x)"* o (cosh x)*”?

_21/5 = w(n)
Vr Do (1+4n)

+1= —1.78143

: . 2
o x? x%sinh x 3x(sinh x)

2 = - +
o, 10, fO S(COSh x) 172 4(COSh x)a"l2 S(COSh X)SIZ

12V2 = w(n)
\/; =0 (1-+~4-.!‘.'.)4

s )Of'. o(m)(1+2m)((5 +4n)’ — (1 +4n)*)
V7 o (1+4n)*(5 +4n)°

1 i w(r)(3+21)(1 +2n)
1/2_17 =0 (1+4».Fz)2

1 E‘. o(m)(3+2n)(1+2n)
V2r ) (9 + 4n)*

V2 = a{n}{3+2n)(1+2r) _
Ea Gran) 13.2857

-« X

L — dx
K, fo (coshx)m

M2 2 we(n)
- E‘o i)’ = 5.56286
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3

2 fm * dx
Hi/0, o 2(cosh .vc)u1

% 5 v () 67.8312
m n="0 (1 +4n)4 .

) 1 fm sinh x " fm 1 "
Fana ™ o \ Uy x(cosh x)** o (cosh x)"*
r 1+4n
2 2 wn) 1 2 1+4n ( 8 )
ST BT T E e l°g( )*2103F(5+4n)
8
= —0.4231
I - 1 “ ﬁ dx
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V2 i w(n) .
T u=q (1 +4?I)2
1+4n
3{5 1+4n F( 8 )
4‘/; ,‘Zq a(n)(1+2n)|log +210gr( =
)
5+4n
32 5+ 4n Fl—5
“wa ): w(n)(1+2n) log( ]+210gr(9+4n) =1.1417
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. o —-x? x*ginh x
o, ;03 =f 7zt 371
0 | 4(cosh x) 2(cash x)
242 w(n) 2m = w(n)(1+2n)((5 +4n)’ = (L + 4ny’)

- g‘ 1+4n) Jr ,,EQ (1 +4n)’(5 + 4n)’

—22.7899.

Proor. Follows by writing the hyperbolic functions as 1 /2{e* + £7*), expanding
the terms appearing as (1 +e¢~**)"%/? and integrating termwise. For the integrands
involving x in the denominator an intermediate result from Gradshteyn and Ryzhik
(1980, p. 361) was used. O

Using the above lemma we can assess the exact impact of 6 and p, on the first
and second moments, as well as the variance of the asymptotic distributions in
Lemma 2.1. Note that the value of ,ua / /3 in Lemma 3.1 represents the mean of

the likelihood ratio statistic and corresponds to the figure obtained by Larsson
(1994) and Nielsen (1995). Our value is more accurate, however, since they used
numerical integration techniques instead of proceeding analytically. Letting g,{ p, 6}
denote the first moment of the distributions in cases { =1,2,3,4,5,6 of Lemma 2.1,
we have

]
8y = —1.78143 + ———5.56286,
£:(8) 1+ 6)2

1+6
g,(8) = —0.42310 { 2 -+ 7209211,
(L+67%) (1+8)1+86%)
p
= — 178143 + 55
1+ )V
il p) - —0423108 52" P 209211,

1=p)" " (1=p) (14 p)”

6+ p)(1+ pf
g p,8) = —1.78143 4+ LT OIIE00) o s,

(1+p)(1+8)
g6(£,0) = —0A1310f,( p, 8) + fo( p, 6)2.09211

for the pure moving average, autoregressive and ARMA processes, respectively. The
following tables illustrate in more detail the exact quantitative impact of p and 4 on
the location and variance of the agsymptotic distributions. It is worth emphasizing the
fact that our figures are exact. The use of a purely numerical Monte-Carlo approach
would have required days of computing time in order to lead to numbers close to
ours. It is indeed difficult to make conjectures about the distortions that might
continue to hold even asymptotically unless we are willing to bear an extremely
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TABLE 1
T{& — o}
darp 28} g2.(p) uy(8) i p)
—-09 — 5032.4388 ~51.8472 302104.71 3329.83
—-07 —45.0481 ~ 14,7614 2528.36 297.00
0.1 —2.4682 —2.3995 15.23 14.67
0.0 —1.7814 —1.7814 10.11 10.11
0.1 -1.3217 —-1.2757 7.32 7.06
0.7 —{.4340 0.5092 3.34 1.18
0.9 —-0.3946 0.8536 321 0.92
TABLE 2
L
dorp 2:(8) 2.p) 1(8) (p)
-09 —14.0270 —4.4167 53.9669 5.9559
-0.7 —4.1031 —2.2284 5.2340 1.7764
-0l —0.6102 —0.53930 0.9640 0.9625
Q0.0 —0.4231 —(0.4231 0.9626 0.9626
0.1 —0.2739 —(.2575 0.9854 (0.9893
0.7 0.1165 1.0435 1.1598 24118
09 0.1391 24754 1.1756 7.2124

heavy computational burden. We also believe that our approach leads to a better
understanding of the distinct impact of the structure of the error process.

In Tables 1 and 2 above, 4,(8) and 4,( p} denote the variances in the MA(1} and
AR(1} cases, respectively. The number — 1.78143 appearing in the row correspond-
ing to p= 8 = (Table 1} is the asymptotic bias of the QLS estimate in the unit root
model with iid. errors {(Le Breton and Pham 1989) and —0.4231 (Table 2)
represents the mean of the asymptotic distribution of the ¢ — statistic in the same
context. Clearly, both cases illustrate the more frequent occurrence of negative
values due to the presence of the unit root.

Particularly interesting are the magnitudes of the directions of shift and the
differences between the autoregressive and moving average error processes. In
Table 1, we can clearly observe the drastic shift to the left of the asymptotic
distribution of T{&—1) as # and p tend towards —1, the impact being much
stronger in the case of moving average errors as judged by both the mean and
variance. Indeed, we can observe an important influence of the error structure on
the distributional shifts and variance changes—an autoregressive structure being
much less distortionary than a moving average one when the parameters are
negative and large in absolute value.

These shifts explain the severe size distortions occurring in the presence of
dependent errors when inferences are based on the asymptotic distributions derived
under the ii.d. errors assumption. Both types of error structures will produce severe
size distortions, and except when & — 1, the MA process causes greater distortion.

Positive parameter values imply a shift rightward of the asymptotic distributions
and therefore an easier wrong acceptance of the unit root hypothesis when the
iid.-based distributions are used for inferences. Our results suggest that for the
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T(& — a) statistic, the ‘undersizedness’ will be more severe under an autoregressive
error structure, where both the mean and variance are more severely modified
relative to the MA case (see Table 1). When both p and 8 are close to 0, however,
their respective effect on the asymptotic distribution is quite comparable in magni-
tude,

The behavior of the asymptotic distribution of the ¢ — statistic (Table 2) displays
less pronounced displacements with 8 or p. Although the directions are similar to
the ones occurring in the T(& — a) case, they are also weaker. Clearly, this supports
the view that the ¢ — statistic is more reliable than the normalized QLS estimate for
making inferences in such frameworks. Although Dickey and Fuller (1979) suggested
that the T(& — e) statistic is more powerful than the ¢ — statistic, our previous
finding supports Schwert's (1989) Monte-Carlo-based claim that the latter is more
robust to model misspecifications. It will display better-size properties when the
model contains dependent errors.

The fact that the t — statistic is better behaved under dependent errors will also
be reinforced in the next section where we analyze the impact of augmenting the
model on the behavior of the two test statistics. Regarding the differences in the
impact of the two types of error processes, it is also worth observing that, for
the ¢ — statistic, when the parameters are positive, their increase leads to a faster
shift of the mean (rightward) as well as a faster increase in the variance under an
autoregressive error structure. On the other hand, when negative values are consid-
ered, the mean decreases and the variance increases faster under the MA process.

Finally, results pertaining to the mixed ARMA case are summarized in Figures
la-1d. It is difficult to argue that such a mixed process will necessarily lead to more
pranounced changes in the asymptotic distributions than in the pure AR or MA

"
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MEAN OF T{& — &}, ARMA(L, 1} ERRORS, 6> (), p < 0
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FIGURE 1d

MEAN OF {5, ARMA(1,1) ERRORS, 8 < 0, p > 0

cases. Indeed, this will depend on the mix of values taken by @ and p together, and
especially on their respective signs. It might happen, for instance, that a large
positive p considerably dampens the influence of a large negative 4, leading to
distributions that remain closer to the iid. case than say when both 6 and p are
moderate but negative. Overall, the ¢ — statistic displays [ess pronounced deviations
from the i.id. error-based asymptatic distribution.

3.2. Normal Approximations. Given that we obtained the exact mean and
variance of the asymptotic distributions of ¢, and 7(& — ), it is natural to inquire
about the quality of a normal approximation to these nonstandard distributions. The
unit roaot literature has often raised this question by comparing the left tails of the
Dickey-Fuller distributions to the ones of the standard normal (Evans and Savin
1981, Abadir 1995b, etc.). In Abadir (1995b), for instance, the author shows that
shifting the standard normal probability density function (pdf) by —0.3 provides a
very accurate approximation to the unit root density of the ¢ — statistic. Here we will
consider the comparison with N p,, ), where p, and o? are the mean and
variance of the correct nonstandard asymptotic distributions. For the ¢, statistic, we
have g, .= —04231 and Gfm =0.9626, and for T{(&— a), gy, = —1.78143 and
Uf‘m = 10.11. Another motivation behind these calculations is to obtain approximate
numerical values for the magnitudes of the size distortions implied by the shifts in
the moments when the ii.d.-based asymptotic distributions are used for inferences.
In Abadir (1995b} the author derived the exact density of the asymptotic distribution
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TaABLE 3
NORMAL AFPROXIMATIONS™
N{ —0.4231, 0.9626) DF, N(—1.78143,10.1L1} DF,
25% —2.35 —2.227 —8.0L —7.382
5% —2.04 —1.941 —7.03 —5.685
10% —1.68 —1.617 —585 —4.040

*DF; and DF,; denote the left tail 5% critical values of the nonstandard (Dickey and Fuller 1979)
asymptotic distribution of 1z and T{& — a}, the values of which have been obtained from Abadir
(1993a) and Abadir (1995b), respectively.

of the ¢ — statistic under the assumption of i.i.d. errors, but to our knowledge exact
results under dependent errors are not available in the literature. Using the pdf
transformation theorem, together with the joint density of @, and @, from Abadir
{1995a), one could also gbtain the exact densities of the variates in Lemma 2.1, This
however, is beyond the scope of this paper and will be investigated in further
research.

Table 3 displays the relevant normal and ‘exact’” DF critical values. Clearly, a
suitable normalization leads to a very accurate normal approximation for the
t — statistic at all relevant percentage points. The closeness of these distributions
can partly justify the use of the normal approximation in order to obtain approxi-
mate estimates of the size distortions under different error structures. However,
since the approximation for the normalized OLS coefficient is less accurate, we will
concentrate solely on the ¢ — statistic. The fact that the approximation based on the
¢ — statistic is more accurate confirms an important finding by Abadir (1992}, who
showed that the lower tail of the 7 — statistic decays much faster than that of the
normalized OLS coefficient.

Obviously, we also need to check the validity of the approximation when the
original DF distributions are shifted due to the presence of MA or AR errors. For
this reason, the following tables also include direct DF-based size estimates ab-
tained via numerical simulations. The previously obtained moments of the various
asymptotic distributions were very informative about the directions of the shifts of
these distributions and gave an overall intuition about the seriousness and magni-
tude of the distortions. However, in order to obtain a more precise numerical value
of, for example, the probability of rejecting the null when true, we need to compute
the relevant tail areas.

Our main objective here is to illustrate the connection between the shifts in the
moments and the implied ‘new tail area.’ Going back to our previous point, we saw
for instance that when 6= —0.7, we have u,= —4.1031 and a.? = 5.2340 for the
standard ¢ — statistic. We can therefore compute the implied size distortion via the
fallowing probability

P[X < —1.9411X = N(—4.1031,5.2340) ]

where — 1.941 corresponds to the 5 per cent DF critical value (see Table 3). Similar
prababilities can be obtained for a whole range of values for #. Table 4 summarizes
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TABRLE 4
APPROXIMATE AND EMPIRICAL SIZE ESTIMATES

Aarp SIZE (MA(1)) SIZE (AR{1)) DFMACL)} DEFCAR(L))
-09 94.95% 84.38% 100 %% 86.48%
—0.7 82.64% S8.32% 84.04% 52.86%
-01 8.53% 8.69% 852% 1.96%
0.0 5.04% 5.94%, 5.01% 5.01%
0.1 4.55% 4.46% 2.90% 2.89%
0.7 2.74% 268% 0.56% 0.00%
09 2.68% 495% 0.33% 0.00%

some of the implied approximate size estimates for the ¢ — statistic under a 5 per
cent nominal size. The last two columns display the counterparts of the size
estimates obtained by Monte-Carlo simulations with N = 10000 replications and a
sample size of 5000 observations.

The above numbers confirm that the undersizedness {due to both AR or MA
error processes with ( p, 6) > 0) is more serious when the errors are characterized by
an autoregressive structure. On the other hand, an MA process leads to greater
oversizedness when the parameters are negative. These results unanimously confirm
our moments-based analysis of Section 3.1. In addition, our results based on the
normal approximation were able to give an accurate description of the size distor-
tions implied by the shifts in the moments, for the vast majority of cases.

33.  Augmented Model. In practice, in arder to be able to continue using the
distributions corresponding to =0 and/or p=0 even when the error process is
not iid., one adds lagged changes of the dependent variable to the right hand side
of (1}. This has the effect of whitening the error process, which can then be assumed
to be approximately i.i.d. In applied work, an impartant issue is then the selection of
the truncation lag. Indeed, in order for inferences to be based on @Q,/Q,, even
when say 8 #0 or p+ 0, the lag length needs to satisfy certain speed conditions
(Said and Dickey 1984, Ng and Perron 1995), and will therefore play a crucial role
on the quality of inferences even asymptotically. In order to shed some light on this
issue, we computed the asymptotic distributions of & and 15 in (1) when k=1 and
2, and where X denotes the truncation lag. We can therefore analyze explicitly the
relationship between the lag length and the magnitudes of 8 or p. The estimated
model is given by

&
AX,=a X, + Y yAX,  +u,.
i=1

The following lemma presents the different distributions under the hypothesis that
a; =0 and for a given lag length.
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LeMMa 3.2, Case k=1 and MA(1Y;

1 T(& — )=>(1— 6 )I{}W(r)dW(r) _ 32 13

| - (A+6%) ] gwir)d  (1+6)(1+0%) (W(rYar
2 ty = 1‘f’z)m(1+6)(1+32—9) faW (r) dW(r)

. & 1+8? (1_96)1/2 (,-’(}W(r)zdr)m

1-¢*
_( 1+ 62) (1+6)(1- 05" (w(ry’an)”

Case k =1 and AR(1);

. Wy aw(r)
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Procr. Follows from Phillips (1987, Theorem 3.1) and the continuous mapping
theorem, a

We can now compare the moments of the above distributions in order to quantify
the strength of the lag length for a given magnitude of # and p. Table 3 displays the
first moments of the distributions of T(&, — e} under no lags added, one lag, and
two lags, respectively, in both the MA and AR cases.

The first three columns above display the moments of the asymptotic distribution
of T{&, — @} under MA(1} errors when k=1, 1, and 2, respectively. When ¢ is
negative and as we increase k, we get closer and closer to the moment of the i.id.
error-based asymptotic distribution. The picture is very different when we focus on
positive values for ¢. Indeed, in this latter case there is an initial improvement as we
move from k=1( to k=1, but as we go further to k=2, the situation deterjorates
and hence adding lags will not always be beneficial when inferences are based on
T(&; — ). For instance, when 8 > 0, the optimal number of lags seems to be & ='1.
It is important to observe that this does not mean that using & = 3 or further will not
lead to any improvement. The point is that an increase in & does not yield to a strict
improvement. This phenomenon has also accurred in Monte Carlo results, where
the interest lay in determining the empirical size of the tests under MA(1) errors as
k was being increased. {See Agiakoglon and Newbold 1992, pp. 474-475. In their
study an increase in the number of lags from, say, k=1 to k=8 was shown to
improve the size, but no systematic improvement occurred when the lag length
increased from k=1 to k=2 or 3). The last three columns above focus on the
AR(1) errors case. Clearly, fewer lags are required for whitening the error process
for similar magnitudes of p. Table 6 displays the equivalent numbers for the
¢ — statistic.

TABLE 5
T(&l - al)
dotp £:(6) g £:08) -y g0} =2 2ol =g gil Pl 8:(plo2

—0.9 —502.45 —251.61 - 167.99 —51.85 -3.38 -3.38
—0.7 —45.04 — 2204 —15.61 —-14.76 —-3.03 —3.03
—{.1 -2.47 -32.03 —1.98 —240 —196 —1.96
0.0 —1.78 —1.78 —1.78 —-1.78 -1.78 —1.78
0.1 —-1.32 —1.65 —1.62 -1.28 —1.60 —1.60
0.7 . =043 -1.58 —0.83 0.51 —0.53 —-0.53
0.9 —{.39 —-1.59 —-0.73 0.85 -0.18 —0.18

TABLE &

£

ld

forp £18),—g £2(0)_, £208)ey g4 plig 2L 0) oy Biplica

-09 —14.0270 —8.075 —5.6858 —4.4167 ~0.4231 —0.4231
-07 —4.1031 —2.3010 —1.5695% —2.2284 —0.4231 —04231
-01 —0.6102 —{0.4410 —0.4249 —10.5930 —-04231 — 04231
0o — 04231 —10.4231 —0.4231 —04231 —0.4231 —-0.4251
0.1 -0.2739 —0.4380 —0.4216 —0.2575 —0.4231 —0.4231
a7 0.1145 -0.729 —0.2374 1.0435 —-0.4231 — 04231

a9 0.1391 —-0.768 —0.1918 24754 —04231 - 04251




86 GONZALO AND PITARAKIS

Again, the first three columns in Table 6 focus on the MA(1} case, and the
remaining columns on AR(1). Noting that if the true process is a simple random
walk with ii.d. errors and we instead fit the random walk by also adding one lagged
change of the dependent variable to the right-hand side, we implicitly have a
random walk DGP with AR(1) errors. This is why the column corresponding to
AR(1) errors with k = 1 shows a perfect match of the first moment for any value of
p. The same also happens with k& = 2, since asymptotically the inclusion of extra lags
(beyond the true number) does not affect the asymptotic distribution of the
¢ — statistic. An interesting point also arises by looking at the asymptotic distribution
of T(&, ~ @) under AR(1) errors when k=1 or 2 (cases 3 and 7 in Lemma 3.2).
Indeed, we notice that although one lag is enough for the ¢ — statistic to be brought
to the iid. distribution case {cases 4 and 8), the T(&, — «,) statistic will always
remain displaced with respect to the iid. distribution, no matter how many lags we
use. This can be intuitively explained by the fact that the latter statistic does not
take the variance into account and therefore its use will always lead to more severely
distorted inferences. Table 7 displays the variances of the asymptotic distributions of
the ¢ — statistic in the MA(L) case for the augmented model.

We can now compute the implied size distortions using the normal approxima-
tion. We focus solely on MA errors since we previously showed that the distortions
induced by the presence of AR errors are neutralized when the number of lags is
equal to or greater than one. The first three columns of Table 8 display the size
estimates obtained via the normal approximation, using the relevant mean and
variance of the asymptotic distributions for various values of the lag length. The last
three columns are again the ‘exact’ counterparts obtained via Monte Carlo simula-
tions using the correct Dickey and Fuller distribution.

TABLE 7
Viez)
forp U8 g u(8),_, w(8)y_y
—-049 53.967 18.332 - 9.422
—0.7 5234 2136 1.397
-0.1 . 0.964 0.961 0.963
0.0 0.963 0.963 0.963
0.1 - 0983 0.962 0.943
0.7 1.160 0.982 0.995
9 1.176 0.990 1008
TABLE 8
SIZE ESTIMATES (NORMAL VERSUS MONTE CARLO WHEN MA(1))

4 Ni—g Ny Nie2 DE,_y DF, DF,_,
-39 94.95% 92.36% 88.88% L100% 99.54% 94.64%
-0.7 82.64% 59.48% 37.45% 84.04% 54.32% 3546%
0.1 8.53% 6.18% 6.06% 8.52% 542% 5.24%

0.0 5.94% 5.94% 5.94% 3.01% 5.00% 5.00%

1 4.55% 6.18% 5.94% 2.90% 5.10% 4.80%

0.7 2.74% 10.93% 4.27% 0.56% 10.70% 2.57%

as 2.68% 11.70% 40N % 0.33% 11.56% 2.26%
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It is interesting to observe the evolution of the size estimates when 8 > (), where
an increase from k=0 to k=L seriously deteriorates the size properties of the
¢ — statistic. This clearly highlights the importance of the lag length selection for
carrying on ADF-based unit root tests and reinforces our argument that an increase
of lag length does not always lead to a strict improvement of size probabilities.

4. CONCLUSION

In this paper our objective was to offer a complementary analysis to the usual
Monte Carlo simulations for evaluating the properties of distributions arising in
nonstationary autoregressions. More specifically, we investigated the impact of the
prescnce of dependent errors on the asymptotic distributions of the two most
important quantitics used for testing. We then focused on the properties of the
standard method used for whitening the error process by analyzing the caonnection
between the magnitude and sign of the parameters and the number of necessary lags
in order to legitimately use the iid. error-based distributions. Qur framewark
allows us to distinguish specifically between different types of error processes. In
addition, we showed that a proper normal approximation to nonstandard asymptotic
distributions could give valuable hints on the magnitude of size distortions. Our
results can easily be generalized to the multivariate framework using a multivariate
analog of ¢{u,u) recently obtained by Abadir and Larsson (1996). This can also
open the way to multivariate Edgeworth-type asymptotic expansions, as in Knight
and Satchell (1993). Finally, our results can also be used as a starting point for
constructing Bartlett corrections for unit root tests.
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