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TESTING THE AUTOCORRELATION STRUCTURE 
OF DISTURBANCES IN ORDINARY LEAST 

SQUARES AND INSTRUMENTAL 
VARIABLES REGRESSIONS 

BY ROBERT E. CUMBY AND JOHN HUIZINGA1 

1. INTRODUCTION 

THIS PAPER DERIVES the asymptotic distribution of a vector of sample autocorrelations of 
regression residuals from a quite general linear regression model. The model is allowed 
to have a regression error that is a moving average of order q > 0 with possibly 
conditionally heteroscedastic innovations; to have strictly exogenous, predetermined, 
and/or endogenous regressors; and to be estimated by a variety of Generalized Method 
of Moments estimators, such as ordinary least squares, two-stage least squares, or 
two-step two-stage least squares.2 

One important use of the distribution derived here is to form the basis for a simple 
test of the null hypothesis that the regression error is a moving average of known order 
q > 0 against the general alternative that autocorrelations of the regression error are 
nonzero at lags greater than q. The test-denoted the 1 test-is thus general enough to 
test the null hypothesis that the regression erior has no serial correlation (q = 0) or the 
null hypothesis that serial correlation in the regression error exists, but dies out at a 
known finite lag (q > 0). 

The l test is especially attractive because it can be used in at least three frequently- 
encountered situations where such popular tests as the Box-Pierce (1970) test, Durbin's 
(1970) h test, and the Lagrange multiplier test described by Godfrey (1978b) either are 
not applicable or are costly to compute. 

The first situation is when the regression contains endogenous variables. The three 
popular tests listed above are not valid when the regression has been estimated by 
instrumental variables, and the Box-Pierce test is further restricted to having only lagged 
dependent variables.3 In contrast, the 1 test can be used not only with ordinary least 
squares but also with a wide class of instrumental variables estimators. 

A second situation, q > 0, arises in studies of asset returns over holding periods which 
differ from the observation interval and in studies where time aggregated data are used.4 
In this situation, existing tests that investigate the serial correlation of the regression 
error require estimating the parameters of the moving average error process, and 

1 We would like to thank seminar participants at the University of Chicago and Lars Hansen, in 
particular, as well as two anonymous referees for helpful comments. Huizinga gratefully acknowl- 
edges funding from the University of Chicago Graduate School of Business and the Sloan 
Foundation. 

2 See Hansen (1982) for a description of Generalized Method of Moments estimators. Cumby, 
Huizinga, and Obstfeld (1983) describe the two-step two-stage least squares estimator. 

3 Godfrey (1978a) describes a test that is valid with some instrumental variables estimators, but 
the test is not valid in the presence of conditionally heteroscedastic errors or with instrumental 
variables estimators such as two-step two-stage least squares. The test, like Durbin's h test, is also 
restricted to testing the significance of the first autocorrelation of the regression error. 

4See, for example, work on returns in the foreign exchange market by Hansen and Hodrick 
(1980), the study of real interest rates by Huizinga and Mishkin (1984), the investigation of stock 
returns by Fama and French (1988), and work on the term structure of interest rates by Mishkin 
(1990). Hall (1988), Hansen and Singleton (1990), and Christiano, Eichenbaum, and Marshall (1991) 
address the issue of time aggregated data. 
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therefore necessitate nonlinear estimation.5 In contrast, the 1 test described in this paper 
avoids the use of nonlinear- estimation because it is based solely on the sample 
autocorrelations of regression residuals and a consistent measure of their asymptotic 
covariance matrix. The 1 test thus reflects a desire for simplicity, and for ensuring that 
regression diagnostics do not become more costly or more difficult to compute than the 
original regression. 

The third situation is conditional heteroscedasticity of the error term, a situation that 
is frequently detected in empirical studies.6 As discussed below, the presence of condi- 
tional heteroscedasticity can seriously undermine tests for serial correlation of regression 
errors that ignore its presence. The 1 test can be used with either conditionally 
heteroscedastic or homoscedastic errors. 

The outline of the paper is as follows. In Section 2, we derive the asymptotic 
distribution of the sample autocorrelations at lags q + 1 to q + s of regression residuals 
from a model where the regression errors are a qth order moving average with possibly 
conditionally heteroscedastic innovations. The regression is assumed to be estimated by 
instrumental variables, with instruments that are predetermined, but not necessarily 
strictly exogenous. We note how the distribution simplifies when the regression errors 
are conditionally homoscedastic and when all regressors are predetermined or strictly 
exogenous variables so that ordinary least squares is appropriate. Based on this asymp- 
totic distribution of the sample autocorrelations of regression residuals, a test of the 
hypothesis that the true regression errors are a qth order moving average process is 
presented in Section 3. Section 4 contains summary remarks. 

2. DISTRIBUTION OF SAMPLE AUTOCORRELATIONS 
- OF REGRESSION RESIDUALS 

The regression equation to be considered in this paper is 

(1) Y=X' +E, (t T), 

where yt and E, are scalar random variables, X, is a 1 x k vector of the k scalar random 
variables X1 t, X2, t.... Xk, t, and 8 is a k x 1 vector of unknown parameters. The vector 
of regressors, Xt, may include jointly endogenous variables (those contemporaneously 
correlated with Et), predetermined variables (those uncorrelated with Et+j for j > 0 but 
correlated with Et_ for some j > 0), or strictly exogenous variables (those uncorrelated 
with ?t+j for all j). 

The regression errors Et are assumed to have mean zero and satisfy two other 
conditions. First, though they are allowed to be conditionally heteroscedastic, they are 
assumed to be unconditionally homoscedastic. Second, for a known q > 0, their autocor- 
relations at all lags greater than q are required to be zero. 

It is also assumed that there exists a 1 x h vector of instrumental variables Zt, 
comprised of h > k scalar random variables Z1, t, Z2, t I.. . Zh, t, each of which is uncorre- 
lated with Et. Zt is required to be predetermined, but not necessarily strictly exogenous, 

5This is true of the Box-Pierce test, the likelihood ratio test, and, as discussed in Godfrey 
(1978c), the Lagrange multiplier test. It is also true of a GMM approach that jointly estimates the 
parameters of primary interest and the residual autocorrelations. 

6 Diebold (1986) proposes a test for serially correlated errors in the presence of the ARCH 
distribution described by Engle (1982). The I test discussed here is more generally applicable than 
Diebold's test because it does not assume any particular functional form for the conditional 
heteroscedasticity. 
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with respect to Et. These assumptions are summarized by 

(2) E(Et) = ?' 2E( ' ? 

(3) E(EtEt -n)l/(.- = Pn 

and 

(4) E(Et |Zt 1 Zt- 1 * Et-q-D1 Ft-q-21 
.. * )? 

Furthermore, the h x h matrix 

(5) Q= lim (1/T)E(Z'E?'Z) 

is assumed to exist and be of full rank. 
It is assumed that the k x 1 parameter vector 8 in equation (1) has been estimated 

using a root-T consistent estimator of the form 

(6) d = (X'ZA 
- 
'Z'X) -XZA - lz'y 

for some observable matrix AT. This formulation is general enough to include ordinary 
least squares (AT = (X'X/T) and Z = X), two-stage least squares (AT = (Z'Z/T)), and 
two-step two-stage least squares (AT is proportional to a consistent estimate of f2). The 
asymptotic covariance matrix for the estimator d is denoted Vd, with 

(7) Vd = DQD' 

and the k x h matrix D given by 

(8) D = plim T( X'ZA 
- 

1Z'X) -XZA - 

The objective of this section of the paper is to derive, within the framework of the 
model described by equations (1)-(8), the asymptotic covariance matrix of the sample 
autocorrelations of the regression residuals, t = Yt- Xt d. In the following section we 
show how a consistent estimate of this covariance matrix can be used to test the 
hypothesis that the s x 1 vector p = (Pq+1i'... Pq+sY= 0 

Let r= [rq+, rq+2,..., q+sI' and 

T 
: 

At 
A 

?tt-n 

(9) r T t 

E At2 

t= 1 

By the mean value theorem, 

(10) vr =vTr + -aFT (d- ), 

where the s X 1 vector r =[rq+ 1, rq+2, ..., rq+sI', 
T 

(ll) ~t=n+l1 
n =T 

t=1 1 
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and the jth row of the s x k matrix dr/d8 is evaluated at d*, which lies between d and 
8. Equation (10) shows that the asymptotic covariance matrix of r (the vector of sample 
autocorrelations of the regression residuals) can be derived as the asymptotic covariance 
matrix for the sum of r (the vector of sample autocorrelations of the true disturbances) 
and dr/d8(d - 8). Only when ar/la can safely be ignored will the sampling variation in 
the estimation of 8 not affect the sampling variation in the estimation of p. 

Let the s X k matrix B have i, jth element, 

(12) B(i,j) =-[E(ct_qjiXj,t) +E( tXj,t-q-i)] /E(Kt) 

We show in the Appendix that B = plim dr/la and thus that BVdB' is the asymptotic 
covariance matrix of ar/d8(d - 8). In most models, the implication of equation (4) that 
E(?tt_q_l t-q-2, ... ) = 0 will be sufficient to ensure Xi, t-q-i is predetermined with 
respect to Et and thus that the second term of the sum in equation (12) is zero. 

To complete the notation, let jit = E t q i for i =1,...,s, jt=EtZj,t for i= 
1,.. ., h, the ijth element of the s X s matrix VJ be given by 

q 

(13) Vr(i, j) = 
4 E E(~i,t(j,t-n)~ 

n= -q 

and the ijth element of the s x h matrix C be given by 

q 

(14) C(i, j) -2w E E(git(i t',t-n)- 
n=-q 

In the Appendix we show that Vr is the asymptotic covariance matrix of r and that the 
asymptotic covariance matrix of r with dr/d8(d - 8) is BDC'. Proposition 1 combines 
these findings in giving the key result of this section.7 

PROPOSITION 1: Given equations (1) through (14) and the regularity conditions stated in 
A 

the Appendix, FTYrP N(O, VJ^), where V^ = Vr + BVdB' + CD'B' + BDC'. 

Proposition 1 states that, in general, having to estimate the residuals will affect the 
asymptotic distribution of their sample autocorrelations. The following special cases of 
the general model provide further insight into Proposition 1 and help clarify the 
relationship between tests based on the asymptotic distribution of r and tests of residual 
autocorrelation proposed elsewhere in the literature. 

Case (i): Strictly Exogenous Regressors. Since B = 0 when the regressors are strictly 
exogenous, VJ = Vr and one can safely ignore the fact that the true residuals are 
unavailable. 

Case (ii): Conditionally Homoscedastic Residuals. We show in the Appendix that 
when the residuals are conditionally homoscedastic, Vr and C can be rewritten as 

q 

(15) Vr(i,i) = E Pn-i+jPn 
n= -q 

and 

q 

(16) C(i,j)= E PnE(et-q-iZjZt-n). 
n= -q 

7The proof of Proposition 1 can be found in the Appendix. 
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The well known result that the sample autocorrelations of a serially uncorrelated series 
are independent and asymptotically normal with variance 1/T follows from (15) with 
q = 0. When q > 0 the sample autocorrelations are not independent and, though asymp- 
totically normal, do not have variance 1/T. 

Case (iii): Conditionally Homoscedastic Residuals, Predetermined Regressors, and 
q = 0. When the regressors are predetermined, ordinary least squares yields consistent 
estimates of 8; we can set Z = X, AT= X'X/T, and the second term of B will be zero. 
Combining this with the assumption of conditional homoscedasticity (so that equation 
(16) is valid) and q = 0 (so that p,n = 0 for n # 0) yields C = -o,2B. Furthermore, 
Vd= oQ2plim (X'X/T)-1 = o2D so that BDC'= -BVdB'. Finally, it follows from equa- 
tion (15) that in this case VJ = I, and thus VJ- = I - BVdB'. 

Unlike the case of strictly exogenous regressors, when regressors are merely predeter- 
mined one cannot safely ignore the use of regression residuals rather than the true 
disturbances in estimating autocorrelations. The expression VP/ = I - BVdB' can be used 
to derive the well-known Durbin (1970) h test. Durbin (1970) considers testing whether 
the autocorrelation of the error term at lag one is zero in a model with lagged dependent 
variables and strictly exogenous variables as regressors. In this case B will contain all 
zeros except a single value of minus one in the position corresponding to the dependent 
variable lagged once. Using Vdl to denote the estimated variance of the coefficient on 
this variable, the asymptotic variance of the first autocorrelation of the regression 
residuals is seen to be 1/T - Vdl, which matches the formula given by Durbin (1970).8 

Case (iv): Conditionally Homoscedastic Residuals, Only Lagged Dependent Vari- 
ables, and q = 0. When the regression error is conditionally homoscedastic, X, contains 
only k lagged values of yt, and q = 0, we have a special case of the model considered by 
Box and Pierce (1970), who propose testing the hypothesis of zero correlation in the 
regression error by comparing Q, = TP'r to the critical value of a chi-squared random 
variable with s - k degrees of freedom. Understanding the logic behind the Box-Pierce 
test and why the test in general fails when regressors other than lagged depend- 
ent variables are present becomes quite simple using the result from case (iii) that VJ = 
I-BVdB'. 

Specifically, it can be shown that when X, contains only lagged values of yt, Vd 
approaches (B'B)- 1 as s increases. It follows that as s increases, V^ approaches 
I - B(B'B)- B', an idempotent matrix of rank s - k. Hence, for both large s and large 
T, Q, will be approximately distributed as a chi-square with s - k degrees of freedom.9 10 
If, however, X, contains any variables other than lagged dependent variables, Vd will not 
in general approach (B'B)1 and it is unlikely, though not impossible, that I - BVdB' 
will be an idempotent matrix. 

3. TESTING RESIDUAL AUTOCORRELATIONS EQUAL TO ZERO 

The results presented in Section 2 can be used to develop a Wald test of the null 
hypothesis that the regression error in equation (1) is uncorrelated with itself at lags 

8 Godfrey (1978b) also considers the case of lagged endogenous and/or strictly exogenous 
regressors, conditionally homoscedastic errors, and q = 0. Among other things, he extends Durbin 
(1970) by showing that the asymptotic covariance matrix for a vector of sample autocorrelations of 
regression residuals is I - BVdB', the formula derived above. 

If W is an n x 1 random normal vector with mean 0 and n x n covariance matrix V whose 
trace is nonzero, then W'W is distributed as a chi-square random variable with n - m degrees of 
freedom if and only if V is idempotent and has rank n - m. See Johnson and Kotz (1970, pages 
177-178). 

10 Ljung (1986) investigates how large s must be before the Qs statistic approaches the chi-square 
distribution. She finds that in samples of 50 or 100 observations, s > 10 is sufficient for all AR(1) 
models examined and that s > 2 is sufficient for AR(1) models with the autoregressive parameter 
below .9. 
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q + 1 through q + 5.11 Proposition 2 presents this result. 

PROPOSITION 2: Let V,r B, C, D, and Vd be consistent estimates of V/, B, C, D, and Vd. 
Then, given the conditions of Proposition 1, 

lqs = T4Vr +BVdB' +CD'B+BDC'] r X2(s). 

Proposition 2 states that if Vr, B, C, D, and Vd can be estimated consistently, then the 
Iq statistic will be asymptotically distributed as a chi-square random variable with s 
degrees of freedom.12 In the remaining part of this section we discuss how consistent 
estimates of Vr, B, C, D, and Vd can be formed. 

Define the (h + s) x 1 vector mt by 

(17) '7 = (1)t' .. * * O h,t~ {l,t~ .. * *S 1 t)- 

Then the (h + s) x (h + s) spectral density matrix at frequency zero of mt is proportional 
to 

(18) 11 
f C tE) 

Next, define the (2s) x (s + h) matrix P by 

(19) ( ? -E2i) 

so that 

BVdB' BDC' 
CD'B' Vr . 

It follows from equation (20) that a consistent estimate of the asymptotic covariance 
matrix of r can be obtained from consistent estimates of P and 'I. It also follows that if 
the consistent estimate of 'I is positive definite in the sample, the resulting lq will be 
positive. 

11 In many instances, instrumental variables are chosen as lagged endogenous variables so that 
rejecting the null hypothesis may call into question the validity of equation (4). In such cases it may 
be preferable to think of the null hypothesis being tested as a joint hypothesis concerning the serial 
correlation of the residuals and the validity of the instruments. Viewed in this way, the test 
described in this paper becomes an alternative to the J statistic proposed in Hansen (1982). 

12 Godfrey (1978b) considers a model with lagged endogenous and strictly exogenous regressors, 
conditionally homoscedastic errors, and q = 0. He shows that using r to test p = 0 is equivalent to 
the Lagrange multiplier test of the null hypothesis that the error term is serially uncorrelated 
against the alternatives that the error is MA(s) or AR(s) for s > 0. Hence, in some models, the test 
described in Proposition 2 is asymptotically equivalent to a likelihood ratio test. However, Godfrey 
(1978c) shows that in the same model but with q > 0, computation of the Lagrange multiplier test of 
the null hypothesis that the error term is MA(q) against the alternatives that the error is MA(q + s) 
or AR(q + s) requires that the moving average parameters be estimated. In this model the test 
described in Proposition 2 may not possess all the desirable properties of a Lagrange multiplier or 
likelihood ratio test, but will be less computationally burdensome than those tests. A procedure that 
would not require full maximum likelihood estimation of the moving average parameters is to 
implement a C(a) test. Such a test would be asymptotically equivalent to the likelihood ratio and 
Lagrange multiplier tests and would only require that the derivatives of the likelihood function be 
evaluated at initial consistent estimates. See Godfrey (1989, pp. 27-28). 
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Consistently estimating P is straightforward. Let U be the T x s matrix, 

(21) U(i, j) = 
A for i-j-q > 0, 

= 0 otherwise, 
A 

so that the jth column of U is the vector of regression residuals lagged q +j times. 
Then, 

T 

(22) 62 = (1/T) t 
t= 1 

(23) B = U'X/T)/dE2, 

and 

(24) D T(X'ZAT1ZTX)'X'ZAiI 

are consistent estimates of o2, B, and D respectively. 
Consistently estimating 'I is also straightforward. Let the (s +h) x 1 vector At be 

given by 

(25) 7t (?t z17t~ .. I * tZh, t, t?Ft-q-1, .. I* *?tt-q-s) 

and the (s + h) x (s + h) matrix Rn be given by 

T 

(26) Rn = (1/T) , E 19t /-n 
t=n + 1 

Then, as described in Anderson (1971), there are a variety of (N + 1) x 1 weighting 
vectors wN = (w,... N , wNY such that the (s + h) x (s + h) matrix 

N 

(27) P= WN R 
n_ -N 

is a consistent estimate of W. Not all choices of wN that give a consistent estimate of W 
will also give an estimate that is positive definite in small samples, however. 

Equations (15) and (16) in the previous section showed how the matrices VJ and C 
could be simplified in the case of homoscedastic errors.13 With conditionally ho- 
moscedastic errors, the s X s matrix 

q 

(28) VI(i, j) = rn_i+jrn 
n~ -q 

is a consistent estimate of V, where Aj = 0 for il I > q. A consistent estimate of C is given 
by the s x h matrix 

(29) C= U V'Z/Tdr2, where V(i, j) = rPi -A 

is an estimate of the covariance matrix of the error term. 

13 McLeod (1978) derives the asymptotic distribution of residual autocorrelations from univariate 
ARMA models with homoscedastic errors and, as we do here, suggests using a consistent estimate 
of the asymptotic covariance matrix to form a Wald test as an alternative to the Box-Pierce test. 
Breusch and Godfrey (1981) describe unpublished work by Sargan (1976) that suggests a test that is 
equivalent to the lq s test when q = 0 and the residuals are conditionally homoscedastic. 
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While the analysis of this paper centers on the asymptotic distribution of simple 
autocorrelations, the results are also relevant for the asymptotic distribution of partial 
autocorrelations of regression residuals. Regressing E' on Et'q- 1,. 

A 

t_q_s yields the 
estimated coefficient vector b = Fr, where F = (U'U) - converges in probability to a 
s x s matrix F. As a result, b converges in distribution to a normal random variable with 
mean zero and covariance matrix Vb = FVjF' when the null hypothesis is true, and the 
standard Wald statistic for testing b = 0 will be numerically identical to the 1 statistic 
described in Proposition 2.14 In the special case of q = 0, F is an identity matrix so that 
even though b will not equal r in finite samples, one can replace r with b in Proposition 
2 and obtain a valid test. 

4. CONCLUDING REMARKS 

The distribution of the 1 test described in this paper is based on asymptotic distribu- 
tion theory and thus leaves open the issue of how well the test will work in finite samples. 
In Cumby and Huizinga (1990) we report the results of a series of Monte Carlo 
experiments that investigate the performance of the 1 test in a number of models. In 
each model, the performance of the 1 test is evaluated both in sample sizes of 50 and 100 
observations, both with errors that are conditionally homoscedastic and errors that are 
conditionally heteroscedastic, and both with q = 0 and q = 2. 

Several conclusions emerge from these Monte Carlo experiments. First, the small 
sample distribution of the 1 statistic is close to the asymptotic distribution in the tails, so 
that the test is reliable in terms of its size. Second, performance of the 1 test in the case 
of q = 2 is sensitive to how the matrix 'I in equation (18) is estimated. The best results 
were obtained using equation (27) and the "Gaussian" weights wN = exp ( - i2/2N2).15 
Third, while the presence of conditionally heteroscedastic errors does not present any 
problems for the 1 test, it often makes the popular portmanteau tests suggested by Box 
and Pierce (1970) and Ljung and Box (1978) quite unreliable. 

Stern School of Business, New York University, 100 Trinity Place, New York, NY 10006, 
U.S.A. 

and 
Graduate School of Business, University of Chicago, 1101 E. 58th Street, Chicago, IL 

60637, U.S.A. 

Manuscript received January, 1989; final revision received March, 1991. 

APPENDIX 

This appendix provides a proof of the main proposition in the text. Let y,, E,, X1,,. . ., 

Zl, , . . ., SZh,t be scalar random variables on which we have observations for t = 1. T. Define X, 
and Z, to be the 1 x k and 1 x h vectors (X1,, ..., Xk,I) and (Z1, Zht,), and define y, X, and 
Z to be the T x 1, T x k, and T x h matrices (y1. YT), (X,., XTi)', and (Z ..., ZT)'. Define 
mt = (w1,1' O * h, t E1, ,)' for j, = ElZ,1 and i,I = El Elq_j, and let AT be an observable 

14 Since the estimated covariance matrix for b reported by standard regression packages will not 
in general be a consistent estimate of Vb, testing b = 0 with the typical F test reported by these 
packages is not an asymptotically valid procedure. 

15 See Brillinger (1975, p. 55) for a discussion of the Gaussian weighting scheme. Details on the 
optimal choice of N are discussed in Cumby and Huizinga (1990). The performance of the I test was 
substantially poorer when IF was estimated with equation (27) and the modified Bartlett weights 
discussed by Anderson (1971) and Newey and West (1987). 
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h x h matrix. We assume that for a known constant q and unknown k x 1 vector of constants 8, 

(Al) {X,, Z,, ?,} is wide sense stationary and ergodic, 

(A2) Yt=Xts+Et, 

(A3) E(Et) = 0, 

(A4) E(Et lZt, Zt-1... I ESt-q-1, Et-q-21 .. ) ?0 

(A5) E(-qtii,-i) is finite for i = 0, . q, 

(A6) IFE(7 t 1t-q) +E(-qT-qj-q+1) 
+ 

+E(ijtij'+q-i) +E(qt-q'j+q) is positive definite, 

(A7) (I/T) plim X'Z exists and has rank k, 

and 

(A8) plim AT =A exists and is nonsingular. 

Define E(E?2) = o,2, E(Ett-,,)/Io,2 = p,n, rn to be the sample autocorrelation of Et at lag n, the s x 1 
vector r=(rq+l,rq+2,..,rq+)', the kx 1 vector d =(X'ZA-IZ'X) -X'ZA-1Z'y, r^n to be the 
sample autocorrelation of E' =y, -Xtd at lag n, and the s x 1 vector r^= (Qq+i' r^q+2 ..., q+s). We 
also define C to be the s x h matrix that has cJ-2 times the sum from n equals -q to q of 
E(f t wj,t - n) as its ijth element, Vr to be the s x s matrix that has a - times the sum from n equals 
-q to q of E(fj t j,t-n) as its iyth element, U to be the TX s matrix that has q +j zeros followed 
by ?t, t = 1, . . ., T - q - j as its jth column, and B to be the s x k matrix that has - [ E(Et -q-iX; t) + 
E(Xj t-qj-j?t)]/o.2 as its ijth element. 

LEMMA 1: Given the assumptions (A1)-(A8) and the definitions stated above, d is a consistent 

estimate of 8 and VT(d -) N(O, Vd) where Vd = Df2D', D = plim T(X'ZA-1Z'X)-1X'ZA 1, 
and 2 = E(co tcoq)+E(cotco'q+,)+ +E(t't?qi) + E(wt,'t+q)o 

PROOF: The proof can be found in Cumby, Huizinga, and Obstfeld (1983). 

LEMMA 2: Given the assumptions (A1)-(A8) and the definitions stated above, 
plim dr/d8 = B. 

PROOF: dr/d8 has as its ijth element 

(drjdaj) 1 =d*=d, E , where et =y-X id 

and d* lies between d and 8. Differentiating, we obtain 

[xj, tet -q-i + Xj,t _q-iet ] L e,et-q-i E Xi, e, 
_e7 +2 [Ee7]2 

Le 2 2]e 
2 

Therefore, using (Al), the fact that d is a consistent estimate of 8 (Lemma 1), and the fact that d:* 
lies between d and 8, we get 

dri E(Xj,t?t-q-i) E(Xj,t-q-iEt) E_Xj, t?_t) 
plim 0|.2 0.q2 qi 2 

Since pj = 0 for j > q, the third term in this sum is zero and the lemma is proved. Q.E.D. 

The proof of Proposition 1 is now straightforward. 
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PROPOSITION 1: Given the assumptions (A1)-(A8) and the definitions above, r^ N(O, VI^) with 
V, = V> + BVdB'+ BDC' + CD'B'. 

PROOF: By the mean-value theorem, 

dr 
Tr^ = Tr + VT_ (d - ), 

where the ith row of dr/d8 is evaluated at d*, which lies between d and S. Stacking the terms on 
the right-hand side of this expression and substituting the definitions of d and U gives 

[ar/d6(d-b)| drIdS T( X'ZA 
- 

Z'X) X'ZAT 0 1 pZtg/ 

[ I L ( L/ T(IAT) Ii1xL U)?XZT 

where I is an s x s identity matrix. By Lemma 2, (A7), and (A8), 

plim [dr/d T( X'ZA-T 1Z'X) X ZAT 0 ] = [BD 0 1 
0 (EIET) I] [ 0 

I 

and by a central limit theorem in Hannan (1973) (see Hansen (1982)), 

Z[E FT A 
N(O, W') 

for 

'a CIOE ,l 2 

Thus, 

,FT drldS(d - ) 
A 

N(?' 0't4") 

where 

BVdB' BDC' 

?t?t= CD'B' VI J 
Since FT r' is the sum of the two random vectors that are asymptotically normally distributed with 
covariance matrix 01IP', it follows that fTr is asymptotically normally distributed with covariance 
matrix given by BVd B' + BDC' + CD'B' + V, and the proof is complete. Q.E.D. 

In the text, we discuss how the asymptotic distribution of Vr^ is affected when the assumption 
that Et is conditionally homoscedastic, 

(A9) E(tt-nIlZt, Zt-11 ..?t-q-1,1t-q-2,1 ) =E(1tEt1n), 0 6 n <q, 

is added to assumptions (A1)-(A8) above. In particular, equations (15) and (16) give forms of 
equations (13) and (14) which are claimed to be valid when this assumption is added. To verify that 
equation (15) is in fact correct, note that when (A9) holds and - q < n 6 q, 

(J-4E(itjtn) 
= 

(E4E(etEt-qi_t-nqj t-n-q-j) 

= OE 4E{Et-q-ijt-n-q-jE(-t-t-n I-t-q-iI ?t-n-q-j)) 

=- ~4E(,t-qjiet-nqj)E(e-te-t) t (E in-n) = Pn+s-iPn- 

Equation (16) can be verified in a similar manner. 
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