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ime series data—data collected for a single entity at multiple points in

time—can be used to answer quantitative questions for which cross-
sectional data are inadequate. One such question is, what is the causal effect .
a variable of interest, Y, of a change in another variable, X, over time? In oth
words, what is the dynamic causal effect on Y of a change in X? For example,
what is the effect on traffic fatalitics of a law requiring passengers to wear
seatbelts, both initially and subsequently as drivers adjust to the law? Another
such question is, what is your best forecast of the value of some variable at a
future date? For example, what is your best forecast of next month’s rate of
inflation, interest rates, or stock prices? Both of these questions—one about
dynamic causal effects, the other about econormic forecasting—can be answer
using time series data. But time series data pose special challenges, and
overcoming those challenges requires some new techniques.

Chapters 1214 introduce techniques for the econometric analysis of tim
series data and apply these techniques to the problems of forecasting and
estimating dynamic causal effects. Chapter 12 introduces the basic concepts
and tools of regression with time series data and applies them to economic
forecasting. In Chapter 13, the concepts and tools developed in Chapter 12
are applied to the problem of estimating dynamic causal effects using time
series data. Chapter 14 takes up some more advanced topics in time series
analysis, including forecasting multiple time series and modeling changes in
volatility over time.

The empirical problem studied in this chapter is forecasting the rate of
inflation, that is, the percentage increase in overall prices. While in a sense

forecasting is just an application of regression analysis, forecasting is quite
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ditferent from the estimation of causal effects, the focus of this book until now.
As discussed in Section 12.1, models that are useful for forecasting need not
have a causal interpretation: if you see pedestrians carrying umbrellas you might
forecast rain, even though carrying an umbrella does not canse it to rain. Section
12.2 introduces some basic concepts of time series analysis and presents some
examples of economic time series data. Section 12.3 presents time series
regression models in which the regressors are past values of the dependent
variable; these “autoregressive” models use the history of inflation to forecast its
future. Often, forecasts based on autoregressions can be improved by adding
additional predictor variables and their past values, or “lags,” as regressors, and
these so-called autoregressive distributed lag models are introduced in Section
12.4. For example, we find that inflation forecasts made using lagged values of
the rate of unemployment in addition to lagged inflation—that is, forecasts
based on an empirical Phillips curve—inmprove upon the autoregressive inflation
mmewmmﬁm. A practical 1ssue is deciding how many past values to include in
autoregressions and autoregressive distributed lag models, and Section 12.5
describes methods for making this decision.

The assumption that the future will be like the past is an important one in
time series regression, sufficiently so that it is given its own name, “stationarity.”
Time series variables can fail to be stationary in various ways, but two are
especially relevant for regression analysis of economic time series data: (1) the
series can have persistent, long-run movements, that is, the series can have
trends; and (2) the population regression can be unstable over time, that is, the
population regression can have breaks. These departures from stationarity
Jeopardize forecasts and inferences based on time series regression. Fortunately,
there are statistical procedures for detecting trends and breaks and, once
detected, for adjusting the model specification. These procedures are presented

in Sections 12.6 and 12.7.

12.1  Using Regression Models for Forecasting

12.1 Using Regression Models

for Forecasting

Chapter 4 began by considering the problem of a school superintenden
wants to know how much test scores would increase if she reduces class s
her school district; that is, the superintendent wants to know the causal eff
test scores of a change in class size. ‘Accordingly, Parts IT and IIf focused on
regression analysis to estimate causal effects using observational data.

Now consider a different probleny, that of a parent moving to a mets
itan area and choosing a town within that area in part based on the local s
system. The parent would like to know how the different school district
form on standardized tests. Suppose, however, that test score darta are ur
able (perhaps they are confidential) but data on class sizes are. The paren
must guess at how well the different districts perform on standardized tests
on a limited amount of information. That is, the parents problem is to fo
average test scores in a given district based on information related to test s
such as class size.

The superintendent’s problem and the parent’s problem are conceptuall
different. Multiple regression is a powerful tool for both, but because the
lems are different, the criteria used to assess the suitability of a particular r
sion model is different as well. To obtain the credible estimates of causal
desired by the superintendent, we must worry about the issues raised in Cl
7: omitted variable bias, selection, simultaneous causality, and so forth. In
trast, to obtain the reliable forecast desired by the parent, it is important th
estimated regression have good explanatory power, that its coefficients be
mated precisely, and that it is stable in the sense that the regression estimat
one set of data can be reliably used to make forecasts using other data.

For example, recall the regression of test scores on the student-teacher

(STR) from Chapter 4:
TestScore = 698.9 — 2.28 X STR.

We concluded that this regression is not useful for the superintender
OLS estimator of the slope is biased because of omitted variables such as the
position of the student body and their other learning opportunities outside s¢
The superintendent cannot change the district’s average income or the fr:
of non-English speakers, both of which affect test scores. Because these var
are also correlated with class size, there is omitted variable bias. Thus the regr
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of test scores on the student-teacher ratio yields a biased estimator of the eftect
on test scores of a change in the student-teacher ratio, and Equation (12.1) does
not answer the superintendent’s question.

Nevertheless, Equation (12.1) could be useful to the parent trying to choose
a district. To be sure, class size is not the only determinant of test performance,
but from the parent’s perspective what matters is whether it is a reliable predictor
of test performance. The parent interested in forecasting test scores does not care
whether the coefficient in Equation (12.1) estimates the causal effect on test scores
of class size. Rather, the parent simply wants the regression to explain much of
the variation in test scores across districts and to be stable, that 1s, to apply to the
districts to which the parent is considering moving. Although omitted variable
bias makes Equation (12.1) useless for answering the causal question, it still can
be useful for forecasting.

The applications in this chapter are different than the test score/class size pre-
diction problem because this chapter focuses on using time series data to fore-
cast future events. Yet time series forecasting is similar conceptually to the parent’s
problem: the task is to use the known values of some variables (current and past
values of the rate of price inflation instead of class size) to forecast the value of
another variable (future inflation instead of test scores). As in the parent’s prob-
lem, regression models can produce reliable forecasts, even if their coefficients
have no causal interpretation. In Chapter 13, we return to problems like that
faced by the school superintendent and discuss the estimation of causal effects

using time series variables.

Introduction to Time Series Data
and Serial Correlation

This section introduces some basic concepts and terminology that arise in time
series econometrics. A good place to start any analysis of time series data is by

plotting the data, so that is where we begin.

The Rates of Inflation and Unemployment

in the United States

Figure 12.1a plots the U.S. rate of inflation—the annual percentage change in
prices in the United States, as measured by the Consumer Price Index (CPI)—
from 1960 to 1999 (the data are described in Appendix 12.1). The inflation rate
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. Price inflation in the United States {Figure 12.1a} drifted upwards from 1960 until 1980, and then fell sharply
| the early 1980s.The unemployment rate in the United States (Figure 12.1b) rises during recessions {the shaded
episodes) and falls during expansions.
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was low in the 1960s, rose through the 1970s to a postwar peak of 15.5% in the first
quarter of 1980 (that 15, January, February, and March 1980), and then fell to less
than 3% by the end of the 1990s. As can be seen in Figure 12.1a, the inflation rate
also can fluctuate by one percentage point or more from one quarter to the next.

The U.S. unemployment rate—the fraction of the labor force out of work,
as measured in the Current Population Survey (see Appendix 3.1)—is plotted in
Figure 12.1b. Changes in the unemployment rate are mainly associated with the
business cycle in the United States. For example, the unemployment rate
increased during the recessions of 1960-61, 1970, 1974-75, the twin recessions
of 1980 and 1981-82, and the recession of 1990-91, episodes denoted by shad-
ing in Figure 12.1b.

Lags, First Differences, Logarithms,
and Growth Rates

The observation on the time series variable Y made at date ¢ is denoted Y, and
the total number of observations is denoted T. The interval between observations,
that is, the period of time between observation ¢ and observation ¢ + 1, is some
unit of time such as weeks, months, quarters (three-month units), or years. For
example, the inflation data studied in this chapter are quarterly, so the unit of time
(a “period”) is a quarter of a year.

Special terminology and notation are used to indicate future and past values
of Y. The value of Y in the previous period is called its first lagged value or,
more simply, its first lag, and is denoted Y,_;. Its j* lagged value (or simply its
7 lag) is its value j periods ago, which is Y, ;. Similarly Y}, denotes the value of
Y one period into the future.

The change in the value of Y between period ¢~ 1 and period tis ¥, - Y,_;
this change is called the first difference in the variable Y. In time series data,
“A” is used to represent the first difference, so that AY, = ¥, - Y.

Economic time series are often analyzed after computing their logarithms or
the changes in their logarithms. One reason for this is that many economic series,
such as gross domestic product (GDP), exhibit growth that is approximately expo-
nential, that is, over the long run the series tends to grow by a certain percentage
per year on average; if so, the logarithin of the series grows approximately linearly.
Another reason is that the standard deviation of many economic time series is
approximately proportional to its level, that is, the standard deviation is well
expressed as a percentage of the level of the series; if so, then the standard devia-~
tion of the logarithm of the series is approximately constant. In either case, it

is useful to transform the serics so that changes in the transformed series are
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The first lag of a time series Y, is Y, ; its j lag is-Y,

A
The first difference of a series, AY,, is its change between periods 1 ~ 1 and ¢,
thatis, AY = Y - Y, . . Key

The first difference of the logarithm of Y] is ESQU = In(Y)) — In{Y,,). OODOO_

The percentage change of a time series Y, between periods t — 1 and ¢ is
approximately 100Aln(Y;), where the approximation is most accurate when 12.1
the percentage change is small.

proportional (or percentage) changes in the original series, and this is achievec
taking the logarithm of the series.'

Lags, first differences, and growth rates are summarized in Key Concept 1.

Lags, changes, and percentage changes are illustrated using the U.S. inflat
rate in Table 12.1. The first column shows the date, or period, where the first qt
ter of 1999 is denoted 1999:1, the second quarter of 1999 is denoted 1999:11, |
so forth. The second column shows the value of the CPI in that quarter, and
third column shows the rate of inflation. For example, from the first to the secc
quarter of 1999, the index increased from 164.9 to 166.0, a percentage increase
100 X (166.03 — 164.87)/164.87 = 0.704%. This is the percentage increase from
quarter to the next. It is conventional to report rates of inflation (and other groy
rates in macroeconomnuc time series) on an annual basis, which is the percent
increase in prices that would occur over a year, if the series were to continue
increase at the same rate. Because there are four quarters a year, the annualized
of inflation in 1999:11 is 0.704 x 4 = 2.82, or 2.8% per year after rounding,

This percentage change can also be computed using the differences-
logarithms approximation in Key Concept 12.1. The difference in the logarit
of the CPI from 1999: to 1999:11 is In(166.03) — In(164.87) = 0.00701, yield

"Recall from Section 6.2 that the change of the logarithm of a variable is approximately equ
the proportional change of that variable; that is, In(X + a) — In(X) = a/X, where the approxima
+
This means that the proportional change in the series Y, between periods t — 1 and ¢ is appr
mately In(Y)) — In{Y,_) = In(Y_ + AY) — In(Y,_)) = AY/Y_,. The expression In(Y)) — In(Y,_,) is
first difference of In(Y), Aln(Y)). Thus Aln(Y) = AY,/Y,_,. The percentage change is 100 times
fractional change, so the percentage change in the series ¥, is approxinately 100Aln(Y).

works best when a/X is small. Now, replace X with Y_, a with AY,, and note that Y, = Y,
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TABLE 12.1 {nflation in the United States in 1999 and the First Quarter of 2000
Rate of Inflation at an  First Lag Change in

Quarter u.s. CPI Annual Rate (Inf,) (Inf,_,) Inflation (Alnf,) ,

1999:1 164.87 16 2.0 0.4 i
L 1999:11 166.03 2.8 T 2

1999:111 167.20 2.8 o3 00

1999:1V 168.53 3.2 a3 04

2000:1 170.27 4.1 TR 0.9 ,

The annualized rate of inflation is the percentage change in the CPI from the previous quarter to the
current quarter, times four. The first lag of inflation is its value in the previous quarter, and the change
in inflation is the current inflation rate minus its first lag. All entries are rounded to the nearest decimal.

the approximate quarterly percentage difference 100 X 0.00701 = 0.701%. On an
annualized basis, this is 0.701 X 4 = 2.80, or 2.8% after rounding, the same as
obtained by directly computing the percentage growth. These calculations can be

summarized as

(12.2)
annualized rate of inflation = Inf, = 400[In(CPIL) — In(CPI,_)] = 400AIn(CPL),

where CPJ, is the value of the Consumer Price Index at date t. The factor of
400 arises from converting fractional change to percentages (multiplying by 100)
and converting quarterly percentage change to an equivalent annual rate (mul-
tiplying by 4).

The final two columns of Table 12.1 illustrate lags and changes. The first lag
of inflation in 1999:11 is 1.6%, the inflation rate in 1999:1. The change in the rate
of inflation from 1999:I to 1999:1I was 2.8% ~ 1.6% = 1.2%.

Autocorrelation

In time series data, the value of Y in one period typically is correlated with its
value in the next period. The correlation of a series with its own lagged values
is called autocorrelation or serial correlation. The first autocorrelation (or
autocorrelation coefficient) is the correlation between Y, and Y,,, that is, the

correlation between values of Y at two adjacent dates. The second autocorre-

lation is the correlation between Y, and Y, % 3utocorrelation is the

"5, and the j
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. T . . . . . .
The j* autocovariance of a series Y, is the covariance between Y, and its j lag,

Y, and the /" autocorrelation coefficient is the correlation between Y, and Yo,

Key

™M autocovariance = noiwm Y.) (12.3)

Conc
(12.4) 12.2

j™ autocorrelation = p=corr(YY, ) =

The j* autocorrelation coefficient is sometimes called the j% serial correlation
coeflicient.

correlation between Y; and Y, ;. Similarly, the j® autocovariance is the
ance between Y and Y. Autocorrelation and autocovariance are summar
Key Concept 12.2.

The j™ population autocovariances and autocorrelations in Key Conce;

can be estimated by the j® sample autocovariances and autocorrel
ANy

cov(Y,Y_;) and m\,“

T

e — H — —
V(YY) = o 200 V)0 - Vi)
=5+
p= ~

i e\ml/xv

where Y1 denotes the mﬁdw_%mmm of Y, computed over the obsers
t=j+1,..., Tand where var(Y]) is the sample variance of Y. (Eq!
(12.6) uses the assumption that var(Y}) and var(Y,) are the same, an impl;
of the assumption that Y is stationary, which is discussed in Section 12.4.)

The first four sample autocorrelations of the inflation rate and of the
m the inflation rate are listed in Table 12.2. These entries show that infla
strongly positively autocorrelated: the first autocorrelation is 0.85. The -
autocorrelation declines as the lag increases, but it remains large even at a

four quarters. The change in inflation is negatively autocorrelated: an incr
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TABLE 12.2 First Four Sample Autocorrelations of the U.S. Inflation
Rate and Its Change, 1960:1-1999:IV

Autocorrelation of:

Lag Inflation Rate {Inf) Change of Inflation Rate (Alnf,)
1 0.85 -0.24
2 o.uu; -0.27
3 0.77 - :ww
4 0.68 . —-0.06

the rate of inflation in one quarter tends to be associated with a decrease in the
next quarter.

At first, it nught seem contradictory that the level of inflation is strongly pos-
itively correlated but its change is negatively correlated. These two autocorrela-
tions, however, measure different things. The strong positive autocorrelation in
inflation reflects the long-term trends in inflation evident in Figure 12.1: infla-
tion was low in the first quarter of 1965 and again in the second; it was high in
the first quarter of 1981 and again in the second. In contrast, the negative auto-
correlation of the change of inflation means that, on average, an increase in infla-

tion in one quarter is associated with a decrease in inflation in the next.

Other Examples of Economic Time Series

Economic time series differ greatly. Four examples of economic time series are
plotted in Figure 12.2: the U.S. Federal Funds interest rate; the rate of exchange
between the dollar and the British pound; the logarithm of real Japanese gross
domestic product; and the daily return on the Standard and Poor’s 500 (S&P 500)
stock market index.

The U.S. Federal Funds rate (Figure 12.2a) is the interest rate that banks pay
to each other to borrow funds overnight. This rate is important because it is con-
trolled by the Federal Reserve and is the Fed’s primary monetary policy instru-
ment. If you compare the plots of the Federal Funds rate and the rates of
unemployment and inflation in Figure 12.1, you will see that sharp increases in
the Federal Funds rate often have been associated with subsequent recessions.

The dollar/pound exchange rate (Figure 12.2b) is the price of a British pound
(£) in US. dollars. Before 1972, the developed economies ran a system of fixed

exchange rates—called the “Bretton Woods” system—under which governments

worked to keep exchange rates from fluctuating. In 1972, inflationary pressures
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FIGURE 12.2 Four Economic Time Series
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The four time series have markedly different patterns. The Federal Funds Rate (Figure 12.2a) has a pattern sim
price inflation. The exchange rate between the U.S. dollar and the British pound (Figure 12.2b) shows a discret
change after the 1972 collapse of the Bretton Woods system of fixed exchange rates. The logarithm of real GDI
Japan (Figure 12.2¢) shows relatively smooth growth, although the growth rate decreases in the 1970s and ag
the 1990s. The daily returns on the NYSE stock price index (Figure 12.2d) are essentially unpredictable, but its
ance changes: this series shows “volatility clustering.”

led to the breakdown of this system; thereafter, the major currencies were a
to “float”, that is, their values were determined by the supply and demand f
rencies in the market for foreign exchange. Prior to 1972, the exchange r:
approximately constant, with the exception of a single devaluation in 1
which the official value of the pound, relative to the dollar, was decreased to

Since 1972 the exchange rate has fluctuated over a very wide range.




438

CHAPTER 12

12.3

Introduction to Time Series Regression and Forecasting

Real quarterly Japanese GDP (Figure 12.2¢) is the total value of goods and
services produced in Japan during a quarter, adjusted for inflation. GDP is the
broadest measure of total economic activity. The logarithm of the series is plot-
ted in Figure 12.2¢, and changes in this series can be interpreted as (decimal)
growth rates. During the 1960s and early 1970s, Japanese real GDP grew quickly,
but this growth slowed in the late 1970s and 1980s. Growth slowed further dur-
ing the 1990s, averaging only 1.5% per year from 1990-1999.

The daily return on the NYSE index of stock prices (Figure 12.2d) is the per-
centage change from one trading day to the next of the NYSE Composite market
index, a broad index of the share prices of all firms traded on the New York Stock
Exchange. Figure 12.2d plots these daily returns for January 2, 1990, to December
31, 1998 (a total of 1,771 observations). Unlike the other series in Figure 12.2, there
is very little serial correlation in these daily returns: if there were, then you could
predict these returns using past daily returns and make money by buying when you
expect the market to rise and selling when you expect it to fall. Although the return
itself is essendally unpredictable, inspection of Figure 12.2d reveals patterns in the
volatility of returns. For example, the standard deviation of returns was relatively
large in 1991 and 1998, and relatively small in 1995. This “volatility clustering” is
found in many financial time series, and econometric models for modeling this spe-
cial type of heteroskedasticity are taken up mn Section 14.5.

Autoregressions

‘What will the rate of price inflation—the percentage increase in overall prices—
be next year? Wall Street investors rely on forecasts of inflation when deciding
how much to pay for bonds. Economists at central banks, like the U.S. Federal
Reserve Bank, use inflation forecasts when they set monetary policy. Firms use
inflation forecasts when they forecast sales of their product, and local governments
use inflation forecasts when they develop their budget for the upcoming year. In
this section, we consider forecasts made using an autoregression, a regression
model that relates a time series variable to its past values.

The First Order Autoregressive Model

If you want to predict the future of a time series, a good place to start is in the imme-
diate past. For example, if you want to forecast the change in inflation from this
quarter to the next, you might see whether inflation rose or fell last quarter. A sys-

tematic way to forecast the change in inflation, Alnf, using the previous quarter’s

12.3  Autoregressions

change, Alnf,_, is to estimate an OLS regression of Alnf, on Alnf, ;. Estimated u
data from 1962-1999, this regression is

—
Alnf, =0.02 - 0.211AInf,, (a
(0114) (0.106)

where, as :mcﬁmsmma errors are given in parentheses under the estimated ¢
ficients, and Alnf, is the predicted value of Alnf, based on the estimated regres
line. The model in Equation (12.7) is called a first order autoregression: an aut
gression because it is a regression of the series onto its own lag, Alnf, |, and
order because only one lag is used as a regressor. The coefficient in Equa
(12.7) is negative, so an increase in the inflation rate in one quarter is associ
with a decline in the inflation rate in the next quarter.

A first order autoregression is abbreviated by AR (1), where the “1” indic

that it is first order. The population AR (1) model for the series Y, is
Yo=Bo + Y +u, (t
where u, is an error term.

Forecasts and forecast errors. Suppose you have historical data on Y
you want to forecast its future value. If Y, follows the AR (1) model in Ec
tion (12.8) and if f; and 8, are known, then the forecast of Y, based on Y,
Bo + ByY.

In practice, B, and 8, are unknown, so forecasts must be based on estim
of B, and B,. We will use the OLS estimators mo and F, which are constru

using historical data. In general, ¥, will denote the forecast of Y, based

le=
information through period ¢ — 1 using a model estimated with data through pe

t— 1. Accordingly, the forecast based on the AR (1) model in Equation (12.8
Mw_l = Bo+ By, (1

where f; and j; are estimated using historical data through time ¢ — 1.
The forecast error is the mistake made by the forecast; this is the differe
between the value of Y that actually occurred and its forecasted value based on

A

forecast error = Y, - Y] . (12
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Forecasts vs. predicted values. The forecast is not an QLS predicted value, and
the forecast error is not an OLS residual. OLS predicted values are calculated for the
observations in the sample used to estimate the regression. In contrast, the forecast
is made for some date beyond the data set used to estimate the regression, so the
data on the actual value of the forecasted dependent variable are not in the sample
used to estimate the regression. Similarly, the OLS residual is the difference between
the actual value of Y and its predicted value for observations in the sample, whereas
the forecast error is the difference between the future value of Y, which is not con-
tained in the estimation sample, and the forecast of that future value. Said differ-
ently, forecasts and forecast errors pertain to “out-of-sample” observations, whereas

predicted values and residuals pertain to “‘in-sample” observations.

Root mean squared forecast error. The root mean squared forecast
error (RMSFE) is a measure of the size of the forecast error, that is, of the mag-
nitude of a typical mistake made using a forecasting model. The RMSFE is the
square root of the mean squared forecast error:

RMSFE = VE[(Y, - ¥, ,)?]. (12.11)

The RMSFE has two sources of error: the error arising because future values
of u, are unknown, and the error in estimating the coefficients f, and ;. If the
first source of error is much larger than the second, as it can be if the sample size
s large, then the RMSEE is approximately \/var(u,), the standard deviation of the
error #, in the population autoregtession (Equation (12.8)). The standard devia-
tion of u, is in turn estimated by the standard error of the regression (SER, see
Section 5.10). Thus, if uncertainty arising from estimating the regression coeffi-
cients is small enough to be ignored, the RMSFE can be estimated by the stan-
dard error of the regression. Estimation of the RMSFE including both sources of
forecast error is taken up in Section 12.4.

Application to inflation. What s the forecast of inflation in the first quarter of
2000 (2000:]) that a forecaster would have made in 1999:1V, based on the estimated
AR(1) model in Equation (12.7) (which was estimated using data through 1999:1V)?
From Table 121, the inflation rate in 1999:1V was 3.2% (s0 Infggy v = 3.2%), an
increase of 0.4 percentage points from 1999:111 (so Alnfigyy v = 0.4). Plugging these
values into Equation (12.7), the forecast of the change in inflation from 1999:1V

o

to 2000:1 is Alnfygney = 0.02 = 0211 X Alnfiggey = 0.02 — 0211 X 0.4 =
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—0.06 = =0.1 (rounded to the nearest tenth). The predicted rate of inflation
the past rate of inflation plus its predicted change:

A~

~ - ——
bf”l = N:.\\L + b&z\:l. (12.17

Because Infiggg.y = 3.2% and the Em.&mﬁma change in the inflation rate frou
1999:1V to 2000:1 is ~0.1, the predicted rate of inflation in 2000:1 is E\./moci :
Infio00.v + D\S/\N: 01 = 3.2%—0.1%=3.1%. Thus, the AR (1) model forecasts th:
inflation will drop slightly from 3.2% in 1999:1V to 3.1% in 2000:1.

How accurate was this AR{1) forecast? From Table 12.1, the actual value ¢
inflation in 2000:T was 4.1%, so the AR(1) forecast is low by a full percentag
point; that is, the forecast error is 1.0%. The R? of the AR (1) model in Equatio
(12.7) is only 0.04, so the lagged change of inflation explains a very small fractio
of the variation in inflation in the sample used to fit the autoregression. This lov
R? s consistent with the poor forecast of inflation in 2000:I produced using Equa
tion (12.7). More generally, the low R? suggests that this AR (1) model will fore
cast only a small amount of the variation in the change of inflation.

The standard error of the regression in Equation (12.7) is 1.67; ignorin,
uncertainty arising from estimation of the coeflicients, our estimate of the RMSFI

for forecasts based on Equation (12.7) therefore is 1.67 percentage points.

The pt" Order Autoregressive Model

The AR (1) model uses Y;_; to forecast ¥, but doing so ignores potentially usefu
information in the more distant past. One way to incorporate this information i
to include additional lags in the AR(1) model; this yields the p'™ order autore
gressive, or AR (p), model.

The p™ order autoregressive model (the AR(p) model) represents Y, as
linear function of p of its lagged values; that is, in the AR (p) model, the regres
sorsare Y, Y, ..., M\Tm, plus an intercept. The number of lags, p, included i
an AR(p) model is called the order, or lag length, of the autoregression.

For example, an AR (4) model of the change in inflation uses four lags of th
change in inflation as regressors. Estimated by OLS over the period 1962—1999
the AR (4) model is

Alnf, = 0.02 = 0.21AInf., — 0.32AInf_, + 0.19AInf, , — 0.04AInf,. (12.13
(0.12) (0.10) (0.09) (0.09) 0.10)

The coefficients on the final three additional lags in Equation (12.13) are jointh

significantly different from zero at the 5% significance level: the F-statistic is 6.4
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The p™ order autoregressive model (the AR (p) model) represents Y, as a linear
function of p of its lagged values:

Y=0+B Y +5Y,,+ - + \uvv\ + u, (12.14)

where E(u,|Y,_, Yoy, . . . ) = 0. The number of lags p is called the order, or the
lag length, of the autoregression.

(p-value < 0.001). This is reflected in an improvement in the R? from 0.04
for the AR (1) model in Equation (12.7) to 0.21 for the AR (4). Similarly, the SER of
the AR (4) model in Equation (12.13) is 1.53, an improvement over the SER
of the AR (1) model, which is 1.67.

The AR (p) model is summarized in Key Concept 12.3.

Properties of the forecast and error term in the AR(p) model. The
assumption that the conditional expectation of u, is zero given past values of Y,
(that is, E(u,|Y,, Y5, . . . ) = 0) has two important implications.

The first implication is that the best forecast of Y, based on its entire history
depends on only the most recent p past values. Specifically, let Y, ; = E(Y;| Yy, Y_
... ) denote the conditional mean of Y] given its entire history. Then Y, ; has the
smallest RMSFE of any forecast based on the history of Y (Exercise 12.5). If Y]
follows an AR (p), then its conditional mean is

Yy =Bo+ Bi¥e + Yo+ +BY, (12.15)

which follows from the AR (p) model in Equation (12.14) and the assumption that
E(u,|Yy, Yo, .. .) = 0. In practice, the coefficients y, fy, . . ., B, are unknown,
so actual forecasts from an AR (p) use Equation (12.15) with estimated coefficients.

The second implication is that the errors u, are serially uncorrelated, a result
that follows from Equation (2.25) (Exercise 12.5).

Application to inflation. What is the forecast of inflation in 2000:I using data
through 1999:1V, based on the AR (4) model of inflation in Equation (12.13)?

To compute this forecast, substitute the values of the change of inflation in each

12.4  Time Series Regression with Additional Predictors and the Autoregressive Distributed Lag Model

of the four quarters of 1999 into Fquation (12.13): E\.:/\.m:cc.:gé = O.f
0.21AInf 19991y — 0.32AInf 990,11y + 0.19AInf g9g.; — 0.04AI0f 499, = 0.02 — 0.
0.4-032 x 0.0+ 0.19x 1.1 - 0.04 X (=0.4) = 0.2, where the 1999 value
the change of inflation are taken from the final column of Table 12.1.

The corresponding forecast of inflation in 2000:1 is the value of inflatio
1999:1V, plus the forecasted change, that is, 3.2% + 0.2% = 3.4%. The for
error is the actual value, 4.1%, minus the forecast, or 4.1% — 3.4% = 0.7%, slig
smaller than the AR (1) forecast error of 1.0%.

12.4 Time Series Regression with Additional
Predictors and the Autoregressive
Distributed Lag Model

Economic theory often suggests other variables that could help to forecast
variable of interest. These other variables, or predictors, can be added t
autoregression to produce a time series regression model with multiple pre
tors. When other variables and their lags are added to an autoregression, the r
is an autoregressive distributed lag model.

Forecasting Changes in the Inflation Rate
Using Past Unemployment Rates

A high value of the unemployment rate tends to be associated with a fu
decline in the rate of inflation. This negative relationship, known as the short-
Phillips curve, is evident in the scatterplot of Figure 12.3, in which year-to-
changes in the rate of price inflation are plotted against the rate of unemployn
in the previous year. For example, in 1982 the unemployment rate averaged 9.
and during the next year the rate of inflation fell by 2.9%. Overall, the cort
tion in Figure 12.3 is —0.40.

The scatterplot in Figure 12.3 suggests that past values of the unemployn
rate might contain information about the future course of inflation that is
already contained in past changes of inflation. This conjecture is readily chec
by augmenting the AR (4) model in Equation (12.13) to include the first la
the unemployment rate:

(12
P\N:/m = 1.42 = 0.26AIf,_ | — 0.40Alnf, + 0.11AInf_5 ~ 0.09AInf,_— 0.23 Unen
(0.55) (0.09) (0.10) (0.08) (0.10) (0.10)
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FIGURE 12.3 Scatterplot of Change in Inflation Between Year fand Year t + 1 vs. the Unemployment
Rate in Year ¢
In 1982, the U.S. unemploy- Change in Inflation
ment rate was 9.7% and the wogﬂ“wﬂmﬂnm and
rate of inflation in 1983 fell by 5
2.9% (the large dot). In general, 4 _H *
high values of the unemploy- . Lt
ment rate in year ttend to be
followed by decreases in the 2
rate of price inflation in the next 1
year, year t+ 1, with a correla- o
tion of —0.40. a4
2t
a3t . . .
4 .
Im 1 i 1 1 1 ]
0 2 4 6 8 10 12
Unemployment Rate in Year ¢

The t-statistic on Unemp,_, is —2.33, so this term is significant at the 5% level.
The R2 of this regression is 0.22, a small improvement over the AR (4) R? of 0.21.

The forecast of the change of inflation in 2000:1 is obtained by substituting
the 1999 values of the change of inflation into Equation (12.16), along with the
value om\ﬁWm unemployment rate in 1999:1V (which is 4.1%); the resulting fore-
cast is Alnfypo0.1(19090v = 0.5. Thus the forecast of inflation in 2000:1 is 3.2% +
0.5% = 3.7%, and the forecast error is 0.4%. This forecast is closer to actual 2000:1
inflation than was the AR (4) forecast.

If one lag of the unemployment rate is helpful for forecasting inflation, sev-
eral lags might be even more helpful; adding three more lags of the unemploy-
ment rate yields

Alnf, =1.32 = 0.36AInf,_; — 0.34AInf, + 0.07AInf, 5 — 0.03AInf,_,
(0.47) (0.09) (0.10) (0.08) (0.09)

—2.68Unemp, + 3.43Unemp,_, — 1.04Unemp,_5 + 0.07Unemp,_,. (12.17)

(0.47) (0.89) (0.89) (0.44)

The F-statistic testing the joint significance of the second through fourth lags
of the unemployment rate is 4.93 (p-value = 0.003), so they are jointly significant.

12.4  Time Series Regression with Additional Predictors and the Autoregressive Distributed Lag Mode

The R? of the regression in Equation (12.17) is 0.35, a solid improven
0.22 for Equation (12.16). The F-statistic on all the unemployment co
is 8.51 (p-value < 0.001), indicating that this model represents a statisti
nificant improvement over the AR (4) model of Section 12.3 (Equation
The standard error of the Hmmmmmmwo: in Equation (12.17) is 1.37, a su
improvement over the SER of 1.53 for the AR(4).

The forecasted change in inflation from 1999:1V to 2000:1 using ]
(12.17) is computed by substituting the values of the variables into the
The unemployment rate was 4.3% in 1999:I and 1999:11, 4.2% in 199¢
4.1% in 1999:1V. The forecast of the change in inflation from 1999:1V ¢
based on Equation (12.17), is

Rlnfanoo1 19sony = 1.32 = 0.36 X 0.4 — 0.34 X 0.0 + 0.07 X 1.1~ 0.0
X (—0.4) — 2.68 X 4.1 + 343 X 42 —1.04 X 43 + 0.07 X 4.3 = 0.5

Thus the forecast of inflation in 2000:1 is 3.2% + 0.5% = 3.7%. The fo
error is small, 0.4. Adding multiple lags of the unemployment rate appe
improve inflation forecasts beyond those of an AR(4).

The autoregressive distributed lag model. The models in Equati
(12.16) and (12.17) are autoregressive distributed lag (ADL) model
“autoregressive” because lagged values of the dependent variable are inc
regressors, as in an autoregression, and “distributed lag” because the reg
also includes multiple lags (a “distributed lag”) of an additional predicto
general, an autoregressive distributed lag model with p lags of the deper
variable Y, and q lags of an additional predictor X, is called an ADL(p,g
model. In this notation, the model in Equation (12.16) is an ADL(4,1)
and the model in Equation (12.17) is an ADL(4,4) model.

The autoregressive distributed lag model is summarized in Key Conc
With all these regressors, the notation in Equation (12.19) is somewhat
some, and alternative optional notation, based on the so-called lag op
presented in Appendix 12.3.

The assumption that the errors in the ADL model have a conditios
of zero given all past values of Y and X, that is, that E(4,| Y, ;, Y,_,, .
X, 5. - .. ) = 0, implies that no additional lags of either Y or X belong in
model. In other words, the lag lengths p and q are the true lag lengths
coeflicients on additional lags are zero.

The ADL model contains lags of the dependent variable (the autor
component) and a distributed lag of a single additional predictor, X. In
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The autoregressive distributed lag model with p lags of Y, and q lags of X,
denoted ADL(p,q), is

(12.19)
Y =8, +BY, +B.Y,+ FBY 0 Xy Xt -+ 6 X+,
where . By, ..., B, 6yh - .mm are unknown coefficients and u, is the error

term with E(u,|Y, 1, ¥, ..., Xp. Xa .. .) = 0.

12.4  Time Series Regression with Additional Predictors and the Autoregressive Distributed Lag Mode

A time series Y is stationary if its probability distribution does not change over

time, that is, if the joint distribution of (¥,,;, Y ,5. . . ., Y., does not depend
on s; otherwise, Y, is said to be nonstationary. A pair of time series, X, and Y,
are said to be jointly stationary if the joint distribution of (X .4, Y.y, X,40.

Y9 ..., X1 Yo7 does not depend on s. Stationarity requires the future to

Key
Cor

be like the past, at least in a probabilistic sense.
P 12.5

however, forecasts can be improved by using multiple predictors. But before turn-
ing to the general time series regression model with multiple predictors, we first
introduce the concept of stationarity, which will be used in that discussion.

Stationarity

Regression analysis of time series data necessarily uses data from the past to
quantify historical relationships. If the future is like the past, then these histor~
ical relationships can be used to forecast the future. But if the future differs fun-
damentally from the past, then those historical relationships might not be reliable
guides to the future.

In the context of time series regression, the idea that historical relationships
can be generalized to the future is formalized by the concept of stationarity. The
precise definition of stationarity, given in Key Concept 12.5, is that the distribu-
tion of the time series variable does not change over time.

Time Series Regression with Multiple Predictors

The general time series regression model with multiple predictors extends the
ADL model to include multiple predictors and their lags. The model is summa-
rized in Key Concept 12.6. The presence of multiple predictors and their lags
leads to double subscripting of the regression coeflicients and regressors.

The time series regression model assumptions. The assumptions in Key
Concept 12.6 modify the four least squares assumptions of the multiple regres-
sion model for cross-sectional data (Key Concept 5.4) for time series data.

The first assumption is that u, has conditional mean zero, given all th
sors and the additional lags of the regressors beyond the lags included in th
sion. This assumption extends the assumption used in the AR and ADI
and implies that the best forecast of Y using all past values of Y and the X’
by the regression in Equation (12.20).

The second least squares assumption for cross-sectional data (Key
5.4) is that (X,

tributed (i.1.d.). The second assumption for time series regression replaces

X, Y, i=1, ..., n, are independently and identi

” 1

assumption by a more appropriate one with two parts. Part (a) is that the
drawn from a stationary distribution, so that the distribution of the data
the same as its distribution in the past. This assumption is a time series vy
the “identically distributed” part of the i.i.d. assumption: the cross-s
requirement of each draw being identically distributed is replaced by |
series requirement that the joint distribution of the variables, including I
not change over time. In practice, many economic time series appear to
stationary, which means that this assumption can fail to hold in applicatio:
time series variables are nonstationary, then one or more problems can
time series regression: the forecast can be biased, the forecast can be in
(there can be alternative forecasts based on the same data with lower vari:
conventional OLS-based statistical inferences (for example performing a
esis test by comparing the OLS t-statistic to 21.96) can be misleading. |
which of these problems occurs, and its remedy, depends on the source of |
stationarity. In Sections 12.6 and 12.7, we study the problems posed by,
and solutions to two empirically important types of nonstationarity in e
time series, trends and breaks. For now, however, we simply assume that ¢

are jointly stationary and accordingly focus on regression with stationary
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The general time series regression model allows for k additional predictors,
where ¢, lags of the first predictor are included, ¢, lags of the second predictor
are included, and so forth:

ey
=B+ BiYy + B+ 4 BY, T 6 X + X+ F O Xieg, T

oncept
) Tt Xy G Xip t o F G Xy, 14, (12.20)
where
LB, Yo oo Xiepy Xy -+ Xy Xy -+ ) = 0
2. (a) The random variables (Y, X, ..., X,,) have a stationary distribution,
and (b) (Y, Xy, . .., X ) and (Y, X, - -, Xy, become independent as
J gets large;
3. X, ..., X, and Y, have nonzero, finite fourth moments; and

4. There is no perfect multicollinearity.
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The Granger causality statistic is the F-statistic testing the hypothesis that the
coefficients on all the values of one of the variables in Equation (12.20) (for

example, the coefficients on X, X5, . . ., Xj,_, ) are zero. This null hypoth-

Key

esis implies that these regressors have no predictive content for Y, beyond that
contained in the other regressors, and the test of this null hypothesis is called 00560“4
the Granger causality test. 12.7

Part (b) of the second assumption requires that the random variables become
independently distributed when the amount of time separating them becomes
large. This replaces the cross-sectional requirement that the variables be indepen-
dently distributed from one observation to the next with the time series require-
ment that they be independently distributed when they are separated by long
periods of time. This assumption is sometimes referred to as weak dependence,
and it ensures that in large samples there is sufficient randomness in the data for
the law of large numbers and the central limit theorem to hold. We do not pro-
vide a precise mathematical statement of the weak dependence condition, rather,
the reader is referred to Hayashi (2000, Chapter 2).

The third assumption, which is the same as the third least squares assumption
for cross-sectional data, is that all the variables have nonzero finite fourth moments.

Finally, the fourth assumption, which is also the same as for cross-sectional
data, is that the regressors are not perfectly multicollinear.

Statistical inference and the Granger causality test. Under the assump-
tions of Key Concept 12.6, inference on the regression coefficients using OLS
proceeds in the same way as it usually does using cross-sectional data.

Onc useful application of the F-statistic in time series forecasting is to tes
whether the lags of one of the included regressors has useful predictive content
above and beyond the other regressors in the model. The claim that a variable ha
no predictive content corresponds to the null hypothesis that the coefficients or
all lags of that variable are zero. The F-statistic testing this null hypothesis is callec
the Granger causality statistic, and the associated test is called a Grange:
causality test (Granger (1969)). This test is summarized in Key Concept 12.7.

Granger causality has little to do with causality in the sense that it is used else
where in this book. In Chapter 1, causality was defined in terms of an ideal ran.
domized controlled experiment, in which different values of X are appliec
experimentally and we observe the subsequent eftect on Y. In contrast, Grange
causality means that if X Granger-causes Y, then X is a useful predictor of Y, giver
the other variables in the regression. While “Granger predictability” is a mor
accurate term than “Granger causality,” the latter has become part of the jargor
of econometrics.

As an example, consider the relationship between the change in the infla
tion rate and its past values and past values of the unemployment rate. Based or
the OLS estimates in Equation (12.17), the F-statistic testing the null hypothe-
sis that the coefficients on all four lags of the unemployment rate are zero is 8.5
{p < 0.001): in the jargon of Key Concept 12.7, we can conclude (at the 1% sig;
nificance level) that the unemployment rate Granger-causes changes in the infla
tion rate. This does not necessarily mean that a change in the unemployment rat
will cause—in the sense of Chapter 1—a subsequent change in the inflation rate
It does mean that the past values of the unemployment rate appear to contain infor
mation that is useful for forecasting changes in the inflation rate, beyond that con

tained in past values of the inflation rate.
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Forecast Uncertainty and Forecast Intervals

In any estimation problem, it is good practice to report a measure of the uncer-
tainty of that estimate, and forecasting is no exception. One measure of the uncer-
tainty of a forecast is its root mean square forecast error. Under the additional
assumption that the errors u, are normally distributed, the RMSFE can be used
to construct a forecast interval, that is, an interval that contains the future value
of the variable with a certain probability.

Forecast uncertainty. The forecast error consists of two components:
uncertainty arising from estimation of the regression coefficients, and uncer-
tainty associated with the future unknown value of u,. For regression with few
coefficients and many observations, the uncertainty arising from future u, can
be much larger than the uncertainty associated with estimation of the para-
meters. In general, however, both sources of uncertainty are important, so we
now develop an expression for the RMSFE that incorporates these two sources
of uncertainty.

To keep the notation simple, consider forecasts of i, based on an ADL(1,1)
model with a single predictor, that is, ¥, = f; + B,Y,_, + 8, X, + u, and suppose
that u, is homoskedastic. The forecast is m\ﬁr:ﬂ = mo + F& + w_kd and the fore-
cast error is

V\ﬂi - %\Hi_u. = Upy — —Amo - EOV + Qy I.m_vv\ﬂ + A%H - %L.Xl. AHN.NC

Because ur, | has conditional mean zero and is homoskedastic, 4, has vari-
ance ¢ and is uncorrelated with the final expression in brackets in Equation
(12.21). Thus the mean squared forecast error (MSFE) is

MSFE = E[(Yr,; = Y7, y,1)?]
(12.22)

A A a

= a7 + var[(B, - By) + (B, =B Yr+ (0,—8)X7],

and the RMSFE is the square root of the MSFE.

Estimation of the MSFE entails estimation of the two parts in Equation
(12.22). The first term, ¢, can be estimated by the square of the standard error
of the regression, as discussed in Section 12.3. The second term requires esti-
mating the variance of a weighted average of the regression coefficients, and
methods for doing so were discussed in Section 6.1 (see the discussion follow-
ing Equation (6.7)).

An alternative method for estimating the MSFE is to use the variance of
pseudo out-of-sample forecasts, a procedure discussed in Section 12.7.

12.5

12.5 lag Length Selection Using Information Criteria

Forecast intervals. A forecast interval is like a confidence interval, exce
it pertains to a forecast. That is, a 95% forecast interval is an interval tha
tains the future value of the series in 95% of repeated applications.

One important difference between a forecast interval and a confidence
val is that the usual formula for 2°95% confidence interval (the estimator
standard errors) is justified by the central limit theorem and therefore holc
wide range of distributions of the, error term. In contrast, because the fc
error in Equation (12.21) includes the future value of the error w4, to co
a forecast interval requires either estimating the distribution of the error te
making some assumption about that distribution.

In practice, it is convenient to assume that #y.,; is normally distributed
Equation (12.21) and the central limit theorem applied to Bo» By, and 8, imp
the forecast error is the sum of two independent, normally distributed terms,
the forecast error is itself normally distributed with variance equaling the M
follows that a 95% confidence interval is given by M\?:ﬂ +1.96 SE(Yy,, - ¥
where SE(Yr,, — Mw?:l is an estimator of the RMSFE.

This discussion has focused on the case that the error term, u
homoskedastic. If instead u,., is heteroskedastic, then one needs to dev
model of the heteroskedasticity so that the term ¢? in Equation (12.22)
estimated, given the most recent values of Y and X, and methods for mo
this conditional heteroskedasticity are presented in Section 14.5.

Because of uncertainty about future events—that is, uncertainty about
95% forecast intervals can be so wide that they have limited use in decisior
ing. Professional forecasters therefore often report forecast intervals that are
than 95%, for example, one standard error forecast intervals (which are 689
cast intervals if the errors are normally distributed). Alternatively, some fo
ers report multiple forecast intervals, as is done by the economists at the B
England when they publish their inflation forecasts (see the River of Bloc
on the following page).

Lag Length Selection Using
Information Criteria

The estimated inflation regressions in Sections 12.3 and 12.4 have either |
four lags of the predictors. One lag makes some sense, but why four? Mot
erally, how many lags should be included in a time series regression? This s
discusses statistical methods for choosing the number of lags, first in an

gression, then in a time series regression model with multiple predictors.
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The River of Blood

s part of its efforts to inform the public about

monetary policy decisions, the Bank of Eng-
land regularly publishes forecasts of inflation. These
forecasts combine output from econometric mod-
els maintained by professional econometricians at
the bank with the expert judgment of the members
of the bank’s senior staff and Monetary Policy Com-
mittee. The forecasts are presented as a set of fore-
cast intervals designed to reflect what these
economists consider to be the range of probable
paths that inflation might take. In its Inflation Report,
the bank prints these ranges in red, with the dark-
est red reserved for the central band. Although the

bank prosaically refers to this as the “fan chart,” the
press has called these spreading shades of red the
“river of blood.”

The river of blood for February 2001 is shown
in Figure 12.4 (in this figure the blood is green, not
red, so you will need to use your imagination). This
chart shows that, as of February 2001, the bank’s
economists expected inflation to remain essentially
unchanged over the next year at approximately 2%,
but then to increase. There is considerable uncer-
tainty about this forecast, however. In their written
discussion, they cited in particular the possibility of
a further slowdown in the United States—which in

(Continued)

FIGURE 12.4 The River of Blood

From a Year Earlier

The Bank of England’s fan Percentage Increase in Prices
chart for February 2001 s
shows forecast ranges for
inflation.
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fact became the recession of 2001—that could lead
to lower inflation in the United Kingdom As it hap-
pened, their forecast was a good one: in the fourth
quarter of 2001, the rate of inflation was 2.0%.
The Bank of England has been a pioneer in the
movement towards greater openness by central
banks, and other central banks now also publish
inflation forecasts. The decisions made by mone-

tary policymakers are difficult ones and affect the

lives—and wallets—of many of their fellow citize
In a democracy in the information age, reasor
the economists at the Bank of England, it is part
Eu»@ important for citizens to understand |
bank’s economic outlook and the reasoning beh
its defficult decisions.

To see the river of blood in its original -
hue, visit the Bank of England’s Web site
www.bankofengland.co.uk/inflationreport

Determining the Order of an Autoregression

In practice, choosing the order p of an autoregression requires balancin;
benefit of including more lags against the cost of additional estimation ur
tainty. On the one hand, if the order of an estimated autoregression is too
you will omit potentially valuable information contained in the more di
lagged values. On the other hand, if it is too high, you will be estimating ;
coefficients than necessary, which in turn introduces additional estimation

into your forecasts.

The F-statistic approach. One approach to choosing p is to start w
model with many lags and to perform hypothesis tests on the final lag. For e:
ple, you might start by estimating an AR(6) and test whether the coefficies
the sixth lag is significant at the 5% level; if not, drop it and estimate an Al
test the coefficient on the fifth lag, and so forth. The drawback of this meth
that it will produce too large a model, at least some of the time: even if the
AR order is five, so the sixth coefficient is zero, a 5% test using the #-statistic
incorrectly reject this null hypothesis 5% of the time just by chance. Thus,
the true value of p is five, this method will estimate p to be six 5% of the tir

The BIC. A way around this problem is to estimate p by minimizing an “i
mation criterion.” One such information criterion is the Bayes information
terion (BIC), also called the Schwarz information criterion (SIC), wh

BIC(p) = In mimw|@ Yp+ c?\%. a
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where SSR(p) is the sum of squared residuals of the estimated AR (p). The BIC
estimator of p, p, is the value that minimizes BIC(p) among the possible choices
p=0,1,..., puw where p, . is the largest value of p considered.

The formula for the BIC might look a bit mysterious at first, but it has an
intuitive appeal. Consider the first term in Equation (12.23). Because the regres-
sion coeflicients are estimated by OLS, the sum of squared residuals necessarily
decreases (or at least does not increase) when you add a lag. In contrast, the sec-
ond term is the number of estimated regression coefficients (the number of lags,
P plus one for the intercept) times the factor (InT)/ T. This second term increases
when you add a lag. The BIC trades off these two forces so that the number of
lags that minimizes the BIC is a consistent estimator of the true lag length. The
mathematics of this argument is given in Appendix 12.5.

As an example, consider estimating the AR order for an autoregression of
the change in the inflation rate. The various steps in the calculation of the BIC
are carried out in Table 12.3 for autoregressions of maximum order six (p,,,. =
6). For example, for the AR (1) model in Equation (12.7), SSR(1)/T = 2.726,
s0 In(SSR(1)/T) = 1.003. Because T = 152 (38 years, four quarters per year),
In(T)/T = 0.033 and (p + DIn(T)/T = 2 x 0.033 = 0.066. Thus BIC(1) =
1.003 + 0.066 = 1.069.

The BIC is smallest when p = 3 in Table 12.3. Thus the BIC estimate of the
lag length is 3. As can be seen in Table 12.3, as the number of lags increases the

TABLE 12.3 The Bayes information Criterion {BIC) and the R? for Autoregressive
Models of U.S. Inflation, 1962-1999

p SSR(p)/T In(SSR(p)/T) {p + Nin(T)/T BIC(p} R

0 2.853 1.048 0.033 1.081 0.000
;;;;; 1 2.726 1.003 0.066 1.069 0.045
S o e TN
3 2.264 0.817 0.132 0.949 0.206
4 2261 0816 0.165  0.98] 0.207

5 2.260 0.815 0.198 1.013 0.208

6 2.257 0.814 0.231 1.045 0.209
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R? increases and the SSR decreases. The increase in the R? is large from one t.
two lags, smaller from two to three, and quite small from three to four. The BI(
helps decide precisely how large the increase in the R? must be to justify includ

ing the additional lag.

The AIC. The BIC is not the only information criterion; another is th
Akaike information criterion, or AIC:

— 1| SSR(p) 2
ALC(p) = In| > P (p + 1) (12.24

The difference between the AIC and the BIC is that the term “InT” in th
BIC is replaced by “2” in the AIC, so the second term in the AIC is smaller. Fo
example, for the 152 observations used to estimate the inflation autoregression:
InT = In(152) = 5.02, so that the second term for the BIC is more than twice
large as the term in AIC. Thus a smaller decrease in the SSR is needed in the AI(
to justify including another lag. As a matter of theory, the second term in the Al(
is not large enough to ensure that the correct lag length is chosen, even in larg
samples, so the AIC estimator of p is not consistent. As is discussed in Appendi
12.5, in large samples the AIC will overestimate p with nonzero probability.

Despite this theoretical blemish, the AIC is widely used in practice. If you ar
concerned that the BIC might yield a model with too few lags, the AIC provide
a reasonable alternative.

A note on calculating information criteria. How well two estimated regres
sions fit the data is best assessed when they are estimated using the same data set:
Because the BIC and AIC are formal methods for making this comparison, th
autoregressions under consideration should be estimated using the same observa
tions. For example, in Table 12.3 all the regressions were estimated using dat
from 1962:1-1999:1V, for a total of 152 observations. Because the autoregressior
involve lags of the change of inflation, this means that eatlier values of the chang
of inflation (values before 1962:1) were used as regtessors for the preliminar
observations. Said differently, the regressions examined in Table 12.3 each includ
observations on Alnf, Alnf,, .. ., D?\J for t = 1962:1, ..., 1999:1V, corre
sponding to 152 observations on the dependent variable and regressors, so T :

152 in Equations (12.23) and (12.24).
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Lag Length Selection in Time Series
Regression with Multiple Predictors

The tradeoff involved with lag length choice in the general time serics regres-
sion model with multiple predictors (Equation (12.20)) is similar to that in an
autoregression: using too few lags can decrease forecast accuracy because valu-
able information is lost, but adding lags increases estimation uncertainty. The
choice of lags must balance the benefit of using additional information against

the cost of estimating the additional coefficients.

The F-statistic approach.  As in the univariate autoregression, one way to deter-
mine the number of lags to include is to use F-statistics to test joint hypotheses that
sets of coefficients equal zero. For example, in the discussion of Equation (12.17), we
tested the hypothesis that the coeficients on the second through fourth lag of the
unemployment rate equal zero against the alternative that they are nonzero; this
hypothesis was rejected at the 1% significance level, lending support to the longer-
lag specification. If the number of models being compared is small, then this F-
statistic method is easy to use. In general, however, the F-statistic method can pro-
duce models that are too large, in the sense that the true lag order is overestimated.

Information criteria.  Asin an autoregression, the BIC and AIC can be used
to estimate the number of lags and variables in the time series regression model
with multiple predictors. If the regression model has K coefficients (including the
intercept), the BIC is

BIC(K) = In[ SSRED) | e InT (12.25)
T T

The AIC is defined in the sane way, but with 2 replacing InT in Equation (12.25).

For each candidate model, the BIC (or AIC) can be evaluated, and the model

with the lowest value of the BIC (or AIC) is the preferred model, based on the

information criterion.

There are two important practical considerations when using an information
criterion to estimate the lag lengths. First, as is the case for the autoregression, all
the candidate models must be estimated over the same sample; in the notation of
Equation (12.25), the number of observations uscd to estimate the model, T, must
be the same for all models. Second, when there are multiple predictors, this
approach is computationally demanding because it requires computing many dif-
ferent models (many combinations of the lag parameters). In practice, a convenient

12.6
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shortcut is to require all the regressors to have the same number of lags, ¢

~+ 1 models need to be ¢

Hax

require that p = g, = - - - = q,, so thatonly p,
(corresponding to p = 0, 1, .. ., p,.0-

Nonstationarity I: Trends

In Key Concept 12.6, it was assumed that the dependent variable and th
sors are stationary. If this is not the case, that is, if the dependent variabl
regressors are nonstationary, then conventional hypothesis tests, confiden
vals, and forecasts can be unreliable. The precise problem created by nons
ity, and the solution to that problem, depends on the nature of that nonsta

In this and the next section, we examine two of the most important
nonstationarity in economic time series data: trends and breaks. In each
we first describe the nature of the nonstationarity, then discuss the conse
for time series regression if this type of nonstationarity is present but is
We next present tests for nonstationarity and discuss remedies for, or
to, the problems caused by that particular type of nonstationarity. We |
discussing trends.

What Is a Trend?

A trend is a persistent long-term movement of a variable over time. A tir
variable fluctuates around its trend.

Inspection of Figure 12.1a suggests that the U.S. inflation rate has a tr
sisting of a general upward tendency through 1982 and a downward t
thereafter. The series in Figures 12.2a, b, and ¢ also have trends, but the
are quite different. The trend in the U.S. Federal Funds interest rate is s
the trend in the U.S. inflation rate. The $/£ exchange rate clearly had a p
downward trend after the collapse of the fixed exchange rate system in 1
logarithm of Japanese real GDP has a complicated trend: fast growth at f
moderate growth, and finally slow growth.

Deterministic and stochastic trends. There are two types of tre
in time series data, deterministic and stochastic. A deterministic tr
nonrandom function of time. For example, a deterministic trend mig}
ear in time; if inflation had a deterministic linear trend so that it incr
0.1 percentage point per quarter, this trend could be written as 0.1¢, v

measured in quarters. In contrast, a stochastic trend is random and va
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time. For example, a stochastic trend in inflation might exhibit a prolonged
period of increase followed by a prolonged period of decrease, like the inflation
trend in Figure 12.1.

Like many econometricians, we think it is more appropriate to model eco~
nomic time series as having stochastic rather than deterministic trends. Econom-
ics is complicated stuff. It is hard to reconcile the predictability implied by a
deterministic trend with the complications and surprises faced year after year by
workers, businesses, and governments. For example, although U.S. inflation rose
through the 1970s, it was neither destined to rise forever nor destined to fall again.
Rather, the slow rise of inflation is now understood to have occurred because of
bad luck and bad monetary policy, and its taming was in large part a consequence
of tough decisions made by the Board of Governors of the Federal Reserve. Sim-
ilarly, the $/£ exchange rate trended down from 1972 to 1985 and subsequently
drifted up, but these movements too were the consequences of complex economic
forces; because these forces change unpredictably, these trends are usefully thought
of as having a large unpredictable, or random, component.

For these reasons, our treatment of trends in economic time series focuses on
stochastic rather than deterministic trends, and when we refer to “trends” in time
series data we mean stochastic trends unless we explicitly say otherwise. This sec-
tion presents the simplest model of a stochastic trend, the random walk model;
other models of trends are discussed in Section 14.3.

The random walk model of a trend. The simplest model of a variable with
a stochastic trend is the random walk. A time series Y; is said to follow a random
walk if the change in Y, is i.i.d., that is, if

Y= Y+ u, (12.26)

where u, is 1.1.d. We will, however, use the term “random walk” more generally
to refer to a time series that follows Equation (12.26), where u, has conditional
mean zero, that is, E(,|Y, 4, Y., ...) =0.

The basic idea of a random walk is that the value of the series tomorrow s its
value today, plus an unpredictable change: because the path followed by Y, consists
of random “steps” u,, that path is a “random walk” The conditional mean of Y,
based on data through time £ — 1 is Y,;; that is, because E(,|Y,4, Y, ...) =0,
E(Y,|Y_, Y, ...) =Y. In other words, if ¥, follows a random walk, then the
best forecast of tomorrow’s value is its value today.

Some series, such as the logarithm of Japanese GDP in Figure 12.2¢, have an
obvious upward tendency, in which case the best forecast of the series must
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include an adjustment for the tendency of the series to increase. This adjustme
leads to an extension of the random walk model to include a tendency to mo
or “drift” in one direction or the other. This extension is referred to as a rando
walk with drift:

Y, =8,+ Y, +u, (12.2

where E(u,|Y_,, Y5, .. .) = 0and f, is the “drift” in the random walk. If 3,
positive, then Y, increases on average. In the random walk with drift mod
the best forecast of the series tomorrow is the value of the series today, p!
the drift j,.

The random walk model (with drift as appropriate) is simple yet versatile, a
it is the primary model for trends used in this book.

A random walk is nonstationary. 1f Y, follows a random walk, then it is 1
stationary: the variance of a random walk increases over time so the distributi
of Y, changes over time. One way to see this is to recognize that, because u,
serially uncorrelated in Equation (12.26), var(Y,) = var(Y,_;) + var(u); for Y, to
stationary, var(Y;) cannot depend on time, 5o in particular var(Y,) = var(¥; ;) mi
hold, but this can only happen if var{u) = 0. Another way to see this is to ima
ine that Y, starts out at zero, that is, Y, = 0. Then Y| = 4, Y, = u; + u,, and
forth, so that Y, = u; + u, + - -+ + u,. Because u, is serially uncorrelated, var(
= var(u, + 4y + -+ + u) = to?. Thus the variance of Y, depends on ¢ in fa
it increases as ¢ increases. Because the variance of Y, depends on ¢, its distributi
depends on ¢, that 1s, it is nonstationary.

Because the variance of a random walk increases without bound, its popu
tion autocorrelations are not defined (the first autocovariance and variance are in
nite and the ratio of the two is not well defined). However, a feature of a randc
walk is that its sample autocorrelations tend to be very close to one, in fact, the

sample autocorrelation of a random walk converges to one in probability.

Stochastic trends, autoregressive models, and a unit root. The randc
walk model is a special case of the AR (1) model (Equation (12.8)) in which 3, =
In other words, if Y, follows an AR (1) with ; = 1, then ¥, contains a stochas
trend and is nonstationary. If, however, |,/ < 1 and u, is stationary, then the jo
distribution of Y and its lags does not depend on ¢ (a result shown in Appenc
12.2) so Y] is stationary as long as u, is stationary.

The analogous condition for an AR(p) to be stationary is more complicat
than the condition |f;] <1 for an AR(1). Its formal statement involves the ro
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of the polynomial, 1 — i,z — foz? — fyz? — -+ — 3,20 (The roots of this poly-
nomial are the solutions to the cquation 1 — 7 — f,2° — 2> = -+ - Ba=0)

For an AR(p) to be stationary, the roots of this polynomial must all be greater
than one in absolute value. In the special case of an AR (1), the root is the value
of z that solves 1 — B,z = 0, so its root is z = 1/f,. Thus the statement that the
root be greater than one in absolute value is equivalent to |#,{< 1.

If an AR (p) has a root that equals one, the series is said to have a unit autore-
gressive root or, more simply, a unit root. If ¥, has a unit root, then it contains
a stochastic trend. If Y, is stationary (and thus does not have a unit root), it does
not contain a stochastic trend. For this reason, we will use the terms “stochastic

trend” and “unit root” interchangeably.

Problems Caused by Stochastic Trends

If a regressor has a stochastic trend (has a unit root), then the OLS estimator of its
coefficient and its QLS t-statistic can have nonstandard (that is, nonnormal) dis-
tributions, even in large samples. We discuss three specific aspects of this prob-
lem: first, the estimator of the autoregressive coefficient in an AR(1) is biased
towards zero if its true value is one; second, t-statistics on regressors with a sto-
chastic trends can have a nonnormal distribution, even in large samples; and third,
an extreme example of the risks posed by stochastic trends is that two series that
are independent will, with high probability, misleadingly appear to be related if
they both have stochastic trends, a situation known as spurious regression.

Problem #1: Autoregressive coefficients that are biased towards zero.
Suppose that Y, follows the random walk in Equation (12.26) but this is unknown
to the econometrician, who instead estimates the AR (1) model in Equation (12.8).
Because Y, is nonstationary, the least squares assumptions for time series regres-
sion in Key Concept 12.6 do not hold, so as a general matter we cannot rely on
estimators and test statistics having their usual large-sample normal distributions.
In fact, in this example the OLS estimator of the autoregressive coefficient, mf
is consistent, but it has a nonnormal distribution, even in large samples: the
asymptotic distribution of 3, is shifted towards zero. The expected value of B is
approximately me_v =1—5.3/T. This results in a large bias in sample sizes typ-
ically encountered in economic applications. For example, 20 years of quarterly
data contain 80 observations, in which case the expected value o:w_ is m%_v =
1 —5.3/80 = 0.934. Morcover, this distribution has a long left tail: the 5% per-
centile o:y is approximately 1 — 14.1/7T which, for T'= 80, corresponds to ().824,
so that 5% of the time \w_ < (.824.
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One implication of this bias towards zero is that, if Y, follows a randa
then forecasts based on the AR(1) model can perform substantially wo
those based on the random walk model, which imposes the true value 3, =
conclusion also applies to higher order autoregressions, in which there :
casting gains from imposing a umit root (that is, from estimating the autore

in first differences instead of in levels) when in fact the series contains a u

Problem #2: Nonnormal distributions of t-statistics. 1f a regres
stochastic trend, then its usual QLS t-statistic can have a nonnormal dist
under the null hypothesis, even in large samples. This nonnormal dist
means that conventional confidence intervals are not valid and hypoth
cannot be conducted as usual. In general, the distribution of this f-statist
readily tabulated because the distribution depends on the relationship |
the regressor in question and the other regressors. One important case i
it is possible to tabulate this distribution is in the context of an autoregress
a unit root, and we return to this special case when we take up the prc

testing whether a time series contains a stochastic trend.

Problem #3: Spurious regression. Stochastic trends can lead two tir
to appear related when they are not, a problem called spurious regress

For example, U.S. inflation was steadily rising from the mid-1960s
the early 1980s, and at the same time Japanese GDP was steadily risin;
two trends conspire to produce a regression that appears to be “significar
conventional measures. Estimated by OLS using data from 1965 throug

this regression is

e ——

U.S. Inflation, = — 2.84 + 0.18Japanese GDP, R? = 0.56.
(0.08) (0.02)

The t-statistic on the slope coefficient exceeds 9, which by our usual s
indicates a strong positive relationship between the two series, and the R’
However, running this regression using data from 1982 through 1999 yi

e r—

U.S.Inflation, = 6.25 — 0.03]Japanese GDE, R%2=0.07.
(1.37) (0.01)

The regressions in Equation (12.28) and (12.29) could hardly be n
ferent. Interpreted literally, Equation (12.28) indicates a strong positive :
ship, while Equation (12.29) indicates a weak negative relationship.
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The source of these conflicting results is that both series have stochastic trends.
These trends happened to align from 1965 through 1981, but did not align from
1982 through 1999. There is, in fact, no compelling economic or political rea-
son to think that the trends in these two series are related. In short, these regres-
slons are spurious.

The regressions in Equations (12.28) and (12.29) illustrate empirically the the-
oretical point that OLS can be misleading when the series contain stochastic trends
(see Exercise 12.6 for a computer simulation that demonstrates this result). One
special case in which certain regression-based methods are reliable is when the
trend component of the two series is the same, that is, when the series contain a
common stochastic trend; if so, the series are said to be cointegrated. Econometric
methods for detecting and analyzing cointegrated economic time series are dis-
cussed in Section 14.4.

Detecting Stochastic Trends: Testing
for a Unit AR Root

Trends in time series data can be detected by informal and formal methods. The
informal methods involve inspecting a time series plot of the data and comput-
ing the autocorrelation coefficients, as we did in Section 12.2. Because the first
autocorrelation coefficient will be near one if the series has a stochastic trend, at
least in large samples, a small first autocorrelation coefficient combined with a
time series plot that has no apparent trend suggests that the series does not have
a trend. If doubt remains, however, there are formal statistical procedures that can
be used to test the hypothesis that there is a stochastic trend in the series against
the alternative that there is no trend.

In this section, we use the Dickey-Fuller test (named after its inventors David
Dickey and Wayne Fuller (1979)) to test for a stochastic trend. Although the
Dickey-Fuller test is not the only test for a stochastic trend (another test is dis-
cussed in Section 14.3), it is the most commonly used test in practice and is one
of the most reliable.

The Dickey-Fuller test in the AR(1) model. The starting point for the
Dickey-Fuller test is the autoregressive model. As discussed earlier, the random
walk in Equation (12.27) is a special case of the AR (1) model with g; = 1. If

By = 1, Y, is nonstationary and contains a (stochastic) trend. Thus, within the

AR(1) model, the hypothesis that Y, has a trend can be tested by testing

Hyp,=1tvs. H: B, <1lmY=p,+pY,+u,. (12.30)
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It 3, = 1, the AR(1) has an autoregressive root of one, so the null hypc
in Equation (12.30) is that the AR(1) has a unit root, and the alternative
it is stationary.

This test is most easily implemented by estimating a modified version of
tion (12.30) obtained by subtracting Y_, from both sides. Let § = §, — 1
Equation (12.30) becomes

Hyd=0vs. H: 5§ <0in AY, = B, + Y, + u,. (

The OLS t-statistic testing 6 = 0 in Equation (12.31) is called the Di
Fuller statistic. The formulation in Equation (12.31) is convenient be
regression software automatically prints out the f-statistic testing 6 = 0. Not
the Dickey-Fuller test is one-sided, because the relevant alternative is tha
stationary so f; < 1 or, equivalently, § < 0. The Dickey-Fuller statistic is
puted using “nonrobust” standard errors, that is, the “homoskedasticity-
standard errors presented in Appendix 4.4 (Equation (4.62) for the case of
gle regressor and in Section 16.4 for the multiple regression model).?

The Dickey-Fuller test in the AR(p) model. The Dickey-Fuller statisti
sented in the context of Equation (12.31) applies only to an AR(1). As disc
in Section 12.3, for some series the AR (1) model does not capture all the
correlation in Y, in which case a higher order autoregression is more approj

The extension of the Dickey-Fuller test to the AR(p) model is summ:
in Key Concept 12.8. Under the null hypothesis, 6 = 0 and AY] is a stati
AR (p). Under the alternative hypothesis, § < 0 so that Y] is stationary. Be
the regression used to compute this version of the Dickey-Fuller statistic i
mented by lags of AY,, the resulting t-statistic is referred to as the augma
Dickey-Fuller (ADF) statistic.

In general the lag length p is unknown, but it can be estimated using an
mation criterion applied to regressions of the form (12.32) for various val
p. Studies of the ADF statistic suggest that it is better to have too many lag
too few, so it is recommended to use the AIC instead of the BIC to estimatc
the ADF statistic.

2Under the null hypothesis of a unit root the usual “nonrobust” standard errors produce a t-
that is in fact robust to heteroskedasticity, a surprising and special result.

See Stock (1994) for a review of simulation studies of the finite-sample properties of the [
Fuller and other unit root test statistics.
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The augmented Dickey-Fuller (ADF) test for a unit autoregressive root tests
the null hypothesis Hy: § = 0 against the one-sided alternative H;: § < 0 in
the regression

AY, = o+ 6Y + nAY + pAY, + -+ pAY 4w (12.32)

Under the null hypothesis, Y, has a stochastic trend; under the alternative
hypothesis, Y, is stationary. The ADF statistic is the OLS f-statistic testing 6 = 0
in Equation (12.32).

If instead the alternative hypothesis is that Y, is stationary around a deter-
ministic linear time trend, then this trend, “f” (the observation number), must
be added as an additional regressor, in which case the Dickey-Fuller regres-
sion becomes

AY, =By + at +8Y,; + pAY 4 + pAY. , + - + BAY, +u, (12.33)
where o is an unknown coeflicient and the ADF statistic is the OLS f-statistic
testing 6 = 0 in Equation (12.33).

The lag length p can be estimated using the BIC or AIC. The ADF statis-
tic does not have a normal distribution, even in large samples. Critical values for
the one-sided ADF test depend on whether the test is based on Equation (12.32)
or (12.33) and are given in Table 12.4.

Testing against the alternative of stationarity around a linear determin-
tstic time trend.  The discussion so far has considered the null hypothesis that
the series has a unit root and the alternative hypothesis that it is stationary. This
alternative hypothesis of stationarity is appropriate for series, like the rate of infla-
tion, that do not exhibit long-term growth. But other economic time series, like
Japanese GDP (Figure 12.2¢), exhibit long-run growth, and for such series the
alternative of stationarity without a trend is inappropriate. Instead, a commonly
used alternative is that the series are stationary around a deterministic time trend,
that is, a trend that is a deterministic function of time.

One specific formulation of this alternative hypothesis is that the time trend
is hinear, that is, the trend is a linear function of £; thus, the null hypothesis is that

the series has a unit root and the alternative is that it does not have a unit root but
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does have a deterministic time trend. The Dickey-Fuller regression must be 1
ified to test the null hypothesis of a unit root against the alternative that it 1
tionary around a linear time trend. As summarized in Equation (12.33) in
Concept 12.8, this is accomplished by adding a time trend (the regressor X
to the regression. A

A linear time trend is not the only way to specity a deterministic time o
for example, the deterministic time trend could be quadratic, or it could be
ear but have breaks (that is, be linear with slopes that differ in two parts o
sample). The use of alternatives like these with nonlinear deterministic t1
should be motivated by economic theory. For a discussion of unit root
against stationarity around nonlinear deterministic trends, see Maddala and
(1998, Chapter 13).

Critical values for the ADF statistic. Under the null hypothesis of a
root, the ADF statistic does not have a normal distribution, even in large sam
Because its distribution is nonstandard, the usual critical values from the no
distribution cannot be used when using the ADF statistic to test for a unit
a special set of critical values, based on the distribution of the ADF statistic u
the null hypothesis, must be used instead.

The critical values for the ADF test are given in Table 12.4. Because the :
native hypothesis of stationarity implies that § <0 in Equations (12.32)
(12.33), the ADF test is one-sided. For example, if the regression does not in
a time trend, then the hypothesis of a unit root is rejected at the 5% signific
level if the ADF statistic is less than —2.86. 1f a time trend is included in the re
sion, the critical value is instead —3.41.

The critical values in Table 12.4 are substantially larger (more negative)
the one-sided critical values of —1.28 (at the 10% level) and —1.645 (at th
level) from the standard normal distribution. The nonstandard distribution o
ADF statistic is an example of how OLS t-statistics for regressors with stock
trends can have nonnormal distributions. Why the large-sample distributic
the ADF statistic is nonstandard is discussed further in Section 14.3.

TABLE 12.4 Llarge-Sample Critical Values of the Augmented Dickey-Fuller Statist

Deterministic Regressors 10% 5% 1%

Intercept only -257 -2.86 -3.43

Intercept and tinie trend -3.12 ~3.41 -3.96
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Does U.S. inflation have a stochastic trend? The null hypothesis that infla-
tion has a stochastic trend can be tested against the alternative that it is stationary
by performing the ADF test for a unit autoregressive root. The ADF regression

with four lags of Inf, 1s

(12.34)

AIf = 0.53 = 0.11Inf_, — 0.14AInf_, — 0.25AInf,_, + 0.24Alnf, 5 + 0.01AInf, ,
0.23) (0.04)  (0.08) (0.08) (0.08) (0.08)

The ADF f-statistic is the f-statistic testing the hypothesis that the coefficient on
Inf_, is zero; this is t = —2.60. From Table 12.4, the 5% critical value is —2.86.
Because the ADF statistic of —=2.60 is less negative than —2.86, the test does not
reject at the 5% significance level. Based on the regression in Equation (12.34),
we therefore cannot reject (at the 5% significance level) the null hypothesis that
inflation has a unit autoregressive root, that is, that inflation contains a stochastic
trend, against the alternative that it is stationary.

The ADF regression in Equation (12.34) includes four lags of Alnf, to com-
pute the ADF statistic. When the number of lags is estimated using the AIC,
where 0 € p < 6, the AIC estimator of the lag length is, however, three. When
three lags are used (that is, when Alnf,_;, Alnf_,, and Alnf,_; are included as regres-
sors), the ADF statistic is —2.65, which is less negative than —2.86. Thus, when
the number of lags in the ADF regression is chosen by AIC, the hypothesis that
inflation contains a stochastic trend is not rejected at the 5% significance level.

These tests were performed at the 5% significance level. At the 10% signifi-
cance level, however, the tests reject the null hypothesis of a unit root: the ADF
statistics of —2.60 (four lags) and —2.65 (three lags) are slightly more negative than
the 10% critical value of —2.57. Thus the ADF statistics paint a rather ambiguous
picture, and the forecaster must make an informed judgment about whether or
not to model inflation as having a stochastic trend. Clearly, inflation in Figure
12.1a exhibits long-run swings, consistent with the stochastic trend model. More-
over, in practice, many forecasters treat U.S. inflation as having a stochastic trend,
and we follow that strategy here.

Avoiding the Problems Caused

by Stochastic Trends

The most reliable way to handle a trend in a series is to transform the series so
that it does not have the trend. If the series has a stochastic trend, that is, if the

series has a unit root, then the first difference of the series does not have a trend.

12.7
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For example, if Y] follows a random walk so Y, = i, + Y/, + u,, then AY =
u, 1s stationary. Thus using first differences eliminates random walk trends in a se

In practice, you can rarely be sure whether a series has a stochastic trend or
Recall that, as a general point, failure to reject the null hypothesis does not ne
sarily mean that the null hypothesis is true; rather, it simply means that you |
insufficient evidence to conclude that it is false. Thus, failure to reject the null hyp
esis of a unit root using the ADF test does not mean that the series actually fiasa
root. For example, in an AR(1) the true coefficient 8, might be very close to one
0.98, in which case the ADF test would have low power, that is, a low probabilit
correctly rejecting the null hypothesis in samples the size of our inflation series. E
though failure to reject the null hypothesis of a unit root does not mean the s
has a unit root, it still can be reasonable to approximate the true autoregressive 1
as equaling one and therefore to use differences of the series rather than its leve

Nonstationarity II: Breaks

A second type of nonstationarity arises when the population regression funct
changes over the course of the sample. In economics, this can occur for a var:
of reasons, such as changes in economic policy, changes in the structure of
economy, or an invention that changes a specific industry. If such changes
“breaks.” occur, then a regression model that neglects those changes can prov
a misleading basis for inference and forecasting,

This section presents two strategies for checking for breaks in a time se
regression function over time. The first strategy looks for potential breaks from
perspective of hypothesis testing, and entails testing for changes in the regress
coefficients using F-statistics. The second strategy looks for potential breaks fr
the perspective of forecasting: you pretend that your sample ends sooner than it ac
ally does and evaluate the forecasts you would have made had this been so. Bre
are detected when the forecasting performance is substantially poorer than expect

What Is a Break?

Breaks can arise either from a discrete change in the population regression co
ficients at a distinct date or from a gradual evolution of the coefficients ove
longer period of time.

*For additional discussion of stochastic trends in economiic time series variables and of the probl
they pose for regression analysis, see Stock and Watson (1988).
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One source of discrete breaks in macroeconomic data is a major change in
macroeconomic policy. For example, the breakdown of the Bretton Woods system
of fixed exchange rates in 1972 produced the break in the time series behavior of
the $/£ exchange rate that is evident in Figure 12.2b. Prior to 1972, the exchange
rate was essentially constant, with the exception of a single devaluation i 1968 in
which the official value of the pound, relative to the dollar, was decreased. In con-
trast, since 1972 the exchange rate has fluctuated over a very wide range.

Breaks also can occur more slowly as the population regression evolves over
time. For example, such changes can arise because of slow evolution of economic
policy and ongoing changes in the structure of the economy. The methods for
detecting breaks described in this section can detect both types of breaks, distinct

changes and slow evolution.

Problems caused by breaks. If a break occurs in the population regression
function during the sample, then the OLS regression estimates over the full sam-
ple will estimate a relationship that holds “on average,” in the sense that the esti-
mate combines the two different periods. Depending on the location and the size
of the break, the “average” regression function can be quite different than the true

regression function at the end of the sample, and this leads to poor forecasts.

Testing for Breaks

One way to detect breaks is to test for discrete changes, or breaks, in the regres-
sion coefficients. How this is done depends on whether the date of the suspected
break (the break date) is known or not.

Testing for a break at a known date. In some applications you might sus-
pect that there is a break at a known date. For example, if you are studying inter-
national trade relationships using data from the 1970s, you might hypothesize that
there is a break in the population regression function of interest in 1972 when
the Bretton Woods system of fixed exchange rates was abandoned in favor of float-
ing exchange rates.

If the date of the hypothesized break in the coefficients is known, then the
null hypothesis of no break can be tested using a binary variable interaction regres-
sion of the type discussed in Chapter 6 (Key Concept 6.4). To keep things sim-
ple, consider an ADL(1,1) model, so there is an intercept, a single lag of Y;, and
a single lag of X,. Let 7 denote the hypothesized break date and let D(7) be a
binary variable that equals zero before the break date and onc after, so D) =0

|
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ift<tand D (1) = 1if 1 > 1. Then the regression including the binary |
cator and all interaction terms is

Y= By B+ 60X+ D) + p[DO XY D) x X,

If there is not a break, then the population regression function is
over both parts of the sample so the terms involving the break binary var
do not enter Equation (12.35). That is, under the null hypothesis of
Y =% = ¥, = 0. Under the alternative hypothesis that there is a break
population regression function is different before and after the break
which case at least one of the y’s is nonzero. Thus the hypothesis of a br
tested using the Fostatistic that tests the hypothesis that y, =y, =, = 0 ;
hypothesis that at least one of the y% is nonzero, This is often called a
for a break at a known break date, named for its inventor, Gregory Che

If there are multiple predictors or more lags, then this test can be
by constructing binary variable interaction variables for all the regressor
ing the hypothesis that all the coefficients on terms involving D,(1) are

This approach can be modified to check for a break in a subset of t
cients by including only the binary variable interactions tor that subset
sors of interest.

Testing for a break at an unknown break date Often the date «
ble break is unknown or known only within a range. Suppose, for exa
suspect that a break occurred sometime between two dates, 7, and 7,. T
test can be modified to handle this by testing for breaks at all possible
between 7, and 1y, then using the largest of the resulting F-statistics to
break at an unknown date. This modified Chow test is variously «
Quandt likelihood ratio (QLR) statistic (Quandt, 1960) (the tern
use) or, more obscurely, the sup-Wald statistic.

Because the QLR statistic is the largest of many F-statistics, its distr
not the same as an individual F-statistic. Instead, the critical values for
statistic must be obtained from a special distribution. Like the F-statistic
tribution depends on the number of restrictions being tested, g, that s,
ber of coefficients (including the intercept) that are being allowed to
change, under the alternative hypothesis. The distribution of the QLI
also depends on 1,/7 and /T, that is, on the endpoints, 7, and 7y, of
sample over which the F-statistics are computed, expressed as a fracti
total sample size.
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For the large-sample approximation to the distribution of the QLR statistic
to be a good one, the subsample endpoints, 7 and 1,, cannot be too close to the
end of the sample. For this reason, in practice the QLR statistic is computed over
a “trimmed” range, or subset, of the sample. A common choice is to use 15%
trimming, that is, to set for 7y = 0.15T and 7; = 0.85T (rounded to the nearest
integer). With 15% trimming, the F-statistic is computed for break dates in the
central 70% of the sample.

The critical values for the QLR statistic, computed with 15% trimming, are
given in Table 12.5. Comparing these critical values with those of the K, _, distri-
bution (Appendix Table 4) shows that the critical values for the QLR statistics are
larger. This reflects the fact that the QLR statistic looks at the largest of many
individual F-statistics. By examining F-statistics at many possible break dates, the
QLR statistic has many opportunities to reject, leading to QLR critical values
that are larger than the individual F-statistic critical values.

Like the Chow test, the QLR test can be used to focus on the possibility that
there are breaks in only some of the regression coeflicients. This is done by first
computing the Chow tests at different break dates using binary variable interac-
tions only for the variables with the suspect coefficients, then computing the max~
imum of those Chow tests over the range 7, < t < 7;. The critical values for this
version of the QLR test are also taken from Table 12.5, where the number of
restrictions (¢) is the number of restrictions tested by the constituent F-tests.

If there is a discrete break at a date within the range tested, then the QLR
statistic will reject with high probability in large samples. Moreover, the date at
which the constituent F-statistic is at its maximum, T, is an estimate of the break
date 7. This estimate is a good one in the sense that, under certain technical con-
ditions, /T N /T, that is, the fraction of the way through the sample at which
the break occurs is estimated consistently.

The QLR statistic also rejects with high probability in large samples when
there are multiple discrete breaks or when the break comes in the form of a slow
evolution of the regression function. This means that the QLR statistic detects
forms of instability other than a single discrete break. As a result, if the QLR sta-
tistic rejects, it can mean that there is a single discrete break, that there are mul-
tiple discrete breaks, or that there is slow evolution of the regression function.

The QLR statistic is summarized in Key Concept 12.9.

Warning: You probably don't know the break date even if you think you do.
Sometimes an expert might believe that he or she knows the date of a possible
break, so that the Chow test can be used instead of the QLR test. But if this
knowledge is based on the expert’s knowledge of the series being analyzed, then
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TABLE 12.5 Critical Values of the QLR Statistic with 15% Trimming

Number of Restrictions (q) 10% 5% 4,
1 712 8.68 12
" i VRSN N.ﬁ% e w
Mw, \ 2.33 o 2.54 xm

2.27 2.46

2.40

16 o N.B w.ww o 2.
17 2.08 225 2
- — e
19 2.01 ; 217 f

20 o H.,oo N N_w N

These critical values apply when 7, = 0.15T and 7, = 0.85T (rounded to the nearest integer), sc
F-statistic is computed for all potential break dates in the n&mm& 70% of the sample. The nu
restrictions q is the number of restrictions tested by each individual F-statistic. This table w:
provided to us by Donald Andrews, and supercedes Table 1 in Andrews (1993).

in fact this date was estimated using the data, albeit in an informal way. P:
nary estimation of the break date means that the usual F critical values can
used for the Chow test for a break at that date. Thus it remains appropriate
the QLR statistic in this circumstance.
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Let F(r) denote the F-statistic testing the hypothesis of a break in the regression
coefficients at date r; in the regression in Equation (12.35), for example, this is
the F-statistic testing the null hypothesis that y, = 7, = 1, = 0. The QLR (or
Sup-Wald) test is the largest of statistics in the range 7, < T7< 7y

QLR = max[F(,), F(t, + 1), . . ., F@)]. (12.36)

1. Like the F-statistic, the QLR statistic can be used to test for a break in all
or just some of the regression coefficients.

2. Inlarge samples, the distribution of the QLR statistic under the null hypoth-
esis depends on the number of restrictions being tested, ¢, and on the end-
points 7, and 7, as a fraction of T. Critical values are given in Table 12.5 for
15% trimming (z, = 0.15T and 1; = 0.857, rounded to the nearest integer).

3. The QLR test can detect a single discrete break, multiple discrete breaks,
and/or slow evolution of the regression function.

4. If there is a distinct break in the regression function, the date at which the
largest Chow statistic occurs is an estimator of the break date.

FIGURE 12.5 F-Statistics Testing for a Break in Equation (12.17) at Different Dates
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Application: Has the Phillips curve been stable? The QLR test provides
a way to check whether the Phillips curve has been stable from 1962 to 1999.
Specifically, we focus on whether there have been changes in the coeflicients on
the lagged values of the unemployment rate and the intercept in the ADL(4,4)
specification in Equation (12.17) containing four lags each of Alnf, and Unemp,.
The Chow F-statistics testing the hypothesis that the intercept and the coef-
ficients on Unemp,,, . . ., Unemp,_, in Equation (12.17) are constant against the
alternative that they break at a given date are plotted in Figure 12.5 for breaks in
the central 70% of the sample. For example, the F-statistic testing for a break in
1980:1 is 2.26, the value plotted at that date in the figure. Each Fostatistic tests five
restrictions (no change in the intercept and in the four coefficients on lags of the
unemployment rate), so g = 5. The largest of these I-statistics is 3.53, which
occurs in 1982:11; this is the QLR statistic. Comparing 3.53 to the critical values
for ¢ = 5 in Table 12.5 indicates that the hypothesis that these coefficients are sta-
ble is rejected at the 10% significance level (the critical value is 3.26), but not 5%
significance level (the critical value is 3.66). Thus there is some evidence that at

F-Statistic
4.0 (™ 5% Critical Value

[ a3y el

10% Critical Value

~N

F-Statistic

1 L 1 I 1 { 1 j

0
1960 1965 1970 1975 1980 1985 1990 1995 200(
Break Date (Year)

0.

At a given break date, the F-statistic plotted here tests the null hypothesis of a break in ot lea
one of the coefficients on Unemp,_;, Unemp, ,, Unemp, 3, Unemp,_,, or the intercept in Equa
(12.17). For example, the F-statistic festing for a breck in 1980:1 is 2.26. The QLR statistic is
largest of these F-statistics, which is 3.53. This exceeds the 10% critical value of 3.26, but nc
5% critical value of 3.66.

least one of these five coeflicients has changed over the sample, but the evi
is not especially strong.

Pseudo Out-of-Sample Forecasting

The ultimate test of a forecasting model is its out-of-sample performance, t
its forecasting performance in “real time,” after the model has been estir
Pseudo out-of-sample forecasting is a method for simulating the rea
performance of a forecasting model. The idea of pseudo out-of-sample for
ing is simple: pick a date near the end of the sample, estimate your forec
model using data up to that date, then use that estimated model to make
cast. Performing this exercise for multiple dates near the end of your sample
a series of pseudo forecasts and thus pseudo forecast errors. The pseudo fc
errors can then be examined to see if they are representative of what you

expect if the forecasting relationship were stationary.
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Pseudo out-of-sample forecasts are computed using the following steps:

1. Choose a number of observations, P, for which you will generate pseudo out~
of-sample forecasts; for example, P might be 10% or 15% of the sample size.
Lets=T-P.

Estimate the forecasting regression using the shortened data set for

N

t=1,...,s.
3. Compute the forecast for the first period beyond this shortened sample,

s+ 1 call this ¥ ..

4. Compute the forecast error, #,,; = Y43 ~ Y-

5. Repeat steps 2—4 for the remaining dates, s = T—= P+ 1 to T'— 1 (re-esti-
mate the regression at each date). The pseudo out-of-sample forecasts are
Ami_ »5=T=P,..., T—1} and the pseudo out-of-sample forecast errors
are {u,,, s=T=P, ..., T—1}

The reason this is called “pseudo” out-of-sample forecasting is that it is not
true out-of-sample forecasting. True out-of-sample forecasting occurs in real time,
that is, you make your forecast without the benefit of knowing the future values
of the series. In pseudo out-of-sample forecasting, you simulate real time fore-
casting using your model, but you have the “future” data against which to assess
those simulated, or pseudo, forecasts. Pseudo out-of-sample forecasting mimics
the forecasting process that would occur in real time, but without having to wait
for new data to arrive.

Pseudo out-of-sample forecasting gives a forecaster a sense of how well the
model has been forecasting at the end of the sample. This can provide valuable
information, either bolstering confidence that the model has been forecasting well
or suggesting that the model has gone off track in the recent past. The method-
ology of pseudo out-of-sample forecasting is summarized in Key Concept 12.10.

Other uses of pseudo out-of-sample forecasting. A second use of pseudo
out-of-sample forecasting is to estimate the RMSFE. Because the pseudo out-of-
sample forecasts are computed using only data prior to the forecast date, the
pseudo out-of-sample forecast errors reflect both the uncertainty associated with

future values of the error term and the uncertainty arising because the regression
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coethicients were estimated; that is, the pseudo out-of-sample forec
include both sources of error in Equation (12.21). Thus the sample stan
ation of the pseudo out-of-sample forecast errors is an estimator of the
As discussed in Section 12.4, this estimator of the RMSFE can be used
tify forecast uncertainty and to construct forecast intervals.

A third use of pseudo out-of-sample forecasting is to compare twe
candidate forecasting models. Two models that appear to fit the data eq
can perform quite differently in a pseudo out-of-sample forecasting
When the models are different, for example, when they include differer
tors, pseudo out-of-sample forecasting provides a convenient way to cot
two models that focuses on their potential to provide reliable forecasts.

Application: Did the Phillips curve change during the 1990s
coefficients of the Phillips curve changed during the 1990s, then pse
of-sample forecasts computed over that period should deteriorate. Th
out-of-sample forecasts of inflation for the period 1994:1 to 1999:1V, ¢
using the four-lag Phillips curve, are plotted in Figure 12.6 along with t
values of inflation. For example, the forecast of inflation for 1994:] v
puted by regressing Alnf, on Alnf, ,, . . ., Alnf,,, Unemp,_,, . . ., Unem
an _intercept using the data through 1993:1V, then computing the
@Eﬁ:é&é using these nmnamﬁom\n/o&m&nsz and the data ﬁr\a.ﬁymv
The inflation forecast for 1994:1is then Infigg4 1, 1993.0v = figgsay + Alnfy 199
This o:i\ﬂ/ procedure was repeated using data through 1994:1 to con
forecast Infig94.111904 - Doing this for all 24 quarters from 1994:1-
creates 24 pseudo out-of-sample forecasts, which are plotted in Fig
The pseudo out-of-sample forecast errors are the differences betwec
inflation and its pseudo out-of-sample forecast, that is, the differences bet
two lines in Figure 12.6. For example, in the third quarter of 1997, the
rate rose by 0.9 percentage points, but the pseudo out-of-sample fo
Alnfgo7.111 Smm\ﬂ.% percentage points, so the pseudo out-of-sample forecast
Alnfiggrqn = Altfiogrn 19971 = 0.9 = 1.9 = —1.0 percentage points. In oth
a forecaster using the ADL(4,4) model of the Phillips curve, estimated
1997:11, would have forecasted that inflation would increase by 1.9 percent:
in 1997:111, whereas in reality it only increased by 0.9 percentage points.
How do the mean and standard deviation of the pseudo out-of-sam
cast errors compare with the in-sample fit of the model? The standard
the regression of the four-lag Phillips curve fit using data through 1993:1
so based on the in-sample fit we would expect the out-of-sample forec
to have mean zero and root mean square forecast error of 1.47. In fact,
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FIGURE 12.6 U.S. Inflation and Pseudo Out-of-Sample Forecasts
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The pseudo out-of-sample forecasts made using a four-lag Phillips curve of the form in Equation
(12.17) generally track actual inflation, but on average the forecasts are higher than actual infla-
tion. This upward bios in the forecasts may have been caused by a decline in the natural rate of
unemployment, which would appear as a shift in the intercept of the Phillips curve.

age forecast error is —0.37 and the sample RMSFE is 0.75. Thus the RMSFE of
the pseudo out-of-sample forecasts is less than predicted by the in-sample fit of
the regression. However, the average forecast error is negative rather than zero,
that is, on average the forecasts predicted larger increases in inflation (and thus
higher inflation) than actually occurred. In fact, the t-statistic testing the hypoth-
esis that the mean out-of-sample forecast error is zero is ¢ = —2.71, so the hypoth-
esis that the mean is zero is rejected at the 1% significance level. This suggests that
the forecasts were biased over this period, systematically forecasting higher infla-
tion than actually occurred. The finding that the pseudo out-of-sample forecasts
are biased is reflected in Figure 12.6: forecasted inflation typically exceeds actual
inflation so the average forecast error is negative.

These biased forecasts suggest that the Phillips curve regression was unstable
towards the end of this sample, and that this instability led to forecasts of the
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change in inflation that were systematically too high. Before using this moc
real-time forecasting, it would be important to try to identify the source .
shift and to incorporate it into a modified version of the Phillips curve mc

Taken together, this bias in the pseudo out-of-sample forecasts and the
tion of stability by the QLR statistic (at the 10% level) suggest that the fo
Phillips curve has been unstable. This instability was a matter of considerable
est during the 1990s and early 2000s because economic forecasters recog
that, as seen in Figure 12.6, inflation forecasts based on the Phillips curve
too high. Some macroeconomists think that the source of this instability
decline in the natural rate of unemployment during the 1990s, which would
late into a negative shift in the intercept in the regressions examined here.
macroeconomists think that this breakdown is more complete, however, an
the entire concept of the Phillips curve—a link between the pressures of
demand and overall price inflation—is just an antiquated feature of the
information age economy. If you are interested in reading more on this d
see the symposium on the Phillips curve in the Winter 1997 issue of the |

of Economic Perspectives.

Avoiding the Problems Caused by Breaks

The best way to adjust for a break in the population regression function de
on the source of that break. If a distinct break occurs at a specific date, this
will be detected with high probability by the QLR statistic, and the break da
be estimated. Thus the regression function can be estimated using a binary v:
indicating the two subsamples associated with this break, interacted with the
regressors as needed. Ifall the coeflicients break, then this regression takes the
of Equation (12.35), where 7 is replaced by the estimated break date, 7, while :
some of the coeflicients break, then only the relevant interaction terms app
the regression. If there is in fact a distinct break, then inference on the regr
coefficients can proceed as usual, for example using the usual normal critical
for hypothesis tests based on t-statistics. In addition, forecasts can be produced
the estimated regression function that applies to the end of the sample.

If the break is not distinct but rather arises from a slow, ongoing change
parameters, the remedy is more difficult, and goes beyond the scope of this t

5For additional discussion of estimation and testing in the presence of discrete breaks, sce
(2001). For an advanced discussion of estimation and forecasting when there are slowly e
coefficients, see Hamilton (1994, Chapter 13).
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12.8 Conclusion

In time series data, a variable generally is correlated from one observation, or date,
to the next. A consequence of this correlation is that linear regression can be used
to forecast future values of a time series based on its current and past values. The
starting point for time series regression is an autoregression, in which the regres-
sors are lagged values of the dependent variable. If additional predictors are avail-
able, then their lags can be added to the regression.

This chapter has considered several technical issues that arise when estimat-
ing and using regressions with time series data. One such issue is determining the
number of lags to include in the regressions. As discussed in Section 12.5, if the
number of lags is chosen to minimize the BIC, then the estimated lag length is
consistent for the true lag length.

Another of these issues concerns whether or not the series being analyzed are
stationary. If the series are stationary, then the usual methods of statistical infer-
ence (such as comparing t-statistics to normal critical values) can be used, and,
because the population regression function is stable over time, regressions esti-
mated using historical data can be used reliably for forecasting. If, however, the
series are nonstationary, then things become more complicated, where the spe-
cific complication depends on the nature of the nonstationarity. For example, if
the series is nonstationary because it has a stochastic trend, then the OLS estima-
tor and f-statistic can have nonstandard (nonnormal) distributions, even in large
samples, and forecast performance can be improved by specifying the regression
in first differences. A test for detecting this type of nonstationarity—the augmented
Dickey-Fuller test for a unit root—was introduced in Section 12.6. Alternatively,
if the population regression function has a break, then neglecting this break results
in estimating an average version of the population regression function that in turn
can lead to biased and/or imprecise forecasts. Procedures for detecting a break in
the population regression function were introduced in Section 12.7.

In this chapter, the methods of time series regression were applied to eco-
nomic forecasting, and the coefficients in these forecasting models were not given
a causal interpretation. You do not need a causal relationship to forecast, and
ignoring causal interpretations liberates the quest for good forecasts. In some appli-
cations, however, the task is not to develop a forecasting model but rather to esti-
mate causal relationships among time series variables, that is, to estimate the
dynamic causal effect on Y over time of a change in X. Under the right conditions,

Key Terms

the methods of this chapter, or closely related methods, can be used to e

dynamic causal effects, and that is the topic of the next chapter.

Summary

1. Regression models used for mo:wnmmasm need not have a causal interpretat;

2. A tme series variable generally is correlated with one or more of its lagg
ues; that is, it is serially correlated.

3. An autoregression of order p is a linear multiple regression model in whi
regressors are the first p lags of the dependent variable. The coefficient
AR(p) can be estimated by OLS, and the estimated regression function
used for forecasting. The lag order p can be estimated using an informati
terion such as the BIC.

4. Adding other variables and their lags to an autoregression can improve fo
ing performance. Under the least squares assumptions for time series reg
(Key Concept 12.6), the OLS estimators have normal distributions in larg
ples and statistical inference proceeds the same way as for cross-sectional ¢

5. Forecast intervals are one way to quantify forecast uncertainty. If the err
normally distributed, an approximate 68% forecast interval can be constru
the forecast I an estimate of the root mean squared forecast error.

6. A series that contains a stochastic trend is nonstationary, violating the «
least squares assumption in Key Concept 12.6. The OLS estimatc
t-statistic for the coefficient of a regressor with a stochastic trend can
nonstandard distribution, potentially leading to biased estimators, inef
forecasts, and misleading inferences. The ADF statistic can be used to t
a stochastic trend. A random walk stochastic trend can be eliminated by
first differences of the series.

7. If the population regression function changes over time, then OLS est
neglecting this instability are unreliable for statistical inference or forecastin
QLR statistic can be used to test for a break and, if a discrete break is fou
regression function can be re-estimated in a way that allows for the break

8. Pseudo out-of-sample forecasts can be used to assess model stability towa
end of the sample, to estimate the root mean squared forecast error, and tc
pare different forecasting models.
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first lag (432)

7 lag (432)

first difference (432}

autocorrelation (434)

serial correlation (434)
autocorrelation coefficient (434)

7% autocovariance (435)
autoregression (438)

forecast error (439)

root mean squared forecast error (440)
AR (p) (441)

autoregressive distributed lag model (445)
ADL(p,q) (445)

stationarity (446)
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BIC (453)

AIC (455)

trend (457)

determunistic trend (457)

stochastic trend (457)

random walk (458)

random walk with drift (459)

unit root (460)

spurious regression (461)

Dickey-Fuller statistic (463)

augmented Dickey-Fuller (ADF) statistic
(463)

break date (468)

Quandt likelihood ratio (QLR) statistic

weak dependence (448) (469)

Granger causality test (449)

pseudo out-of-sample forecast (473)

forecast interval (451)

Review the Concepts

12.1

12.2

12.3

12.4

Look at the plot of the logarithm of real GDP for Japan in Figure 12.2¢. Does
this time series appear to be stationary? Explain. Suppose that you calculated
the first difference of this series. Would it appear to be stationary? Explain.
Many financial economists believe that the random walk model is a good
description of the logarithm of stock prices. It implies that the percentage
changes in stock prices are unforecastable. A financial analyst claims to have
a new model that predicts better than the random walk model. Explain how
you would examine the analyst’s claim that his model is superior.

A researcher estimates an AR(1) with an intercept and finds that the OLS
estimate of 8, is 0.95, with a standard error of 0.02. Does a 95% confidence
interval include 3, = 1? Explain.

Suppose that you suspected that the intercept in Equation (12.17) changed
in 1992:1. How would you modify the equation to incorporate this change?
How would you test for a change in the intercept? How would you test for

a change in the intercept if you did not know the date of the change?

Exercises

Exercises

*12.1

12.2

Suppose that Y, follows the stationary AR (1) model ¥, = 2.5 + 0.7Y,
where u, is 1.1.d. with E(u) = 0 and var(y,) = 9.
Y.

a. Compute the mean m:m variance of

b. Compute the first two autocovariances of Y.

c. Compute the first two autocorrelations of Y.

d. Suppose that Y;- = 102.3. Compute Y= E(¥;yy )Y, Y, -
The index of industrial production (IP) is a monthly time series th:
sures the quantity of industrial commodities produced in a given |
This problem uses data on this index for the United States. All reg

are estimated over the sample period 1960:1 to 2000:12 (that is, ]
1960 through December 2000). Let Y, = 1200 X In(ID/IP,_,).

a. The forecaster states that Y, shows the monthly percentage char

b.

IP, measured in percentage points per annum. Is this correct? V

Suppose a forecaster estimates the following AR (4) model for )

¥, = 1.377 + 0.318Y,, + 0.123Y,, + 0.068Y, + 0.001Y,,
(0.062) (0.078)  (0.055)  (0.068)  (0.056)

Use this AR(4) to forecast the value of Y, in January 2001 using
following values of IP for August 2000 through December 200

Date  2000:7 2000:8 2000:9 2000:10 2000:11 2(

P 147.595  148.650 148.973 148.660 148.206 1

Worried about potential seasonal fluctuations in production, th
forecaster adds Y,_;, to the autoregression. The estimated coeffi
on Y,_;, is —0.054 with a standard error of 0.053. Is this coeffic
statistically significant?

Worried about a potential break, she computes a QLR test (w
15% trimming) on the constant and AR coefficients in the AR
model. The resulting QLR statistic was 3.45. Is there evidence
a break? Explain.

Worried that she might have included too few or too many lag
model, the forecaster estimates AR(p) models forp = 1, ..., ¢
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the same sample period. The sum of squared residuals from each of

these estimated models is shown in the table. Use the BIC to estimate
the number of lags that should be included in the autoregression. Do
the results differ if you use the AIC?

! AR Order 1 2 3 4 5 6

SSR 29175 28538 28393 28391 28378 28317

m
|
L - I

*12.3 Using the same data as in Exercise 12.2, a researcher tests for a stochastic

trend in In(IP) using the following regression:

—

Aln(IP) = 0.061 + 0.00004: — 0.018In(IP_,) + 0.333AIn(IP_,) + 0.162Aln(IP.,)

a.

b.

(0.024) (0.00001) (0.007) (0.075) (0.055)

where the standard errors shown in parentheses are computed using the

o
t

homoskedasticity-only formula and the regressor “+” is a linear time trend.

Use the ADF statistic to test for a stochastic trend (unit root) in In(IP).

Do these results support the specification used in Exercise 12.2? Explain.

12.4 The forecaster in Exercise 12.2 augments her AR (4) model for IP growth
to include 4 lagged values of AR, where R, is the interest rate on 3-month

U.S. Treasury bills (measured in percentage points at an annual rate).

a.

b.

The Granger-causality F-statistic on the four lags of AR, 15 2.35. Do
interest rates help to predict IP growth? Explain.

The researcher also regresses AR, on a constant, four lags of AR, and
four lags of IP growth. The resulting Granger-causality F-statistic on
the four lags of IP growth is 2.87. Does IP growth help to predict
interest rates? Explain.

12.5 Prove the following results about conditional means, forecasts, and fore-

cast errors:

a.

b.

Let W be a random variable with mean 41, and variance o3 and let ¢
be a constant. Show that E[(W - 7] = 63, + (1, — 0%

Consider the problem of forecasting Y; using data on Y,_j, Y ,, .

Let f,_; denote some forecast of Y, where the subscript t — 1 on f
indicates that the forecast is a function of data through date 1 — 1. Let
E[(Y, - f_)*1Y,_;, Y,_, . . . ] be the conditional mean squared error of
the forecast f,_;, conditional on Y observed through date + — 1. Show that

12.6

C.

Exercise

the conditional mean squared forecast error is minirmized wh
Y, oy, where Y], = E(Y[ Y. Y, 5, ... ). (Hint: Extend che 1
part (a) to conditional expectations.)

Show that the errors u, of an AR (p) (Equation (12.14) in Ker

cept 12.3) are serially uncorrelated. (Hint: Use Equation (2.2

In this exercise you will conduct a Monte Carlo experiment that s

phenomenon of spurious regression discussed in Section 12.6. In

Carlo study, artificial data are generated using a computer, then thes

data are used to calculate the statistics being studied. This makes it |

compute the distribution of statistics for known models when mat

expressions for those distributions are complicated (as they are her

unknown. In this exercise, you will generate data so that two series,

are independently distributed random walks. The specific steps are

1.

Use your computer to generate a sequence of T'= 100 i.i.d.

normal random variables. Call these variables ¢, ¢, . . ., €
eand Y, =Y +¢forr=23,...,100.
Use your computer to generate a New sequence, a;, s, . . .,

100 i.i.d. standard normal random variables. Set X; = 4; and
+afort=23,...,100.

Regress Y, onto a constant and X,. Compute the OLS estims
regression R?, and the (homoskedastic-only) t-statistic testing
hypothesis that B, (the coefficient on X)) is zero.

Use this algorithm to answer the following questions:

a.

Run the algorithm (i)—(iii) once. Use the t-statistic from (iii)
the null hypothesis that 8, = 0 using the usual 5% critical val
1.96. What is the R? of your regression?

Repeat (a) 1,000 times, saving each value of R? and the t-sta
Construct a histogram of the R? and t-statistic. What are the
and 95% percentiles of the distributions of the R? and the t-s
In what fraction of your 1,000 simulated data sets does the t-
exceed 1.96 in absolute value?

Repeat (b) for different numbers of observations, for example 7
and T = 200. As the sample size increases, does the fraction of t
you reject the null hypothesis approach 5%, as it should because
generated Y and X to be independently distributed? IDoes this f
seem to approach some other limit as T gets large? What is that
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APPENDIX

12.1

APPENDIX

12.2

Time Series Data Used in Chapter 12

Macroeconomic time series data for the United States are collected and published by
various government agencies. The U.S. Consumer Price Index is measured using
monthly surveys and is compiled by the Bureau of Labor Statistics (BLS). The unem-
ployment rate is computed from the BLS’s Current Population Survey (see Appendix
3.1). The quarterly data used here were computed by averaging the monthly values.
The Federal Funds rate data are the monthly average of daily rates as reported by the
Federal Reserve and the dollar-pound exchange rate data are the monthly average of
daily rates; both are for the final month in the quarter. Japanese real GDP data were
obtained from the OECD. The daily percentage change in the NYSE Composite Index
was computed as 100AIn(NYSE,), where NYSE, is the value of the index at the daily
close of the New York Stock Exchange; because the stock exchange is not open on
weekends and holidays, the time period of analysis is a business day. These and thou-
sands of other economic time series are freely available on the websites maintained by

various data collecting agencies.

Stationarity in the AR(1) Model

This appendix shows that, if || < 1 and u, is stationary, then Y, is stationary. Recall
from Key Concept 12.5 that the time series variable Y] is stationary if the joint distrib-
ution of (Y., ..., Y,, ) does not depend on 5. To mqnt::m the argument, we show
this formally for T'= 2 under the simplifying assumptions that f, = 0 and {u,} are i.i.d.
N(, ¢?).

The first step is deriving an expression for Y, in terms of the u/5. Because 8, =0, Equa-

tion (12.8) implies that Y, =8,Y,, + . m:wﬂ:c:zm

yields Y, = §,(8,Y.»
step yields Y, = m Y.+ P t,_, + By, + u, and continuing indefinitely yields

= B,Y, 5 + u, into this expression

+ :T_v +u =B+ B, + o, OOEEEBW this substitution another

oo

Yy=u,+ By + B, P+ .. = ME:TN.. (12.37)

i=0

APPENDIX

12.3

Stationarity in the AR{p) Model

Thus Y, is a weighted average of current and past us. Because the 1,5 are no
distributed and because the weighted average of normal random variables is norm
tion 2.6), Y., and Y, have a bivariate normal distribution. Recall frorm Section
the bivariate normal distribution is completely determined by the means of the tw
ables, their variances, and their covariance. Thus, to show that Y, is stationary, we
show that the means, variances, and covariance of (Y,_,Y,,,) do not depend o
extension of the argument used below can be used to show that the distribution «
Y5 ..., Y, ,) does not depend on S

The means and variances of Y,,, and Y,,, can be computed using Equation |

with the mcvmniwa s+ 1 ors + 2 replacing 1. First, because E(u,) = O for all ¢,

E(Spin_) = SPE

i=it Pl

ular do not amvm:a on s. Second, var(Y;) = SﬂAMP u_;) = MAFV <w2:T,V = QQM

62/(1 — B3), where the final equality follows from the fact that, if la|<1 Mn =1/(1-
var(Y,, ) = var(Y,,,) = 62 /(1 — B7), which does not depend on s as _o:m as |B|< 1.

5 s

because Y, = BY + sy, cov(Y 1, Yop) = E(Y 1Y) = EY(BY +

s 5

Bvar(Y, ) + cov(Y, u,) = Bvar(Y, ) = B,02/(1 = B}). The covariance does not

§ 5

=0, so the mean of Y, i_ and Y,,, are both zero and in

on s, so Y., and Y,,, have a joint probability distribution that does not depend o
is, their joint distribution is stationary. If |f;|> 1, this calculation breaks down bec:
infinite sum in Equation (12.37) does not converge and the variance of Y] is infinit
Y, is stationary if 3] < 1, but not if §; = 1.

The preceding argument was made under the assumptions that §; = 0 and ,
mally distributed. If B, # 0, the argument is similar except that the means of ¥, a
are B,/(1 — B,) and Equation (12.37) must be modified for this nonzero mea
assumption that u, is i.i.d. normal can be replaced with the assumption that «, is
ary with a finite variance because, by Equation (12.37), Y; can still be expressed as
tion of current and past 4,5, so the distribution of Y] is stationary as long as the distr
of u, is stationary and the infinite sum expression in Equation (12.37) is meaningfi

sense that it converges, which requires || < 1.

Lag Operator Notation

The notation in this and the next two chapters is streamlined considerably by a
what is known as lag operator notation. Let L denote the lag operator, wh

the property that it transforms a variable into its lag. That is, the lag operator L
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property, LY, = Y. By applying the lag operator twice, one obtains the second lag: 12Y,
= L(LY) = LY, | = ¥_,. More generally, by applying the lag operator j times, one obtains
the /™ lag. In summary, the lag operator has the property that

Ly, =Y, (12.38)

! =1

L2Y, = Y, and L'Y, = Y_,.

The lag operator notation permits us to define the lag polynomial, which is a poly-

nomial in the lag operator:

al) = ay + aL + a,1” + (12.39)

where 4, . . ., a, are the coefficients of the lag polynomial and IV = 1. The degree of the

lag polynomial a(L) in Equation (12.39) is p. Multiplying Y, by a(L) yields

r v ) )
aL)Y, = | Xall}Y, = 2aUY) = ZaY, = a¥ +ay + -0 T a¥ (12.40)

=0 =0 i=o
The expression in Equation (12.40) implies that the AR (p) model in Equation (12.14)

can be written compactly as

a(L)Y, = By + 1, (12.41)

where ay = Tand g, =, forj=1,....p. Similarly, an ADL(p,q) model can be written
a(l)Y, = By + (L)X, + 1, (12.42)

where a(L) is a lag polynomial of degree p (with a, = 1) and ¢(L) is a lag polynomial
of degree g — 1.

ARMA Models

The autoregressive—moving average (ARMA) model extends the autoregressive
model by modeling u, as serially correlated, specifically, as being a distributed lag (or “mov-

ing average”) of another unobserved error term. That is, in the lag operator notation of

APPENDIX

12.5

BIC

Consistency of the BIC Lag Length Esti

Appendix 12.3, let u, = b(L)e,, where ¢, is a serially uncorrelated, unobservec

able, and b(L) 1s a lag polynonual of degree ¢ with b, = 1. Then the ARMZ
a(L)Y,; = i, + b(Lje,,

where a(L) is a lag polynomial of degree p with a, = 1.

Both AR and ARMA models can be thought of as ways to approxima
variances of Y, The reason for this is that any stationary time series Y; wit
ance can be written either as an AR or as a MA with a serially uncorrelat
although the AR or MA models might need to have an infinite order. The s
results, that a stationary process can be written in moving average form, is
Wold decomposition theorem, and is one of the fundamental results undes
ory of stationary time series analysis.

As a theoretical matter, the families of AR, MA, and ARMA models ar
as long as the lag polynomials have a sufficiently high degree. Still, in some
covariances can be better approximated using an ARMA(p,q) model with
than by a pure AR model with only a few lags. As a practical matter, how
mation of ARMA models is more difficult than the estimation of AR mode!

models are more difficult to extend to additional regressors than are AR n

Consistency of the BIC Lag Length Esti

This appendix summarizes the argument that the BIC estimator of the la
an autoregression is correct in large samples, that is, Pr(p = p) —> 1. This

the AIC estimator, which can overestimate p even in large samples.

First consider the special case that the BIC is used to choose among a
with zero, one, or two lags, when the true lag length is one. It is shov
(i) Pr(p = 0) — 0, and (ii) Pr(p = 2) —> 0, from which it follows that P
The extension of this argument to the general case of searching over 0 <
showing that Pr(p < p) —> 0 and Pr(p > p) —> 0; the strategy for showi

same as used in (i) and (ii) below.
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AlC

Proof of (i) and (ii)

Proof of (i). To choose p = 0 it must be the case that BIC(0) < BIC(1); that
is. BIC(0) — BIC(1) < 0. Now BIC() — BIC(1) = [In(SSR(O)/T) + (InT)/T] -
[In(SSR(1)/T) + 20nT)/T] = n(SSRO)/ T} — In(SSR(}/T) — (nT)/T. Now
SSR(O)/T = [(T= 1)/ T —= a2, SSROY/T 5> 7,

these pieces together, BIC(0) — BIC(1) —> Ina{ — Ing? > 0 because o7 > a2 It follows
that Pr[BIC(0) < BIC(1)] —> 0, so that Pr(p = 0) —> 0.

and (InT)/T —> 0; putting

Proof of (ii). To choose p = 2 it must be the case that BIC(2) < BIC(1), or
BIC(2) — BIC(1) < 0. Now T[BIC(2) — BIC(1)] = T{[In(SSR(2)/T) + 3(InT)/T] -
[In(SSR(1)/T) + 2(InT)/ T]} = TIn[SSR(2)/SSR(1)] + InT = — TIn[1 + F/(T - 2)] +
InT, where F = [SSR(1) ~ SSR(2)]/[SSR(2)/{T — 2)] is the “rule of thumb” F-statistic
(Appendix 5.3} testing the null hypothesis that 8, = 0 in the AR (2). If 4, is homoskedastic,
F has a y{ asymptotic distribution; if not, it has some other asymptotic distribution. Thus
Pr[BIC(2) — BIC(1) < 0] = Pr[T(BIC(2) - BIC(1)) < 0] = Pr{~TIn[t + F/(T-2)] +
(InT) <0} =Pr{TIn[l + F/(T=2)] >InT}. As Tincreases, T'ln[1 + F/(T-2)]-F —
0 (a consequence of the logarithmic approximation In(1 + 4) = a, which becomes exact as
a —> 0). Thus Pr[BIC(2) -~ BIC(1) < 0] — Pr(F > InT) — 0, so that Pr(p = 2) —> 0.

In the special case of an AR (1) when zero, one, or two lags are considered, (i) applies to
the AIC where the term InT is replaced by 2, so Pr(p = 0) —> 0. All the steps in the
proof of (ii) for the BIC also apply to the AIC, with the modification that InT is replaced by
2; thus Pr(AIC(2) — AIC(1) <0) —> Pr(F> 2) > 0. If u, is homoskedastic, Pr(F > 2) —>
Pr(y2>2) = 0.16, so that Pr (p = 2) —> 0.16. In general, when p is chosen using the AIC,
Pr(p < p) —> O but Pr(p > p) tends to a positive number, so Pr (p = p) does not tend to 1.

CHAPTER ._ “w

Estimation of Dynamic

Causal Effects

n the 1983 movie Tading Places, the characters played by Dan Aykrc

Eddie Murphy used inside information on how well Florida orange
fared the winter to make millions in the orange juice concentrate futus
market, a market for contracts to buy or sell large quantities of orange
concentrate at a specified price on a future date. In real life, traders in
Jjuice futures in fact do pay close attention to the weather in Florida: fr
Florida kill Florida oranges, the source of almost all frozen orange juic
concentrate made in the United States, so its supply falls and the price
But precisely how much does the price rise when the weather mn Flori
sour? Does the price rise all at once, or are there delays; if so, for how
These are questions that real life traders in orange juice futures need to
if they want to succeed.

This chapter takes up the problem of estimating the effect on Y now
the future of a change in X, that is, the dynamic causal effect on Y of
in X. What, for example, is the effect on the path of orange juice prices
of a freezing spell in Florida? The starting point for modeling and estima
dynamic causal effects is the so-called distributed lag regression model, i
Y, is expressed as a function of current and past values of X,. Section 13.°
introduces the distributed lag model in the context of estimating the effe
weather in Florida on the price of orange juice concentrate over time. S
13.2 takes a closer look at what, precisely, is meant by a dynamic causal «

One way to estimate dynamic causal effects is to estimate the coefl
the distributed lag regression model using OLS. As discussed in Sectiol
this estimator is consistent if the regression error has a conditional mea

given current and past values of X, a condition that {as in Chapter 10)
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referred to as exogeneity. Because the omitted determinants of Y, are correlated

over time—that is, because they are serially correlated—the error term in the
distributed lag model can be serially correlated. This possibility in turn requires
new, “heteroskedasticity- and autocorrelation-consistent” (HAC) formulas for
standard errors, the topic of Section 13.4.

A second way to estimate dynamic causal effects, discussed in Section 13.5,
is to model the serial correlation in the error term as an autoregression and
then to use this autoregressive model to derive an autoregressive distributed lag
(ADL) model. Alternatively, the coefficients of the original distributed lag
model can be estimated by generalized least squares (GLS). Both the ADL and
GLS methods, however, require a stronger version of exogeneity than we have
used so far: strict exogeneity, under which the regression errors have a
conditional mean of zero given past, present, and future values of X.

Section 13.6 provides a more complete analysis of the relationship between
orange juice prices and the weather. In this application, the weather is beyond
human control and thus is exogenous (although, as discussed in Section 13.6,
economic theory suggests that it is not necessarily strictly exogenous). Because
exogeneity is necessary for estimating dynamic causal effects, Section 13.7 examines
this assumption in several applications taken from macroeconomics and finance.

This chapter builds on the material in Sections 12.1-12.4 but, with the
exception of a subsection (that can be skipped) of the empirical analysis in

Section 13.6, does not require the material in Sections 12.5-12.8.

13.1 An Initial Taste of the Orange Juice Data

Orlando, the center of Florida’s orange growing region, is normally sunny and
warm. But now and then there is a cold snap, and if temperatures drop below
freezing for too long the trees drop many of their oranges and, if the freeze is

severe, the trees freeze. Following a freeze, the supply of orange juice concentrate

13.1  AnInitial Taste of the Orange Juice Data

falls and its price rises. The timing of the price increases is rather comj
however. Orange juice concentrate is a “durable,” or storable, commodity
it can be stored in its frozen state, albeit at some cost (to run the frecze
the price of orange juice concentrate depends not only on current supply
on expectations of future m:wﬁ? ‘A freeze today means that future supplies
centrate will be low, but because concentrate currently in storage can be
meet either current or future demand, the price of existing concentrate ris
But precisely how much does the price of concentrate rise when there is
The answer to this question is of interest not just to orange juice traders b
generally to economists interested in studying the operations of moder
modity markets. To learn how the price of orange juice changes in res
weather conditions, we must analyze data on orange juice prices and the
Monthly data on the price of frozen orange juice concentrate, its 1
percentage change, and temperatures in the orange growing region of
from January 1950 to December 2000 are plotted in Figure 13.1. The pri
ted in Figure 13.1a, is a measure of the average real price of frozen oran
concentrate paid by wholesalers. This price was deflated by the overall f
price index for finished goods to eliminate the eftects of overall price 1
The percentage price change plotted in Figure 13.1b is the change in t
over the month. The temperature data plotted in Figure 13.1¢ are the nu
“freezing degree days” at the Orlando, Florida, airport, calculated as the
the number of degrees Fahrenheit that the minimum temperature fall
freezing in a given day over all days in the month; for example, in Novemt
the airport temperature dropped below freezing twice, on the 25% (31°)
the 29™ (29°) for a total of four freezing degree days (32— 31) + (32 —Z
(The data are described in more detail in Appendix 13.1.) As you can see |
paring the panels in Figure 13.1, the price of orange juice concentrate |
swings, some of which appear to be associated with cold weather in Flo
We begin our quantitative analysis of the relationship between oran
price and the weather by using a regression to estimate the amount b
orange juice prices rise when the weather turns cold. The dependent v:
the percentage change in the price over that month (%ChgP, where %
100 X Aln(PY) and PY is the real price of orange juice). The regressor is t
ber of freezing degree days during that month (FDD,). This regtessior
mated using monthly data from January 1950 to December 2000 (a
regressions in this chapter), for a total of T'= 612 observations:

GChgP = ~0.40 + 0.47FDD,
(0.22) (0.13)
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_"_chm‘ 13.1 Orange hc”nm v:nmm and Florida Weather, _omom‘mooo‘ T umnp:;,m the ?,T:.mmﬁw: in Equation (13.1) S.m_:ac.ﬁ o::w; contemy
measure of the weather, 1t does not capture any hngering effects of the ¢
Price Index Percent on the orange juice price over the coming months, To capture these we
= MMHH , consider the effect on prices of both contemporancous and lagged values
200 F 30 which in turn can be done by mmmsﬁzazﬁ the regression in Equation (13
150 _N_,“ : ;r for example, lagged values of FDD over the previous six months:
0 b J:.?% :
I 0 _ NN g&? GChgD = —0.65 + 0.47EDD, + 0.14EDD,_, + 0.061:DD,_,
501 il | , (0.23) (0.14) (0.08) (0.06)
1950 1900 1970 1980 1990 L_&% 160 1970 1980 1990 2000 | W + 0.07FDD,_ + 0.03FDD,_, + 0.05FDD_; + 0.05FDD,_,.
Year Year " (0.05) (0.03) (0.03) (0.04)
(a) Price Index for Frozen Concentrated Orange Juice (b) Percent Change in the Price of
Frozen Concentrated Orange Juice Equation (13.2) is a distributed lag regression. The coefficient on FDD,
Freezing J,U:a\mnmm Days tion (13.2) estimates the percentage increase in prices over the course of th
5L in which the freeze occurs; an additional freezing degree day is estimated tc
30 m , prices that month by 0.47%. The coefhicient on the first lag of FDD,, FDI
25+ , k mates the percentage increase in prices arising from a freezing degree day in
WWH [ ceding month, the coeflicient on the second lag estimates the effect of a
ok degree day two months ago, and so forth. Equivalently, the coefficient on
5 i :—_ , E E _ Ll lag of FDD mmczsnm.m the effect omw :Ew_:nﬂcmmm.ms FDD one Eo.znr after ¢
%wmo oo : R o , occurs. Thus the estimated coefficients in Equation (13.2) are estimates of ¢
Year " of a unit increase in FDD, on current and future values of %ChgP, that is,
(€) Monthly Freezing Degree Days in Orlando, Florida estimates of the dynamic effect of FDD, on %ChgP. For example, the fo
There have been large month-to-month changes in the price of frozen concentrated orange juice. Many of the large , ing degree days in November 1950 are estimated to have increased orar
movements coincide with freezing weather in Orlando, home of the orange groves. prices by 1.88% during November 1950, by an additional 0.56% (= 4 X
December 1950, by an additional 0.24% (= 4 X 0.06) in January 1951, and

nic Ceusal Effects

The standard errors reported in this section are not the usual OLS standard errors, 13.2

but rather are heteroskedasticity- and autocorrelation-consistent (HAC) standard

errors that are appropriate when the error term and regressors are autocorrelated. Before learning more about the tools for estimating dynamic causal ef

HAC standard errors are discussed in Section 13.4, and for now they are used should spend a moment thinking about what, precisely, is meant by a

without further explanation. causal effect. Having a clear idea about what a dynamic causal effect is 1

According to this regression, an additional freezing degree day during a month clearer understanding of the conditions under which it can be estimatec

mncreases the price of orange juice concentrate over that month by 0.47%. In a

month with four freezing degree days, such as November 1950, the price of wusal Effects and Time Series Data
orange juice concentrate is estimated to have increased by 1.88% (4 X 0.47% = Section 1.2 defined a causal cffect as the outcome of an ideal randomi:

1.88%), relative to a month with no days below freezing. trolled experiment: when a horticulturalist randomly applies fertilizer
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tomato plots but not others and then measures the yield, the expected difference
in yield between the fertilized and unfertilized plots is the effect on tomato yield
of the fertilizer. This concept of an experiment, however, is one in which there
are multiple subjects (multiple tomato plots or multiple people), so the data are
cither cross-sectional (the tomato yield at the end of the harvest) or panel data
(individual incomes before and after an experimental job training program). By
having multiple subjects, it is possible to have both treatment and control groups
and thereby to estimate the causal effect of the treatment.

In time series applications, this definition of causal effects in terms of an ideal
randomized controlled experiment needs to be modified. To be concrete, consider
an important problem of macroeconomics: estimating the effect of an unantici-
pated change in the short-term interest rate on the current and future economic
activity in a given country, as measured by GDP. Taken literally, the randomized
controlled experiment of Section 1.2 would entail randomly assigning different
cconomies to treatment and control groups. The central banks in the treatment
group would apply the treatment of a random interest rate change, while those in
the control group would apply no such random changes; for both groups, eco-
nomic activity (for example, GDP) would be measured over the next few years.
But what if we are interested in estimating this effect for a specific country, say the
United States? Then this experiment would entail having different “copies” of the
United States as subjects, and assigning some copies to the treatment and some to
the control group. Obviously, this “parallel universes” experiment is infeasible.

Instead, in time series data it is useful to think of a randomized controlled
experiment consisting of the same subject (e.g., the U.S. economy) being given
different treatments (randomly chosen changes in interest rates) at different points
in time (the 1970s, the 1980s, and so forth). In this framework, the single subject
at different times plays the role of both treatment and control group: sometimes
the Fed changes the interest rate while at other times it does not. Because data
are collected over time, it is possible to measure the dynamic causal effect, that is,
the time path of the effect on the outcome of interest of the treatment. For exam-
ple, a surprise increase in the short-term interest rate of two percentage points,
sustained for one quarter, might initially have a negligible effect on output; after
two quarters GDP growth might slow, with the greatest slowdown after one and
one-half years; then over the next two years, GDP growth might return to nor-
mal. This time path of causal effects is the dynamic causal effect on GDP growth
of a surprise change in the interest rate.

As a second example, consider the causal effect on orange juice price changes
of a freezing degree day. It is possible to imagine a variety of hypothetical exper-
iments, each yielding a different causal effect. One experiment would be to

13.2  Dynamic Causal Effects

change the weather in the Florida orange groves, holding constant weathe
where—for example, holding constant weather in the Texas grapefruit grov
in other citrus fruit regions. This experiment would measure a partial effect,
ing other weather constant. A second experiment might change the weat
all the regions, where the “treatment” is application of overall weather pa
If weather is correlated across regions for competing crops, then thes
dynamic causal effects differ. In this chapter, we consider the causal effect
latter experiment, that is, the causal effect of applying general weather pa
This corresponds to measuring the dynamic effect on prices of a change in I

weather, not holding constant weather in other agricultural regions.

Dynamic effects and the distributed lag model. Because dynamic
necessarily occur over time, the econometric model used to estimate dy
causal effects needs to incorporate lags. To do so, Y, can be expressed as a d
uted lag of current and r past values of X

Yi=P0o+ BiXi+ BoXg + B X+ o B, X+

where u, is an error term that includes measurement error in Y, and the ¢
omitted determinants of Y,. The model in Equation (13.3) is called the di
uted lag model relating X,, and r of its lags, to Y,

As an illustration of Equation (13.3), consider a modified version
tomato/fertilizer experiment: because fertilizer applied today might remain
ground in future years, the horticulturalist wants to determine the effect on t
yield over time of applying fertilizer. Accordingly, she designs a three-year e
ment and randomly divides her plots into four groups: the first is fertilized 1
the first year; the second is fertilized in only the second year; the third is fer
in only the third year; and the fourth, the control group, is never fertilized. -
toes are grown annually in each plot, and the third-year harvest is weighec

three treatment groups are denoted by the binary variables X, ,, X

17 al

where t represents the third year (the year in which the harvest is weighed
;= 1iftl
was fertilized one year earlier, and X, = 1 if the plot was fertilized in the fina
In the context of Equation (13.3) (which applies to a single plot), the effect of
fertilized in the final year is 3, the effect of being fertilized one year earlies
and the effect of being fertilized two years earlier is f3;. If the effect of fertil

= 1 if the plot is in the first group (fertilized two years earlier), X

-

greatest in the year it is applied, then fi; would be larger than f, and f3;.
More generally, the coetlicient on the contemporaneous value of X,, 5,

contemporaneous or immediate effect of a unit change in X, on Y, The coet
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on X, |, f}5, is the effect on Y, of a unit change in X, or, maciﬁ_n:z.% the m:wmﬁ on
Y., of a unit change in X;; that is, 3, 13 the effect of a unit ar\w:mm M.: X on w.o:w
period later. In general, the coeflicient on X, s the effect of a unit change in \x
on Y after i periods. The dynamic causal effect is the etfect of a change in X, on ¥,
Y.y, Yiia, and so forth, that is, it is the sequence of causal effects on current w:a
future values of Y. Thus, in the context of the distributed lag model in Equation

(13.3), the dynamic causal effect is the sequence of coefficients 8, By, . . ., B4y-

Implications for empirical time series analysis. This formulation of
dynamic causal effects in time series data as the expected outcome of an experi-
ment in which different treatment levels are repeatedly applied to the same sub-
ject has two implications for empirical attempts to measure the dynamic S:w,m_
effect with observational time series data. The first implication is that the dynamic
causal effect should not change over the sample on which we have data. This in
turn is implied by the data being jointly stationary (Key Concept 12.5). As dis-
cussed in Section 12.7, the hypothesis that a population regression function is
stable over time can be tested using the QLR test for a break, in which case it 1s
possible to estimate the dynamic causal effect in different subsamples. ‘::w mmmosm
implication is that X must be uncorrelated with the error term, and it is to this

implication that we now turn.

Two Types of Exogeneity

Section 10.1 defined an “exogenous” variable to be a variable that is uncorrefated
with the regression error term and an “endogenous” variable to be a variable that
is correlated with the error term. This terminology traces to models with multi-
ple equations, in which an “endogenous” variable is determined within the model
while an “exogenous” variable is determined outside the model. Loosely speak-
ing, if we are to estimate dynamic causal effects using the distributed lag model
in Equation (13.3), the regressors (the X's) must be uncorrelated with the error
term. Thus, X must be exogenous. Because we are working with time series data,
however, we need to refine the definitions of exogeneity. In fact, there are two
different concepts of exogeneity that we use here.

The first concept of exogeneity is that the error term has a conditional mean of
zero given current and all past values of X,, that is, that E(u,| X, X_j, X, 5, ... ) =0.
This modifies the standard conditional mean assumption for multiple regression
with cross=sectional data (Assumption 1 in Key Concept 5.4), which requires only
that 1, has a conditional mean of zero given the included regressors; that w,m,A that
E(|X, X_,,..., X_)=0. Including all lagged values of X, in the conditional

13.2 Dynamic Causal Effects

expectation implies that all the more distant causal effects—all the causal |
beyond lag r—are zero. Thus, under this assumption, the 7 distributed lag ¢
cients in Equation (13.3) constitute all of the nonzero dynamic causal eftect
can refer to this assumption—that E(,| X, X, ,, ... ) = O—as past and pr
exogeneity, but because of the similarity of this definition and the definit
exogeneity in Chapter 10, we just use the term exogeneity.

The second concept of exogeneity is that the error term has mean zero,

all past, present, and fiture values of X, thatis, that E(u,|. .., X,,,, D T

X2, - ) = 0. This is called strict exogeneity: for clarity, we also call it
present, and future exogeneity. The reason for introducing the conce
strict exogeneity is that, when X is strictly exogenous, there are more eff
estimators of dynamic causal effects than the OLS estimators of the coeffi
of the distributed lag regression in Equation (13.3).

The difference between exogeneity (past and present) and strict exoge
(past, present, and future) is that strict exogencity includes future values of
the conditional expectation. Thus, strict exogeneity implies exogeneity, bu
vice versa. One way to understand the difference between the two conce
to consider the implications of these definitions for correlations between 3
u. If Xis (past and present) exogenous, then u, is uncorrelated with curren
past values of X,. If X is strictly exogenous, then in addition 4, 1S UNCorre
with future values of X,. For example, if a change in Y, causes future values
to change, then X, is not strictly exogenous even though it might be (pas
present) exogenous.

As an illustration, consider the hypothetical multiyear tomato/fertilizer e:
iment described following Equation (3.3). Because the fertilizer is rands
applied in the hypothetical experiment, it is exogenous. Because tomato
today does not depend on the amount of fertilizer applied in the future, the
tilizer time series is also strictly exogenous.

As asecond illustration, consider the orange juice price example, in whi
is the monthly percentage change in orange juice prices and X, is the numb
freezing degree days in that month. From the perspective of orange juice mar
we can think of the weather—the number of freezing degree days—as if it
randomly assigned, in the sense that the weather is outside human control. I
effect of FDD is linear and if it has no effect on prices after r months, then it
lows that the weather is exogenous. But is the weather strictly exogenous? 1
conditional mean of u, given future FDD is nonzero, then FDD is not str
exogenous. To answer this question requires thinking carefully about w
precisely, is contained in . In particular, if O market partictpants use fore
of FDD when they decide how much they will buy or sell at a given price,
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13.1

Estimation of Dynamic Causal Effects

In the distributed lag model

Y, = f, + B X+ BX P Xt et B Xy + 1 (13.4)

there are two different types of exogeneity, that is, two different exogeneity
conditions:
Past and present exogeneity (exogeneity):

Eu|X, X, X, 5,...)=0; (13.5)
Past, present, and future exogeneity (strict exogeneity):

El. .., X Xt X Xts Xy - 2) = 0. (13.6)

If X is strictly exogenous it is exogenous, but exogeneity does not imply |

strict exogeneity. ;

13.3

Q] prices, and thus the error term u,, could incorporate information about future
FDD that would make u, a useful predictor of FDD. This means that u, will be
correlated with future values of FDD,. According to this logic, because u, includes
forecasts of future Florida weather, FDD would be (past and present) exogenous
but not strictly exogenous. The difference between this and the tomato/fertilizer
example is that, while tomato plants are unaffected by future fertilizing, OJ mar-
ket participants are influenced by forecasts of future Florida weather. We return
to the question of whether FDD is strictly exogenous when we analyze the orange
juice price data in more detail in Section 13.6.
The two definitions of exogeneity are summarized in Key Concept 13.1.

Estimation of Dynamic Causal Effects
with Exogenous Regressors

If X is exogenous, then its dynamic causal effect on Y can be estimated by OLS esti-
mation of the distributed lag regression in Equation (13.4). This section summa-
rizes the conditions under which these OLS estimators lead to valid statistical

inferences and introduces dynamic multipliers and cumulative dynamic multipliers.

13.3  Esfimation of Dynamic Causal Effects with Exogenous Regressors

The Distributed Lag Model Assumptions

The four assumptions of the distributed lag regression model are similar
four assumptions for the cross-sectional muldple regression model (Key C
5.4), modified for time series data.

The first assumption is that X'is exogenous, which extends the zero
tional mean assumption for cross-sectional data to include all lagged value:
As discussed in Section 13.2, this assumption implies that the r distributed lag
ficients in Equation (13.3) constitute all of the nonzero dynamic causal effe
this sense, the population regression function summarizes the entire dynamic
on Y of a change in X.

The second assumption has two parts: part (a) requires that the variable
a stationary distribution, and part (b} requires that they become indepen
distributed when the amount of time separating them becomes large
assumption 1s the same as the corresponding assumption for the AL mod:
second assumption in Key Concept 12.6), and the discussion of this assun
in Section 12.4 applies here as well.

The third assumption is that the variables have more than eight nonzero
moments. This is stronger than the assumption of four finite moments that |
elsewhere in this book. As discussed in Section 13.4, this stronger assump
used in the mathematics behind the HAC variance estimator.

The fourth assumption, which is the same as in the cross-sectional m:
regression model, is that there is no perfect multicollinearity.

The distributed lag regression model and assumptions are summarized i
Concept 13.2.

Extension to additional X'’s. The distributed lag model extends direc
multiple X’s: the additional X’s and their lags are simply included as regr
in the distributed lag regression, and the assumptions in Key Concept 13
modified to include these additional regressors. Although the extension tc
tiple X’s is conceptually straightforward, it complicates the notation, obsc
the main ideas of estimation and inference in the distributed lag model. Fc
reason, the case of multiple X's is not treated explicitly in this chapter but

as a straightforward extension of the distributed lag model with a single .

Autocorrelated u,, Standard Errors,
and Inference

In the distributed lag regression model, the error term u, can be autocorre

that is, u

1
, can be correlated with its lagged values. This autocorrelation
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The distributed lag model is given in Key Concept 13.1 (Equation (13.4)), where

1. Xis exogenous, that is, E(u,| X, X, X, 5, . .. y=0;
—AN% 2. (a) The random variables Y, and X, have a stationary distribution, and
Y, X,) and (Y_; X, ;) become independent as j gets large;

e -,

Concept b

w N 3. Y and X, have more than eight nonzero, finite moments; and
13.

4. There is no perfect multicollinearity.

because, in time series data, the omitted factors included in #, can themselves
be serially correlated. For example, suppose that the demand for orange juice
also depends on income, so that one factor that influences the price of orange
juice is income, specifically, the aggregate income of potential orange juice con-
sumers. Then aggregate income is an omitted variable in the distributed lag
regression of orange juice price changes against freezing degree days. Aggregate
income, however, is serially correlated: income tends to fall in recessions and
rise in expansions. Thus, income is serially correlated, and, because it is part of
the error term, u, will be serially correlated. This example is typical: because
omitted determinants of Y are themselves serially correlated, in general u, in the
distributed lag model will be correlated.

The autocorrelation of u, does not aftect the consistency of OLS, nor does it
introduce bias. If, however, the errors are autocorrelated, then in general the usual
OLS standard errors are inconsistent and a different formula must be used. Thus
correlation of the errors is analogous to heteroskedasticity: the homoskedasticity-
only standard errors are “wrong” when the errors are in fact heteroskedastic, in
the sense that using homoskedasticity-only standard errors results in misleading
statistical inferences when the errors are heteroskedastic. Similarly, when the errors
are serially correlated, standard errors predicated upon i.i.d. errors are “wrong” in
the sense that they result in misleading statistical inferences. The solution to this
problem is to use heteroskedasticity- and autocorrelation-consistent (HAC) stan-

dard errors, the topic of Section 13.4.

13.3  Estimation of Dynamic Causal Effects with Exogenous Regressors

Dynamic Multipliers

and Cumulative Dynamic Multipliers

Another name for the dynamic causal effect is the dynamic multiplier. Th,
lative dynamic multipliers are the cumulative causal eftects, up to a given
the cumulative dynamic ::::v.:maw measure the cumulative effect o1
change in X

Dynamic multipliers. The effect of a unit change in X on Y after h
which is §,,; in Equation (13.4), is called the h-period dynamic mul
Thus, the dynamic multipliers relating X to Y are the coefficients on X
lags in Equation (13.4). For example, $3, is the one-period dynamic muld
is the two-period dynamic multiplier, and so forth. In this terminology, tl
period (or contemporaneous) dynamic multiplier, or impact effect, is
effect on Y of a change in X in the same period.

Because the dynamic multipliers are estimated by the OLS regressic
ficients, their standard errors are the HAC standard errors of the OLS
sion coefficients.

Cumulative dynamic multipliers. The li-period cumulative dy
multiplier is the cumulative effect of a unit change in X on Y over the
periods. Thus, the cumulative dynamic multipliers are the cumulative sur
dynamic multipliers. In terms of the coefficients of the distributed lag re;
in Equation (13.4), the zero-period cumulative multiplier is 3, the one
cumulative multiplier is §, + ,, and the h-period cumulative dynamic m
8B+ By + -+ 4 B4 The sum of all the individual dynamic multiplie
Bo+ - + B, is the cumulative long-run effect on Y of a change in 3
called the long-run cumulative dynamic multiplier.

For example, consider the regression in Equation (13.2). The immedia
of an additional freezing degree day is that the price of orange juice conc
rises by 0.47%. The cumulative effect of a price change over the next n
the sum of the impact effect and the dynamic effect one month ahead; t
cumulative effect on prices is the initial increase of 0.47% plus the sub:
smaller increase of 0.14% for a total of 0.61%. Similarly, the cumulative d
multiplier over two months is 0.47% + 0.14% + 0.06% = 0.67%.

The cumulative dynamic multipliers can be estimated directly using a m
tion of the distributed lag regression in Equation (13.4). This modified regr
\vvx =0, + OAX + HAX  +HAX L+ - +8AX L +6.,, X+,

- ! - r+1 -

L
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13.4

The coefficients in Equation (13.7), 6,, d,, . . ., 6,y ar¢c in fact the cumula-
tive dynamic multipliers. This can be shown by a bit of algebra (Exercise 13.5),
which demonstrates that the population regressions in Equations (13.7) and
(13.4) are equivalent, where 8, = 3, 6; = 1, 6, = B, + B, 03 = f; + B, + f33, and
so forth. The coefficient o:/XTx 8,1, 1s the long-run cumulative dynamic mul-
uplier, that is, 8, = ;+ B, + 3+ - - - + f,,,- Moreover, the OLS estimators of
the coefficients in Equation (13.7) are the same as the corresponding cumulative
sum of the QLS estimators in Equation (13.4). For example, %N = .m_ + mw‘ The
main benefit of estimating the cumulative dynamic multipliers using the speci-
fication in Equation (13.7) is that, because the OLS estimators of the regression
coefficients are estimators of the cumulative dynamic multipliers, the HAC stan-
dard errors of the coefficients in Equation (13.7) are the HAC standard errors of

the cumulative dynamic multipliers.

Heteroskedasticity- and Autocorrelation-
Consistent Standard Errors

If the error term u, is autocorrelated, then OLS is consistent, but in general
the usual OLS standard errors for cross-sectional data are not. This means that
conventional statistical inferences—hypothesis tests and confidence intervals—
based on the usual OLS standard errors will, in general, be misleading. For
example, confidence intervals constructed as the OLS estimator +£1.96 con-
ventional standard errors need not contain the true value in 95% of repeated
samples, even if the sample size is large. This section begins with a derivation
of the correct formula for the variance of the OLS estimator with autocorre-
lated errors, then turns to heteroskedasticity and autocorrelation-consistent

standard errors.

Distribution of the OLS Estimator
with Autocorrelated Errors

To keep things simple, consider the OLS estimator B, in the distributed lag
regression model with no lags, that is, the linear regression model with a single

regressor X

Y, =, + X + 4 (13.8)

13.4  Heteroskedasticity- and Autocorrelation-Consistent Standard Errors

where the assumptions of Key Concept 13.2 are satisfied. This section shor
the variance of §, can be written as the product of two terms: the exXpress;
var(f3,), applicable if u, is not serially correlated, times a correction factor tha
from the autocorrelation in u, or, more precisely, the autocorrelation in (X, -

As shown in Appendix 4.3, the formula for the OLS estimator f3, in Key
cept 4.2 can be rewritten as

where Equation (13.9) is Equation (4.51) with a mrmwma of notation so that |
are replaced by rand T. Because X N Uy and wM X, = X)? BN 62, in
samples 8, — 3, is approximately given by -

1N RS
T2Ximmn g3
A = L=
Bi— B = > =5 = hwv (
Ox Ox ox
I s
where v, = (X, ~ 1ry)u, and ¥ = 2> . Thus,
e ot bt e e+ =t
<mnAFv = var| lﬂ\m = ﬁm!v. (
Ox (o)

If v, is 1.1.d.—as assumed for cross-sectional data in Key Concept 4.3-
var(v) = var(y,)/ T and the formula for the variance o:w_ from Key Conce
applies. If, however, u, and X, are not independently distributed over time
in general v, will be serially correlated, so the formula for the variance of i
Key Concept 4.4 does not apply. Instead, if v, is serially correlated, the va
of 7 is given by

var(v) = var[(v; + v, + - -+ + 1)/ T]

i

= [var(v)) + cov(v,»,) + - + cov(v,vp

+ cov(vy,vy) + var(vy) + - -+ + var(vp)]/T? (
[Tvar(y) + 2(T = Dcov(y,v_,) + 2(T = 2)cov(y,v, ,)

+ o+ 2cov(uy_p )]/ T

|
~|<
5
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where

:H:NM A, (13.13)

where p = corr(v, v, ). In large samples, f3-tends to the limit, - =1+ QM\V
Combining the expressions in Equation (13.10) for F and Equaton Cw;wv
for var(?) gives the formula for the variance omP when vy, 15 autocorrelated:

2

S&yT m Qv ? :wzv

where f; is given in Equation (13.13).

Equation (13.14) expresses the variance of B, as the product of two terms. The
first, in square brackets, is the formula for the variance o:W_ given in Key Con-
cept 4.4, which applies in the absence of serial correlation. The second is the fac-
tor f, which adjusts this formula for serial correlation. Because of this additional
factor f; in Equation (13.14), the OLS standard errors computed using the for-
mula in Key Concept 4.4 are incorrect if the errors are serially correlated: more
precisely, if v, = (X, — g,)u, is serially correlated, the estimator of the variance is

oft by the factor f;.

HAC Standard Errors

If the factor f, defined in Equation (13.13), was known, then the variance ommH
could be estimated by multiplying the usual cross-sectional estimator of the vari-
ance by f,. This factor, however, depends on the unknown wEOno:mUao:m of
v, 50 it must be estimated. The estimator of the variance of f; that incorporates
this adjustment is consistent whether or not there is heteroskedasticity and
whether or not v, is autocorrelated. Accordingly, this estimator is called the
heteroskedasticity- and autocorrelation-consistent (HAC) estimator of the
variance of f3;, and the square root of the HAC variance estimator is the HAC

standard error Omm_.

The HAC variance formula. The heteroskedasticity- and autocorrelation-
consistent estimator of the variance of 3 is

(13.15)

13.4 Im__mﬂomr&amzn_.v\. and Autocorrelation-Consistent Standard Errors .

~

where & o 1s the estimator of the variance omm in the absence of serial corre
tion, given in Equation (4.19), and érﬁm\ﬂ 15 an estimator of the factor f;
Equation (13.13).

The task of constructing a consistent Q:Eﬁon,\w. is challenging. To see w
consider two extremes. At one extreme, given the formula in Equation (13.1
1t might seem natural to replace the population autocorrelations p; with the sa
@_m autocorrelations p P; {defined in Equation (12.6)), yielding the estimator 1
uMAN ~ \vb\ But this estimator contains so many estimated autocorrelations tha
Is inconsistent. Intuitively, because each of the estimated autocorrelations conta
estimation error, by estimating so many autocorrelations the estimation error
this estimator of f; remains large even in large samples. At the other extreme, ¢
could imagine using only a few sample autocorrelations, for example only the f
sample autocorrelation, and ignoring all the higher autocorrelations. Althou
this estimator eliminates the problem of estimating too many autocorrelations
has a different problem: it is inconsistent because it ignores the additional au
correlations that appear in Equation (13.13). In short, using too many sam;
autocorrelations makes the estimator have a large variance, but using too few au
correlations ignores the autocorrelations at higher lags, so in either of th
extreme cases the estimator is inconsistent.

Estimators of frused in practice strike a balance between these two extre:
cases by choosing the number of autocorrelations to include in a way that deper
on the sample size T. If the sample size is small, only a few autocorrelations :
used, but if the sample size is large, more autocorrelations are included (but s
far fewer than T). Specifically, _m:w_ be given by

ni—1 m—7

fr=1+ 0M 1, (13.1

where p = P :\ N 7%, where 9 = (X,— X)i #, (as in the definition of g, u_v T
parameter m 1n m@cmao: (13.16) is S:ma the truncation parameter of the H/
estimator because the sum of autocorrelations is shortened, or truncated,
include only m — 1 autocorrelations instead of the T'— 1 autocorrelations appe:
ing in the population formula in Equation (13.13).

moa,\)ﬁ to be consistent, m must be chosen so that it is large in large sampl
although still much less than T. One guideline for choosing m in practice is to t
the formula

m=075T"3 (13.1
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rounded to an integer. This formula, which 15 based on the assumption that there
is a moderate amount of autocorrelation in v, gives a benchmark rule for deter-
mining m as a function of the number of observations in the regression.'

The value of the truncation parameter m resulting from Equation (13.17) can
be modified using your knowledge of the series at hand. If there is a great deal of
serial correlation in v, then you could increase m beyond the value from Equa-
tion (13.17). On the other hand if v, has little serial correlation, you could decrease
m. Because of the ambiguity associated with the choice of m, it is good practice
to try one or two alternative values of m for at least one specification to make sure
your results are not sensitive to m.

The HAC estimator in Equation (13.15), ,Sﬁr\,ﬁ given in Equation (13.16),
is called the Newey-West variance estimator, after the econometricians Whit-
ney Newey and Kenneth West who proposed it. They showed that, when used
along with a rule like that in Equation (13.17), under general assumptions this
estimator is a consistent estimator of the variance Omm_ (Newey and West, 1987).
Their proofs (and those in Andrews (1991)) assume that v, has more than four
moments, which in turn is implied by X, and , having more than eight moments,
and this is the reason that the third assumption in Key Concept 13.2 is that X, and

u, have more than eight moments.

Other HAC estimators. The Newey-West variance estimator is not the only
HAC estimator. For example, the weights (m — j}/m in Equation (13.16) can be
replaced by different weights. If different weights are used, then the rule for choos-
ing the truncation parameter in Equation (13.17) no longer applies and a differ-
ent rule, developed for those weights, should be used instead. Discussion of HAC
estimators using other weights goes beyond the scope of this book. For more
information on this topic, see Hayashi (2000, Section 6.6).

Extension to multiple regression.  All the issues discussed in this section
generalize to the distributed lag regression model in Key Concept 13.1 with mul-
tiple lags and, more generally, to the multiple regression model with serially cor-
related errors. In particular, if the error term is serially correlated, then the usual
OLS standard errors are an unreliable basis for inference and HAC standard errors
should be used instead. If the HAC variance estimator used is the Newey-West
estimator (the HAC variance estimator based on the weights (sn — j)/m), then the

'Equation (13.17) gives the “best” choice of m if 1, and X, are first order autoregressive processes with
. : s : EES 2 2.2
mﬁ%wEan:&F:osmOmBDm:So,mfsimnm:vamﬁ,Emmsmnrmmmznzﬁo:?:::E::Nmm mAB_I QFVJ

Equation (13.17) is based on a more general formula derived by Andrews (1991, m@:unor (5.3)).

13.5  Estimation of Dynamic Causal Effects with Strictly Exogenous Regressors 5¢

The problem:

Key Concept 13.1 can be serially correlated. If so, the OLS coefficient estima-
tors are consistent but in general the usual OLS standard errors are not, result-

ing in misleading hypothesis tests and confidence intervals.

The solution:

The error term u, in the distributed lag regression model in

Concep
Standard errors should be computed using a heteroskedasticity- 13.3
and autocorrelation-consistent (HAC) estimator of the variance. The HAC *

estimator involves estimates of m — 1 autocovariances as well as the variance;

in the case of a single regressor, the relevant formulas are given in Equations
(13.15) and (13.16).

In practice, using HAC standard errors entails choosing the truncation para-
meter m. To do so, use the formula in Equation (13.17) as a benchmark, then
increase or decrease m depending on whether your regressors and errors have
high or low serial correlation.

13.5

truncation parameter n can be chosen according to the rule in Equation (13.17
whether there is 2 single regressor or multiple regressors. The formula for HAC
standard errors in multiple regression is incorporated into modern regression soft
ware designed for use with time series data. Because this formula involves matri
algebra, we omit it here, and instead refer the reader to Hayashi (2000, Sectio;
6.6) for the mathematical details.

HAC standard errors are summarized in Key Concept 13.3.

Estimation of Dynamic Causal Effects
with Strictly Exogenous Regressors

When X, is strictly exogenous, two alternative estimators of dynamic causal effect
are available. The first such estimator involves estimating an autoregressive distrib
uted lag (ADL) model instcad of a distributed lag model, and calculating the dynami
multipliers from the estimated ADL coefficients. This niethod can entail estimatin
fewer coefficients than OLS estimation of the distributed lag model, thus potentiall
reducing estimation error. The second method is to estimate the coefficients of th
distributed lag model, using generalized least squares (GLS) instead of OLS
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Although the same number of coeflicients in the distributed lag model are estimated
by GLS as by OLS, the GLS estimator has a smaller variance. To keep the exposition
simple, these two estimation methods are initially laid out and discussed in the con-
text of a distributed lag model with a single lag and AR(1) errors. The potential
advantages of these two estimators are greatest, however, when many lags appear in
the distributed lag model, so these estimators are then extended to the general dis-

tributed lag model with higher order autoregressive errors.

The Distributed Lag Model with AR(l) Errors

Suppose that the causal effect on Y of a change in X lasts for only two periods,
that is, it has an initial impact effect 8, and an effect in the next period of f,, but
no effect thereafter. Then the appropriate distributed lag regression model is the
distributed lag model with only current and past values of X, y:

=0+ 5,X +5.X | +u,. (13.18)

As discussed in Section 13.2, in general the error term u, in Equation (13.18)
is serially correlated. One consequence of this serial correlation is that, if the dis-
tributed lag coefficients are estimated by OLS, then inference based on the usual
OLS standard errors can be misleading. For this reason, Sections 13.3 and 13.4
emphasized the use of HAC standard errors when f§; and 3, in Equation (13.18)
are estimated by OLS.

In this section, we take a different approach towards the serial correlation in
u,. This approach, which is possible if X, is strictly exogenous, involves adopting
an autoregressive model for the serial correlation in ,, then using this AR model
to derive some estimators that can be more efficient than the OLS estimator in
the distributed lag model.

Specifically, suppose that u, follows the AR (1) model

W= oy + U, (13.19)

where ¢, is the autoregressive parameter, i, is serially uncorrelated, and where no
intercept is needed because E(u,) = 0. Equations (13.18) and (13.19) imply that
the distributed lag model with a serially correlated error can be rewritten as an
autoregressive distributed lag model with a serially uncorrelated error. To do so,
lag each side of Equation (13.18) and subtract ¢; times this lag from each side:

Y=o Y =By + B X + BX +u)—ey(By + BiX L+ B X+ :Ivﬁw 20)

|

= By + BX + X — 0By — 08 X — 0 X+ i,
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where the second equality uses 4, = u, - ¢,u,_;. Collecting termis in Equ
(13.20), we have that

Y=g+ oYy + 00X 46X +6,X, +u (1
where
oy = Pl = 01), 8y = By, 6y = = 0,3y, and 6, = —9, 3, (1

where f3y, B, and f3, are the coefficients in Equation (13.18) and ¢, is the .
correlation coefficient in Equation (13.19).

Equation (13.21) is an ADL model that includes a contemporaneous val
X and two ofits lags. We will refer to (13.21) as the ADL representation of th
tributed lag model with autoregressive errors given in Equations (13.18) and (1:

The terms in Equation (13.20) can be reorganized differently to obta
expression that is equivalent to Equations (13.21) and (13.22). Let ¥, = Y, —
be the quasi-difference of Y, (“quasi” because it is not the first difference
difference between Y, and Y,_; rather, it is the difference between Y, and ¢,
Similarly, let X, = X, — ¢, X,_, be the quasi-difference of X,. Then Equation (1
can be written

(1.

We will refer to Equation (13.23) as the quasi-difference representatic
the distributed lag model with autoregressive errors given in Equations (1.
and (13.19).

The ADL model Equation (13.21) (with the parameter restrictions in E
tion (13.22)) and the quasi-difference model in Equation (13.23) are equiv:
In both models, the error term, #, is serially uncorrelated. The two repres
tions, however, suggest different estimation strategies. But before discussing
strategies, we turn to the assumptions under which they yield consistent est
tors of the dynamic multipliers, 8; and f,.

The conditional mean zero assumption in the ADL(2,1) and qu
differenced models. Because Equations (13.21) (with the restrictions in E
tion (13.22)) and (13.23) are equivalent, the conditions for their estimatio
the same, so for convenience we consider Equation (13.23).

The quasi-difterence model in Equation (13.23) is a distributed lag n
involving the quasi-differenced variables with a serially uncorrelated e
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Accordingly, the conditions for OLS estimation of the coeflicients in Equation
(13.23) are the least squares assumptions for the distributed lag model in Key Con-
cept 13.2, expressed in terms of i, and Mmﬁ The critical assumption here is the first
assumption which, applied to Equation (13.23), is that Wﬁ is exogenous; that is,

mS_N,xzt:vup :.S@
where letting the conditional expectation depend on distant lags of X, ensures that
no additional lags omvﬂ, other than those appearing in Equation (13.23), enter the
population regression function.

Because X, = X, — ¢,X,_, 50 X, = X + ¢,X,_,;, conditioning on X and all
of its lags is equivalent to conditioning on X, and all of its lags. Thus, the con-
ditional expectation condition in Equation (13.24) is equivalent to the condi-
tion that E(i| X,, X._j,...) = 0. Furthermore, because ", = u, — ¢u,_,, this

condition in turn implies

0= E@i|X, X, (.. ..)
mA:N = Oy _.vmz XTT - v ﬁw.wwv
= mA:LX: ,vaT s v - QHmA:_L _‘.X: MATT c e v

UL RO W SERPREIE

e

For the equality in Equation (13.25) to hold for general values of ¢, it must be
the case that both E(u, | X, X, ...) =0and E(y,| X, X, ...) = 0. By shufting
the time subscripts, the condition that E(u,_;{X,, X,y . . .) = 0 can be rewritten as

-
.

EQ| X X, X pp ) =0, (13.26)

which (by the law of iterated expectations) implies that E(u,|X,, X, (,...) =
0. In summary, having the zero conditional mean assumption in Equation
(13.24) hold for general values of ¢, is equivalent to having the condition in
Equation (13.26) hold.

The condition in Equation (13.26) is implied by X, being strictly exogenous,
but it is ot implied by X, being (past and present) exogenous. Thus, the least
squares assumptions for estimation of the distributed lag model in Equation
(13.23) hold if X, is strictly exogenous, but it is not enough that X, be (past and
present) exogenous.

Because the ADL representation (Equations (13.21) and (13.22)) is equiva-
lent to the quasi-differenced representation (Equation (13.23)), the conditional
mean assumption needed to estimate the coefficients of the quasi-differenced
representation (that E(u,| X,.q, X, X, ...) = 0) is also the conditional mean
assumption for consistent estimation of the coefficients of the ADL representation.
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We now turn to the two estimation strategies suggested by these two
sentations, estimation of the ADI. coefficients and estimation of the coeft
of the quasi-differenced model.

OLS Estimation of the ADL Model

The first strategy is to use OLS to estimate the coefficients in the ADL m
Equation {13.21). As the derivation leading to Equation (13.21) shows, 1
ing the lag of Y and the extra lag of X as regressors makes the error term «
uncorrelated (under the assumption that the error follows a first order a
gression). Thus the usual OLS standard errors can be used, that is, HAC st
errors are not needed when the ADL model coetlicients in Equation (13.
estimated by OLS.

The estimated ADL coefficients are not themselves estimates of the dy
multipliers, but the dynamic multipliers can be computed from the ADL
cients. A general way to compute the dynamic multipliers is to express th
mated regression function as a function of current and past values of X, 1
to eliminate Y, from the estimated regression function. To do so, repeatedl]
stitute expressions for lagged values of Y, into the estimated regression fur
Specifically, consider the estimated regression function

~, A A

Y= 0¥+ 0uX, + 6, X,y + 8,X, (

where the estimated intercept has been omitted because it does not ent
expression for the dynamic multipliers. Lagging both sides of Equation (13.27)
m\T = e,_M\TN + %o.vml + %#XTN + %NXT? so replacing Y,_; in Equation (13.27)
and collecting terms yields

= 610Y 0+ 0X Ly + 5 X+ X L) + X+ 6 X + 6K,
(

A a A

= 30X, + Oy + 0:0) X, + 0y + 000X, + $,6,X, 5 + 67V,

Reepeating this process by repeatedly substituting expressions for Y,_,, Y,

so forth yields

O(05 + 0,0, + o) Xy + %_NA%N + aw?ﬂ + @m%avx

The coethicients in Equation (13.29) are the estimators of the dynami
tipliers, computed from the OLS estimators of the coefficients in the ADL
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in Equation (13.21). If the restrictions on the coefficients in Equation (13.22)
were to hold exactly for the estimated cocfficients, then all the dynamic multipli-
ers beyond the second (that is, the coefficients on X, ,, X,_3, and so forth) would
all be zero.2 However, under this estimation strategy those restrictions will not
hold exactly, so the estimated multipliers beyond the second in Equation (13.29)

will generally be nonzero.

GLS Estimation

The second strategy for estimating the dynamic multipliers when X, is strictly
exogenous is to use generalized least squares (GLS), which entails estimating Equa-
tion (13.23). To describe the GLS estimator, we initially assume that ¢; is known;
because in practice it is unknown, this estimator is infeasible, so it is called the infea-
sible GLS estimator. The infeasible GLS estimator, however, can be modified using
an estimator of ¢,, which yields a feasible version of the GLS estimator.

Infeasible GLS. Suppose that ¢, were known; then the quasi-differenced vari-
ables X, and Y could be computed directly. As discussed in the context of Equa-
tions (13.24) and (13.26), if X, is strictly exogenous, then mczc_Wm: WAI“ o) =0
Thus, if X, is strictly exogenous and if ¢ is known, the coefficients o, B, and 8,
in Equation (13.23) can be estimated by the OLS regression of mm on X and X,
(including an intercept). The resulting estimators of 3, and ff,—that is, the OLS
estimators of the slope coefficients in Equation (13.23) when ¢, is known—are
the infeasible GLS estimators. This estimator is infeasible because ¢, is
unknown, so .VN and M cannot be computed and thus these OLS estimators can-

not actually be computed.

Feasible GLS. The feasible GLS estimator modifies the infeasible GLS esti-
mator by using a preliminary estimator of ¢, Amt to compute the estimated quasi-
differences. Specifically, the feasible GLS estimators of f§; and 8, are the OLS
estimators of 8; and f5, in Equation (13.23), computed by regressing m on vbb and
Wal (with an intercept), where WN =X - &HXTH and uh\‘ =Y, - QRKL.

The preliminary estimator, ¢, can be computed by first estimating the dis-
tributed lag regression in Equation (13.18) by OLS, then using OLS to estimate
#, in Equation (13.19) with the OLS residuals #, replacing the unobserved regres-
sion errors u,. This version of the GLS estimator is called the Cochrane-Orcutt
(1949) esumator.

2Substitute the equalities in Equation (13.22) to show that, if those equalities hold, then
Sy + 98, + G_No,: =0.
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An extension of the Cochrane-Orcutt method 1s to continue this proce
atively: use the GLS estimator of f3; and 35 to compute revised estimator
use these new residuals to re-estimate ¢,; use this revised estimator of ¢, tc
pute revised estimated quasi-differences; use these revised estimated quasi-dift
to re-estimate f3; and ,; and continue this process until the estimators of

B, converge. This is referred to as the iterated Cochrane-Orcutt estimator

A nonlinear least squares interpretation of the GLS estimator
equivalent interpretation of the GLS estimator is that it estimates the ADL
in Equation (13.21), imposing the parameter restrictions in Equation ('
These restrictions are nonlinear functions of the original parameters j3,,
and ¢,, so this estimation cannot be performed using OLS. Instead, the p:
ters can be estimated by nonlinear least squares (NLLS). As discussed in
9.3, NLLS minimizes the sum of squared mistakes made by the estimated -
sion function, recognizing that the regression function is a nonlinear func
the parameters being estimated. In general, NLLS estimation can require
ticated algorithms for minimizing nonlinear functions of unknown parai
In the special case at hand, however, those sophisticated algorithms are not
rather, the NLLS estimator can be computed using the algorithm describec
for the iterated Cochrane-Orcutt estimator. Thus, the iterated Cochrane-
GLS estimator is in fact the NLLS estimator of the ADL coefficients, sub

the nonlinear constraints in Equation (13.22).

Efficiency of GLS. The virtue of the GLS estimator is that when X is

exogenous and the transformed errors #, are homoskedastic, it is efficient .
linear estimators, at least in large samples. To see this, first consider the inf
GLS estimator. If i, is homoskedastic, if ¢, is known (so that WA and & can be

as if they are observed), and if X, is strictly exogenous, then the Gauss-Mark
orem implies that the OLS estimator of ¢, 8, and 8, in Equation (13.23)
cient among all linear conditionally unbiased estimators; that is, the OLS est
of the coeflicients in Equation (13.23) is the best linear unbiased estimator, or
(Section 4.9). Because the OLS estimator of Equation (13.23) is the infeasib
estimator, this means that the infeasible GLS estimator is BLUE. The feasib
estimator is similar to the infeasible GLS estimator, except that ¢, is esti
Because the estimator of ¢, is consistent and its variance is inversely proporti
T, the feasible and infeasible GLS estimators have the same variances in larg
ples. In this sense, if X is strictly exogenous, then the feasible GLS estimator is
in large samples. In particular, if X is strictly exogenous then GLS 1s more e
than the OLS estimator of the distributed lag coeflicients discussed in Sectio
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The Cochrane-Orcutt and iterated Cochrane-Qrcutt estimators presented
here are special cases of GLS estimation. In general, GLS estimation involves trans-
forming the regression model so that the errors are homoskedastic and serially
uncorrelated, then estimating the coefficients of the transformed regression model
by OLS. In general, the GLS estimator is consistent and BLUE if X is strictly
exogenous, but is not consistent if X is only (past and present) exogenous. The

mathematics of GLS involve matrix algebra, so they are postponed to Section 16.6.

The Distributed Lag Model with Additional

Lags and AR(p) Errors

The foregoing discussion of the distributed lag model in Equations (13.18) and
(13.19), which has a single lag of X, and an AR(1) error term, carries over to the
general distributed lag model with multiple lags and an AR (p) error term.

The general distributed lag model with autoregressive errors.  The gen-
eral distributed lag model with r lags and AR (p) error term is

Y, =By + BiX, + B X+ B X oy, (13.30)
u, = Qqt gt O, + o T Ot ", (13.31)
where By, . . ., B+ are the dynamic multipliers and ¢y, ..., @, are the autore-

gressive coefficients of the error term. Under the AR (p) model for the errors, #,
is serially uncorrelated.

Algebra of the sort that led to the ADL model in Equation (13.21) shows that
Equations (13.30) and (13.31) imply that Y, can be written in ADL form:
Y=o+ oY+ oo A0, H X A6 X g+ o H X tu, (1332
where g =r+pandd, ..., 5 are functions of the 8’ and ¢ in Equations (13.30)
and (13.31). Equivalently, the model of Equations (13.30) and (13.31) can be writ-

ten in quasi-difference form as

V=gt BX+ X+ o 4B+ i, (13.33)

where ¥, = Y- ¢y, — - —¢Y_,and X, = X, — X — o —0,X
Conditions for estimation of the ADL coefficients.  The foregoing discus-
sion of the conditions for consistent estimation of the ADL coefficients in the
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AR (1) case extends to the general model with AR(p) errors. The conditic

mean zero assumption for Equation (13.33) is that

EGr| X, Xy v .. .) = 0. (13,

Because o, = t,~ @1 — ol o= T O,y and AN =X - Xy =g
this condition is equivalent to

(13.

Ew | X, X gy )= 0BG | X, X oo )= o =9, Eu ) X Xy, o) =

For Equation (13.35) to hold for general values of ¢y, . . ., Dy 1t must be

case that each of the conditional expectations in Equation (13.35) is zero; equ
alently, it must be the case that

X

(| Xy Xpapts Xapzr - ) =0 (13

This condition is not implied by X, being (past and present) exogenous,
it is implied by X, being strictly exogenous. In fact, in the limit when p is infi
(so that the error term in the distributed lag model follows an infinite o
autoregression), then the condition in Equation (13.36) becomes the condi

in Key Concept 13.1 for strict exogeneity.

Estimation of the ADL model by OLS.  Asin the distributed lag model
a single lag and an AR(1) error term, the dynamic multipliers can be estim;
from the OLS estimators of the ADL coefficients in Equation {13.32). The ¢
eral formulas are similar to, but more complicated than, those in Equation (13
and are best expressed using lag multiplier notation; these formulas are give
Appendix 13.2. In practice, modern regression software designed for time s

regression analysis does these computations for you.

Estimation by GLS. Alternatively, the dynamic multipliers can be «
mated by (feasible) GLS. This entails OLS estimation of the coefficients of
quasi-differenced specification in Equation (13.33), using estimated quasi-
ferences. The estimated quasi-differences can be computed using prelimi
estimators of the autoregressive coefficients ¢y, ..., ¢,, as in the AR(1) ¢
The GLS estimator is asymptotically BLUE, in the sense discussed above
the AR(1) case.
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Key

Concept
13.4

The general distributed lag model with r lags and AR (p) error term is

Y =Byt PuX,+ BoXy o B X, 1y (13.37)
U, = Oyt + Ot 5+ + o, T U (13.38)
If X, is strictly exogenous, then the dynamic multipliers B, ..., f,.; can be

estimated by first using OLS to estimate the coefficients of the ADL model

+0,X, + 1,
(13.39)

Y=oy + oYy + 0¥, + 68X, + 65X+

where g = r + p, then computing the dynamic multipliers using regression soft-
ware. Alternatively, the dynamic multipliers can be estimated by estimating the
distributed lag coefficients in Equation (13.37) by GLS.

Estimation of dynamic multipliers under strict exogeneity is summarized in
Key Concept 13.4.

Which to use: OLS or GLS? The two estimation options, OLS estimation of
the ADL coefficients and GLS estimation of the distributed lag coefficients, have
advantages and disadvantages.

The advantage of the ADL approach 1s that it can reduce the number of para-
meters needed for estimating the dynamic multipliers, compared to OLS estima-
tion of the distributed lag model. For example, the estimated ADL model in
Equation (13.27) led to the infinitely long estimated distributed lag representa-
tion in Equation (13.29). To the extent that distributed lag model with only r lags
is really an approximation to a longer-lagged distributed lag model, the ADL
model thus can provide a simple way to estimate those many longer lags using
only a few unknown parameters. Thus, in practice it might be possible to esti-
mate the ADL model in Equation (13.39) with values of p and ¢ much smaller
than the value of 7 needed for OLS estimation of the distributed lag coefhicients
in Equation (13.37). In other words, the ADL specification can provide a com-
pact, or parsimonious, summary of a long and complex distributed lag (see
Appendix 13.2 for additional discussion).

13.6
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The advantage of the GLS estimator is that, for a given lag length 7in ¢
tributed lag model, the GLS estimator of the distributed lag coeflicients i
efficient than the OLS estimator, at least in large samples. In practice, the
advantage of using the ADL approach arises because the ADL specificati
permit estimating fewer parametets than are estimated by GLS.

Orange Juice Prices and Cold Weather

This section uses the tools of time series regression to squeeze addi
insights from our data on Florida temperatures and orange juice prices.
how long lasting is the effect of a freeze on the price? Second, has this dy
effect been stable or has it changed over the 51 years spanned by the da
if so, how?

We begin this analysis by estimating the dynamic causal effects usir
method of Section 13.3, that is, by OLS estimation of the coefficients of
tributed lag regression of the percentage change in prices (%ChgP) on the
ber of freezing degree days in that month (FDD,) and its lagged values. F
distributed lag estimator to be consistent, FDD must be (past and present) e
nous. As discussed in Section 13.2, this assumption is reasonable here. Hu
cannot influence the weather, so treating the weather as if it were ranc
assigned experimentally is appropriate. Because FDD is exogenous, we ca
mate the dynamic causal eftects by OLS estimation of the coefficients in th
tributed lag model of Equation (13.4) in Key Concept 13.1.

As discussed in Sections 13.3 and 13.4, the error term can be serially ¢
lated in distributed lag regressions, so it is important to use HAC standard ¢
which adjust for this serial correlation. For the initial results, the truncation
meter for the Newey-~West standard errors (1 in the notation of Section 13.-
chosen using the rule in Equation (13.17): because there are 612 monthly
vations, according to that rule m = 0.75TY3 =075 x 61213 = 6.37, but be
m must be an integer this was rounded up to m = 7; the sensitivity of the sta
errors to this choice of truncation parameter is investigated below.

The results of OLS estimation of the distributed lag regression of %Ch
FDD, FDD,_,, ..., FDD,_ ; are summarized in column (1) of Table 13.1
coeflicients of this regression (only some of which are reported in the tabl
estimates of the dynamic causal effect on orange juice price changes (in pe
for the first 18 months following a unit increase in the number of freezing d

days in a month. For example, a single freezing degree day is estimated to in
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prices by 0.50% over the month in which the freezing degree day occurs. The
subsequent effect on price in later months of a freczing degree day is less: after
one month the estimated effect is to increase the price by a further 0.17%, and
after two months the estimated effect is to increase the price by an additional .07%.
The R? from this regression is 0.12, indicating that much of the monthly variation
in orange juice prices is not explained by current and past values of FDD.

Plots of dynamic multipliers can convey information more eftectively than
tables such as Table 13.1. The dynamic multipliers from column (1) of Table 13.1
are plotted in Figure 13.2a along with their 95% confidence intervals, computed
as the estimated coefficient +1.96 HAC standard errors. After the initial sharp
price rise, subsequent price rises are less, although prices are estimated to rise
slightly in each of the first six months after the freeze. As can be seen from Fig~
ure 13.2a, for months other than the first the dynamic multipliers are not statis-
tically significantly different from zero at the 5% significance level, although they
are estimated to be positive through the seventh month.

Column (2) of Table 13.1 contains the cumulative dynamic multipliers for
this specification, that is, the cumulative sum of the dynamic multiplicrs reported
in column (1). These dynamic multipliers are plotted in Figure 13.2b along with
their 95% confidence intervals. After one month, the cumulative effect of the
freezing degree day is to increase prices by 0.67%, after two months the price 1s
estimated to have risen by 0.74%, and after six months the price is estimated to
have risen by 0.90%. As can be seen in Figure 13.2b, these cumulative multipli-
ers increase through the seventh month, because the individual dynamic multi-
pliers are positive for the first seven months. In the eighth month, the dynamic
multiplier is negative, so the price of orange juice begins to fall slowly from its
peak. After 18 months, the cumulative increase in prices is only 0.37%, that is,
the long-run cumulative dynamic multiplier is only 0.37%. This long-run cumu-
lative dynamic multiplier is not statistically significantly different from zero at the

10% significance level (t = 0.37/0.30 = 1.23).

Sensitivity analysis.  As in any empirical analysis, it is important to check if
these results are sensitive to changes in the details of the empirical analysis. We there-
fore examine three aspects of this analysis: sensitivity to the computation of the HAC
standard errors; an alternative specification that investigates potential omitted vari-
able bias; and an analysis of the stability over time of the estimated multipliers.
First, we investigate whether the standard errors reported in the second col-
umn of Table 13.1 are sensitive to different choices of the HAC truncation para-
meter #1. In column (3), results are reported for m = 14, twice the value used in

column (2). The regression specification is the same as in column (2), so the esti-
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" TABLE 13.1 The Dynamic Effect of a Freezing Degree Day (FDD) on the Price of Orange
Juice: Selected Estimated Dynamic Multipliers and Cumulative Dynamic Multipliers

SR

I (M (2) (3) (4)
Lag number Dynamic Multipliers  Cumulative Multipliers  Cumulative Multipliers  Cumulative Muitiplie
0 0.50 0.50 0.50 0.51
0.14) 0.14) 0.14) (0.15)
1 0.17 0.67 0.67 0 qc
0.09) 0.14) 0.13) 0.15)
2 0.07 0.74 0.76
(0.06) 0.16) (0.18)
A o i e e e
(0.04)

Uy 0.02
(0.03)

5 0.03
(0.03)

6 0.03
: (0.03)

-0.14
(0.08)

18

Monthly indicators? No

HAC standard error
truncation parameter (/) 7 7 14 7

All regressions were estimated by OLS using monthly data (described in Appendix 13.1) from January 1950 to December 20
for a total of T'= 612 monthly observations. The dependent variable is the monthly percentage change in the price of oraj
juice (% ChgP). Regression (1) is the distributed lag regression with the monthly number of freezing degree days and eight
of its lagged values, that is, FDD,, FDD, |, ..., FDD, ,,, and the reported coefficients are the OLS estimates of the dyna
multipliers. The cumulative multipliers are the cumulative sum of estimated dynamic multipliers. All regressions include

intercept, which is not reported. Newey-West HAC standard errors, computed using the truncation number given in the f
row, are reported in parentheses.

mated coefficients and dynamic multipliers are identical; only the standard et
differ but, as it happens, not by much. We conclude that the results are insen
tive to changes in the HAC truncation parameter.

Second, we investigate a possible source of omitted variable bias. Freezes
Florida are not randomly assigned throughout the year, but rather occur in t
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FIGURE 13.2 The Dynamic Effect of a Freezing Degree Day (FDD) on the Price of Orange Juice
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The estimated dynamic mulfipliers show that a freeze leads to an immediate increase in prices. Future price rises are
much smaller than the initial impact. The cumulative multiplier shows that freezes have a persistent effect on the level
of orange juice prices, with prices peaking seven months after the freeze.

13.6  Orange Juice Prices and Cold Weather

winter (of course). If demand for orange juice is seasonal (is demand fo
juice greater in the winter than the summer?), then the seasonal patterns i
juice demand could be correlated with FDD, resulting in omitted vari

The quantity of oranges sold for juice 1s endogenous: prices and quan
simultaneously determined by the forces of supply and demand. Thus, as ¢
in Section 7.2, including quantity would lead to simultaneity bias. Neve
the seasonal component of demand can be captured by including seasor
ables as regressors. The specification in column (4) of Table 13.1 thercfore
eleven monthly binary variables, one indicating whether the month is
one indicating February, and so forth (as usual one binary variable must |
ted to prevent perfect multicollinearity with the intercept). These montl
cator variables are not jointly statistically significant at the 10% level (p = .
the estimated cumulative dynamic multipliers are essentially the same a;
specifications excluding the monthly indicators. In summary, seasonal fluc
in demand are not an important source of omitted variable bias.

Have the dynamic multipliers been stable over time?® To assess the
of the dynamic multipliers, we need to check whether the distributed lag re
coeflicients have been stable over time. Because we do not have a specific b
in mind, we test for instability in the regression coefficients using the Quar
lihood Ratio (QLR) statistic (Key Concept 12.9). The QLR statistic (with 1°
ming and HAC variance estimator), computed for the regression of column
all coefficients interacted, has a value of 9.08, with q = 20 degrees of freec
cocfficients on FDD, its 18 lags, and the intercept). The 1% critical value
12.5 15 2.43, so the QLR statistic rejects at the 1% significance level. The
regressions have 40 regressors, a large number; recomputing them for
only (so there are 16 regressors and g = 8) also results in rejection at the !
Thus, the hypothesis that the dynamic multipliers are stable is rejected

significance level.

One way to see how the dynamic multipliers have changed over
compute them for different parts of the sample. Figure 13.3 plots the e
cumulative dynamic multipliers for the first third (1950-1966), midc
(1967-1983), and final third (1984-2000) of the sample, computed by
separate regressions on each subsample. These estimates show an interes
noticeable pattern. In the 1950s and early 1960, a freezing degree day ha
and persistent effect on the price. The magnitude of the effect on price of

3The discussion of stability in this subsection draws on material from Scction 12.7 and can |
if that material has not been covered.
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FIGURE 13.3 Estimated Cumulative Dynamic Multipliers from Different Sample Periods
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ing degree day diminished in the 1970s, although it remained highly persistent.

In the late 1980s and 1990s, the short-run effect of a freezing degree day was the

same as in the 1970s but it became much less persistent, and was essentially elim-

inated after a year. These estimates suggest that the dynamic causal effect on

orange juice prices of a Florida freeze became smaller and less persistent over the

second half of the twentieth century.

13.6  Orange Juice Prices and Cold Weather

NEWS FLASH: Commodity Traders Send Shivers Through

Disney World

>:rocwr the weather at Disney World in
Orlando, Florida, is usually pleasant, now and
then a cold spell can settle in, If you are visiting Dis-
ney World on a winter evening, should you bring a
warm coat? Some people might check the weather
forecast on TV, but those in the know can do bet-
ter: they can check that day’s closing price on the
New York orange juice futures market!

The financial economist Richard Roll undertook
a detailed study of the relationship between orange
juice prices and the weather. Roll (1984) examined
the effect on prices of cold weather in Orlando, but
he also studied the “effect” of changes in the price
of an orange juice futures contract {a contract to buy
frozen orange juice concentrate at a specified date in
the future) on the weather. Roll used daily data from
1975 to 1981 on the prices of Of futures contracts
traded at the New York Cotton Exchange and on
daily and overnight temperatures in Orlando. He
found that a rise in the price of the futures contract
during the trading day in New York predicted cold
weather, in particular a freezing spell, in Orlando

over the following night. In fact, the market was so

effective in predicting cold weather in Florid:
price rise during the trading day actually pre
forecast errors in the official U.S. gover
weather forecasts for that night.

Roll’s study 15 also tnteresting for what he
find: although his detailed weather data exy
some of the variation in daily OJ futures |
most of the daily movements in OJ prices ren
unexplained. He therefore suggested that t
futures market exhibits “excess volatility,” t
more volatility than can be attributed to mowe
in fundamentals. Understanding why (and if
is excess volatility in financial markets is n
important area of research in financial econo

Roll’s finding also illustrates the difference be
forecasting and estimating dynamic causal ¢
Price changes on the OJ futures market are a
predictor of cold weather, but that does not me:
commodity traders are so powerful that they ca
the temperature to fall. Visitors to Disney
might shiver after an OJ futures contract price ri
they are not shivering because of the price rise—

of course, they went short in the O futures m

ADL and GLS estimates. As discussed in Section 13.5, if the error term in the
distributed lag regression is serially correlated and FDD is strictly exogenous, it is pos-
sible to estimate the dynamic multipliers more efficiently than by OLS estimation of
the distributed lag coeflicients. Before using either the GLS estimator or the estima-
tor based on the ADL model, however, we need to consider whether FDD is in fact
strictly exogenous. True, humans cannot affect the weather, but does that mean that
the weather is strictly exogenous? Does the error term #, in the distributed lag regres-
sion have conditional mean zero, given past, present, and future values of FDD?

The error term in the population counterpart of the distributed lag regression
in column (1) of Table 13.1 is the discrepancy between the price and its population
prediction based on the past 18 months of weather. This discrepancy might arise for
many reasons, one of which is that traders use forecasts of the weather in Orlando.
For example, if an especially cold winter is forecasted, then traders would incorporate

this into the price so the price would be above its predicted value based on t
ulation regression; that is, the error term would be positive. If this forecast
rate, then in fact future weather would turn out to be cold. Thus future freezin,
days would be positive (X,, > 0) when the curtent price is unusually high

so that corr(X,,,u,) is positive. Stated more simply, although orange juice trac
not influence the weather, they can—and do—predict it (see the box). Conse
the error term in the price/weather regression is correlated with future
In other words, FDD is exogenous, but if this reasoning is true, it is not strictly

nous, and the GLS and ADL estimators will not be consistent estimator

dynamic multipliers. These estimators therefore are not used in this applic:
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13.7

Estimation of Dynamic Causal Effects

Is Exogeneity Plausible? Some Examples

As in regression with cross-—sectional data, the interpretation of the coefficients in
a distributed lag regression as causal dynamic eftects hinges on the assumption that
X 1s exogenous. If X, or its lagged values are correlated with u,, then the condi-
tional mean of 1, will depend on X, or its Jags, in which case Xis not (past and pre-
sent) exogenous. Regressors can be correlated with the error term for several
reasons, but with economic time series data a particularly important concern is that
there could be simultaneous causality, which (as discussed in Section 10.1) results
in endogenous regressors. In Section 13.6, we discussed the assumptions of exo-
geneity and strict exogeneity of freezing degree days in detail. In this section, we

examine the assumption of exogeneity in four other economic applications.

U.S. Income and Australian Exports

The United States is an important source of demand for Australian exports. Pre-
cisely how sensitive Australian exports are to fluctuations in U.S. aggregate income
could be investigated by regressing Australian exports to the United States against a
measure of U.S. income. Strictly speaking, because the world economy is integrated,
there is simultancous causality in this relationship: a decline in Australian exports
reduces Australian income, which reduces demand for imports from the United
States, which reduces U.S. income. As a practical matter, however, this effect is very
small because the Australian economy is much smaller than the US. economy. Thus,
U.S. income plausibly can be treated as exogenous in this regression.

In contrast, i a regression of European Union exports to the United States
against U.S. income the argument for treating U.S. income as exogenous is less
convincing because demand by residents of the European Union for American
exports constitutes a substantial fraction of the total demand for U.S. exports. Thus
a decline in U.S. demand for EU exports would decrease EU income, which in
turn would decrease demand for U.S. exports and thus decrease U.S.income.
Because of these linkages through international trade, EU exports to the United
States and U.S. income are simultaneously determined, so in this regression U.S.
income arguably s not exogenous. This example illustrates a more general point
that whether a variable is exogenous depends on the context: U.S. income is
plausibly exogenous in a regression explaining Australian exports, but not in a

regression explaining EU exports.

13.7  Is Exogeneity Plausible? Some Examples

Oil Prices and Inflation

Ever since the oil price increases of the 1970s, macroeconomists have bec
ested in estimating the dynamic cffect of an increase in the international
crude oil on the U.S. rate of inflation. Because oil prices are set in world
in large part by foreign oil-producing countries, initially one might think
prices are exogenous. But oil prices are not like the weather: members o
set oil production levels strategically, taking many factors, including the
the world economy, into account. To the extent that oil prices (or quant.
set based on an assessment of current and future world economic con

including inflation in the United States, oil prices are endogenous.

Monetary Policy and Inflation

The central bankers in charge of monetary policy need to know the ¢
inflation of monetary policy. Because the main tool of monetary polic
short-term interest rate (the “short rate”), this means they need to kr
dynamic causal effect on inflation of a change in the short rate. Although t
rate is determined by the central bank, it is not set by the central banker:
dom (as it would be in an ideal randomized experiment) but rather is set ¢
nously: the central bank determines the short rate based on an assessmer
current and future state of the economy, especially including the curr
future rates of inflation. The rate of inflation in turn depends on the inte
(higher interest rates reduce aggregate demand), but the interest rate dep
the rate of inflation, its past, and its (expected) future value. Thus the sh
is endogenous and the causal dynamic effect of a change in the short rate o
inflation cannot be consistently estimated by an OLS regression of the rate
tion on current and past interest rates.

The Phillips Curve

The Phillips curve investigated in Chapter 12 is a regression of the chang
rate of inflation against lagged changes in inflation and lags of the unempl
rate. Because lags of the unemployment rate happened in the past, one mi
tially think that there cannot be feedback from current rates of inflation
values of the unemployment rate, so that past values of the unemploym
can be treated as exogenous. But past values of the unemployment rate w
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randomly assigned in an experiment; instead, the past unemployment rate was
simultaneously determined with past values of inflation. Because inflation and the
unemployment rate are simultaneously determined, the other factors that deter-
mune inflation contained in u, are correlated with past values of the unemploy-
ment rate, that is, the unemployment rate is not exogenous. It follows that the
unemployment rate is not strictly exogenous, so the dynamic multipliers com-
puted using an empirical Phillips curve (for example, the ADL model in Equa-
tion (12.17)) are not consistent estimates of the dynamic causal effect on inflation

of a change in the unemployment rate.

Conclusion

Time series data provide the opportunity to estimate the time path of the effect on
Y of a change in X, that is, the dynamic causal effect on Y of a change in X. To
estimate dynamic causal effects using a distributed lag regression, however, X must
be exogenous, as it would be if it were set randomly in an ideal randomized exper-
iment. If X is not just exogenous but is strictly exogenous, then the dynamic causal
effects can be estimated using an autoregressive distributed lag model or by GLS.

In some applications, such as estimating the dynamic causal effect on the price
of orange juice of freezing weather in Florida, a convincing case can be made that
the regressor (freezing degree days) is exogenous; thus the dynamic causal effect can
be estimated by OLS estimation of the distributed lag coefficients. Even in this appli-
cation, however, economic theory suggests that the weather is not strictly exoge-
nous, so the ADL or GLS methods are inappropriate. Moreover, in many relations
of interest to econometricians, there is simultaneous causality, so the regressor in
these specifications are not exogenous, strictly or otherwise. Ascertaining whether
or not the regressor is exogenous {or strictly exogenous) ultimately requires com-

bining economic theory, institutional knowledge, and expert judgment.

Summary

1.

Dynamic causal effects in time series are defined in the context of a randomized
experiment, where the same subject (entity) receives different randomly assigned
treatnients at different times. The coeflicients in a distributed lag regression of Y on
X and its lags can be interpreted as the dynamic causal effects when the time path
of X is determined randomly and independently of other factors that influence Y.

Review the Concepts

2. The variable X is (past and present) exogenous if the conditional mea
error 1, in the distributed lag regression of Y on current and past values o
not depend on current and past values of X. If in addition the conditional 13
does not depend on future values of X, then X is strictly exogenous.

3. If X is exogenous, then the OLS estimators of the coefficients in a distril
regression of Y on current and past values of X are consistent estimato:
dynamic causal effects. In general, the error u, in this regression is seriall
lated, so conventional standard errors are misleading and HAC standar
must be used instead.

4. If Xis strictly exogenous, then the dynamic multpliers can be estimated
estimation of an ADL model or by GLS.

5. Exogeneity is a strong assumption that often fails to hold in economic tin
data because of simultaneous causality, and the assumption of strict exog:
even stronger.

Key Terms

dynamic causal effect (489)
distributed lag model (495)
exogeneity (497)

strict exogeneity (497)

dynamic multiplier (501)

impact effect (501)

cumulative dynamic multiplier (501)

heteroskedasticity- and autocorrelat
consistent (HAC) standard erro
truncation parameter (505)
Newey-West variance estimator (50
generalized least squares (GGLS) (507
quasi-difterence (509)
infeasible GLS estimator (512)
long-run cumulative dynamic multiplier feasible GLS estimator (512)

(501)

Review the Concepts

13.1 In the 19705 a common practice was to estimate a distributed lag mod
ing changes in nominal gross domestic product (Y) to current a
changes in the money supply (X). Under what assumptions will this
ston estimate the causal effects of money on nominal GDP? Ar
assumptions likely to be satisfied in a modern economy like the United

13.2 Suppose that X is strictly exogenous. A researcher estimates an Al

model, calculates the regression residual, and finds the residual to be
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13.4

serially correlated. Should the researcher estimate a new ADL model with
additional lags, or simply use HAC standard errors for the ADL(1,1) esti-
mated coefficients?

Suppose that a distributed lag regression is estimated, where the dependent
variable is AY, instead of Y, Explain how you would compute the dynamic
multipliers of X, on Y,

Suppose that you added FDD, , as an additional regressor in Equation (13.2).
If FDD is strictly exogenous, would you expect the coefficient on FDD,,

to be zero or nonzero? Would your answer change if DD is exogenous but

not strictly exogenous?

Exercises

*13.1

Increases in oil prices have been blamed for several recessions in developed
countries. To quantify the effect of oil prices on real economic activity
researchers have done regressions like those discussed in this chapter. Let
GDP, denote the value of quarterly gross domestic product in the United
States, and let Y, = 100In(GDP,/ GDP, ;) be the quarterly percentage change
in GDP. James Hamilton, an econometrician and macroeconomist, has sug-
gested that oil prices adversely affect that economy only when they jump
above their values in the recent past. Specifically, let O, equal the greater of
zero or the percentage point difference between oil prices at date ¢ and their
maximum value during the past year. A distributed lag regression relating Y,
and O, estimated over 1955:1-2000:1V, is

A

¥ =1.0-0.0550,-0.0260, ,—0.0310,_, — 0.1090, ;- 0.1280, ,
(0.1) (0.054) (0.057)  (0.048)  (0.042)  (0.053)

+0.0080,_5 + 0.0250, ; —0.0190, , + 0.0670, 4.
0.025)  (0.048)  (0.039)  (0.042)

a. Suppose that oil prices jump 25% above their previous peak value and
stay at this new higher level (so that O,=25and O, = Q,, = - - =0).
What is the predicted effect on output growth for each quarter over
the next two years?

b. Construct a 95% confidence interval for your answers in (a).

c. What is the predicted cumulative change in GDP growth over eight
quarters?

d.

Exercis

The HAC F-statistic testing whether the coefficients on O, a
are zero 15 3.49. Are the coefficients significantly different frc

13.2 Macroeconomists have also noticed that interest rates change fol

price jumps. Let R, denote the mnterest rate on 3-month Treasur

percentage points at an annual rate). The distributed lag regressic
the change in R, (AR,) to O, estimated over 1955:1-2000:1V is

—_—

[

d.

AR, = 0.07 + 0.0620, + 0.0480,_; ~ 0.0140_, - 0.0860, , —

0.06) (0.045)  (0.034)  (V.O28)  (0.169) (

+0.0230_5 — 0.0100_¢ = 0.1000,_; — 0.0140,_,.
0.065  (0.047)  (0.038)  (0.025)

Suppose that oil prices jump 25% above their previous peak -
stay at this new higher level (so that O, =25 and O, = O,,, =
What is the predicted change in intcrest rates for each quarte

the next two years?
Construct 95% confidence intervals for your answers to (a).

What is the effect of this change in oil prices on the level of
rates in period ¢ + 82 How is your answer related to the cumi
multiplier?

The HAC F-statistic testing whether the coefficients on O, ar
are zero is 4.25. Are the coefficients significantly different fron

13.3 Consider two different randomized experiments. In experime

prices are set randomly and the Central Bank reacts according tc

policy rules in response to economic conditions, including chan;

oil price. In experiment B, oil prices are set randomly and th

Bank holds interest rates constant, and in particular does not re

the oil price changes. In both, GDP growth is observed. Now

that oil prices are exogenous in the regression in Exercise 13.1.

experiment, A or B, does the dynamic causal effect estimated in

13.1 correspond?

13.4 Suppose that oil prices are strictly exogenous. Discuss how y

improve upon the estimates of the dynamic multipliers in Exercis

13.5 Derive Equation (13.7) from Equation (13.4) and show that J,, =

B 6

2 =By + By 0, = By + By + B3 (etc). (Hint: Note that X, = AX, -
+AX L+ X)

t=p
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APPENDIX

13.1

APPENDIX

13.2

The Orange Juice Data Set

The orange juice price data are the frozen orange juice component of processed foods and
feeds group of the producer price index (PP1), collected by the U.S. Bureau of Labor Statis-
tics (BLS series wpu()2420301). The orange juice price series was divided by the overall PPI
for finished goods to adjust for general price inflation. The freezing degree days series was
constructed from daily minimum temperatures recorded at Orlando area airports, obtained
from the National Oceanic and Atmospheric Administration (NOAA) of the U.S. Depart-
ment of Commerce. The FDD series was constructed so that its timing, and the timing of
the orange juice price data, were approximately aligned. Specifically, the frozen orange juice
price data are collected by surveying a sample of producers in the middle of every month,
although the exact date varies from month to month. Accordingly, the FDD series was con~
structed to be the number of freezing degree days from the 11 of one month to the 10" of
the next month; that is, FDD is the maximum of zero and 32 minus the minimum daily tem-
perature, summed over all days from the 11 to the 10" Thus, %ChgP, for February is the
percentage change in real orange juice prices from mid-January to mid-February, and FDD,

for February is the number of freezing degree days from January 11 to February 10.

The ADL Model and Generalized Least
Squares in Lag Operator Notation

This appendix presents the distributed lag model in lag operator notation, derives the ADL
and quasi-differenced representations of the distributed lag model, and discusses the con-
ditions under which the ADL model can have fewer parameters than the original dis-

tributed lag model.

The Distributed Lag, ADL, and Quasi-Differenced Models,
in Lag Operator Notation

As defined in Appendix 12.3, the lag operator, L, has the property that I’X, = X, ;, and
the distributed lag 8, X, + 8,X_; +
B(L) = 2By L, where 1" = 1. Thus, the distributed lag model in Key Concept 13.1 (Equa-

tion (13.

+ B, 1 X,_, can be expressed as B(L)X,, where

)) can be written in lag operator notation as

Y, = B, + BLX, + u. (13.40)

The ADL Mode! and Generalized Least Squares in Lag Operator Notatior

In addition, if the error term u, follows an AR (p), then it can be written

o(L)u, = u,
where o(L) = Ma\r\, where ¢, = T and &, is serially uncorrelated (note that o,
defined here are the negative of ¢, . . ., 0, in the notation of Equation (13.31)

To derive the ADL model, promuitply each side of Equation (13.40) by o(]

o(L)Y; = o(L)] By + BLX, + 1] = ¢ + SLIX, + 7,
where

P
iy = o(1)B, and 5(L) = o(LP(L), where (1) = >0,
=0
To derive the quasi-differenced model, note that o(L)5(L) X, = B(L)o(L) X,
where X, = ¢(L)X,. Thus, rearranging Equation (13.42) yields

Y=o, + BOX, + i,

where ¥, is the quasi-difference of Y, thatis, ¥, = ¢(L)Y..

t

The ADL and GLS Estimators

The OLS estimator of the ADL coeflicients is obtained by OLS estimation of
(13.42). The original distributed lag coefficients are (L) which, in terms of the «
coefficients, is (L) = 6(L)/¢(L); that is, the coefficients in B(L) satisfy the re;
implied by ¢(L)3(L) = 6(L). Thus, the estimator of the dynamic multipliers base
OLS estimators of the coefficients of the ADL model, §(L) and o(L)

, 18

BAPEL) = 5(L)/4(L).

The expressions for the coefficients in Equation (13.29) in the text are obtained
cial case of Equation (13.45) when r=1and p = 1.

The feasible GLS estimator is computed by obtaining a preliminary estimato
computing estimated quasi-differences, estimating f(L} in Equation (13.44) u
estimated quasi-differences, and (if desired) iterating until convergen
iterated GLS estimator is the NLLS estimator computed by NLLS estimatic
ADL model in Equation (13.42), subject to the nonlinear restrictions on the pa
contained in Equation (13.43).

As stressed in the discussion surrounding Equation (13.36) in the text, it is no

for X, to be (past and present) exogenous to use either of these estimation met
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exogeneity alone does not ensure that Equation (13.36) holds. If, however, X is strictly
exogenous, then Equation (13.36) does hold and, assuming that Assumptions 2—4 of Key
Concept 12.6 hold, these estimators are consistent and asymptotically normal. Moreover,
the usual (cross-sectional heteroskedasticity-robust) OLS standard errors provide a valid

basts for statistical inference.

Parameter reduction using the ADL model.  Suppose that the distributed lag poly-
nomial B(T) can be written as a ratio of lag polynomials, 6,(L}/6,(L), where 6, (L) and 6,(L)
are both lag polynomials of a low degree. Then ¢(L)B(L) in Equation (13.43) is ¢(L)B(L)
o(L)B, (L) /6,(L) = [#(L)/0,(L)}6,(L). If it so happens that ¢(L) = 6,(L), then 6(L) =

o(L)BL)= ,L). If the degree of 6,(1) is low, then g, the number of lags of X, in the ADL

model, can be much less than r. Thus, under these assumptions, estimation of the ADL

it

model entails estimating potentially many fewer parameters than the original distributed
lag model. It is in this sense that the ADL model can achieve a more parsimonious para-
meterizations (that is, use fewer unknown parameters) than the distributed lag model.
As developed here, the assumption that ¢(L) and 6,(L) happen to be the same seems
like a coincidence that would not occur in an application. However, the ADL model 15
able to capture a large number of shapes of dynamic multipliers with only a few coeffi-
cients. For this reason, unrestricted estimation of the ADL model presents an attractive
way to approximate a long distributed lag (that is, many dynamic multipliers) whenever

X is strictly exogenous.

CHAPTER ._ L.

Additional Topics in Time
Series Regression

his chapter takes up some further topics in time series regression, st

with forecasting. Chapter 12 considered forecasting a single variabl
practice, however, you might want to forecast two or more variables sucl
rate of inflation and the growth rate of the GDP. Section 14.1 introduces
model for forecasting multiple variables, vector autoregressions (VARS), |
which lagged values of two or more variables are used to forecast future
of those variables. Chapter 12 also focused on making forecasts one peric
(e.g., one quarter) into the future, but making forecasts two, three, or mc
periods into the future also is important. Methods for making such forec:
discussed in Section 14.2.

Sections 14.3 and 14.4 return to the topic of Section 12.6, stochastic
trends. Section 14.3 introduces additional models of stochastic trends and
alternative test for a unit autoregressive root. Section 14.4 introduces the
concept of cointegration, which arises when two variables share a comm
stochastic trend, that is, when each variable contains a stochastic trend, b
weighted difference of the two variables does not.

In some time series data, especially financial data, the variance chang
time: sometimes the series exhibits high volatility, while at other times th
volatility is low, so that the data exhibit clusters of volatility. Section 14.5
discusses volatility clustering and introduces models in which the varianc
the forecast error changes over time, that is, models in which the forecast
15 conditionally heteroskedastic. Models of conditional heteroskedasticity
several applications. One application is computing forecast intervals, whe:

width of the interval changes over time to reflect periods of high or low
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uncertainty. Another application is to forecasting the uncertainty of returns on
an asset, such as a stock, which in turn can be useful in assessing the risk of

owning a stock.

14.1 Vector Autoregressions

Chapter 12 focused on forecasting the rate of inflation, but in reality economic
forecasters are in the business of forecasting other key macroeconomic variables
as well, such as the rate of unemployment, the growth rate of GDP, and interest
rates. One approach is to develop a separate forecasting model for each variable
using the methods of Section 12.4. Another approach, however, is to develop a
single model that can forecast all the variables, which can help to make the fore-
casts mutually consistent. One way to forecast several variables with a single model
is to use a vector autoregression (VAR). A VAR extends the univariate autore-
gression to multiple time series variables, that is, it extends the univariate autore-

gression to a “vector” of time series variables.

The VAR Model

A vector autoregression, or VAR, with two time series variables, Y, and X,
consists of two equations: in one, the dependent variable is ¥ in the other, the
dependent variable is X,. The regressors in both equations are lagged values of
both variables. More generally, a VAR with k time series variables consists of k
equations, one for each of the variables, where the regressors in all equations are
lagged values of all the variables. The coefficients of the VAR are estimated by
estimating each of the equations by OLS.
VARSs are summarized in Key Concept 14.1.

Inference in VARs. Under the VAR assumptions, the OLS estimators are con-
sistent and have a joint normal distribution in large samples. Accordingly, statisti-
cal inference proceeds in the usual manner; for example, 95% confidence intervals
on coeflicients can be constructed as the estimated coefficient £1.96 standard errors.

One new aspect of hypothesis testing arises in VARs because a VAR with &
variables is a collection, or systemn, of k equations. Thus it is possible to test joint

hypotheses that involve restrictions across multiple equations.

14,1 Vector Auoregressions

A vector autoregression (VAR) is a set of k time series regressions, in which the

regressors are lagged values of all k series. A VAR extends the univariate autore-
gression to a list, or “vector,” of time series variables. When the number of lags
in each of the equations is the same and is equal to p, the system of equations
is called a VAR (p).

In the case of two time series variables, ¥, and X,, the VAR(p) consists of
the two equations

YVi=Pio+ Y+ +BpY, + X+, X, b, (140)
Xi=Boo + P¥y +- B Y X+ Xty (14.2)

where the 5% and the s are unknown coefficients and u,, and u,, are error terms.

The VAR assumptions are the time series regression assumptions of Key
Concept 12.6, applied to each equation. The coefficients of a VAR are esti-
mated by estimating each equation by OLS.

Key
Cor
14.1

For example, in the two-variable VAR (p) in Equations (14.1) and (14
could ask whether the correct lag length is p or p — 1; that is, you cc

whether the coefficients on Y__ and XTm are zero in these two equations. ]

tp
hypothesis that these coefficients are zero is

:On mﬁﬁ = O. mwt = O. w\:u = Od NDQ u\wh = ().

The alternative hypothesis is that at least one of these four coefficients is n
Thus the null hypothesis involves coefficients from both of the equatio
from each equation.

Because the estimated coefficients have a jointly normal distribution
samples, it is possible to test restrictions on these coefficients by compt
F-statistic. The precise formula for this statistic is complicated because th
tion must handle multiple equations, so we omit it. In practice, most mode
ware packages have automated procedures for testing hypotheses on coe
in systems of multiple equations.
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How many variables should be included in a VAR? The number of coef.
ficients in each equation of a VAR is proportional to the number of variables in
the VAR For example, a VAR with five variables and four lags will have 21 coef-
ficients (four lags each of five variables, plus the intercept) in each of the five equa-
nons, for a total of 105 coefficients! Estimating all these coefficients increases the
amount of estimation error entering a forecast, which can result in a deteriora-
tion of the accuracy of the forecast.

The practical implication is that one needs to keep the number of variables
in a VAR small and, especially, to make sure that the variables are plausibly related
to each other so that they will be useful for forecasting each other. For example,
we know from a combination of empirical evidence (such as that discussed in
Chapter 12) and economic theory that the inflation rate, the unemployment rate,
and the short-term interest rate are related to each other, suggesting that these
variables could help to forecast each other in a VAR Including an unrelated vari-
able in a VAR, however, introduces estimation error without adding predictive
content, thereby reducing forecast accuracy.

Determining lag lengths in VARs.! Lag lengths in a VAR can be determined
using either F-tests or information criteria.

The information criterion for a system of equations extends the single-
equation information criterion in Section 12.5. To define this information crite~
rion we need to adopt matrix notation. Let X, be the k X k covariance matrix
of the VAR errors, and let 5., be the estimate of the covariance matrix where the
i,j element of 5, is 1> tythy, where u, is the OLS residual from the i equation

1

and Nw\ is the OLS residual from the ;™ equation. The BIC for the VAR is

BIC(p) = In[det(3,)] + k(kp + :_Fﬂﬁ (14.4)
where det(3,) is the determinant of the matrix 3 The AIC is computed using
Equation (14.4), modified by replacing the term “InT”" by “2”.

The expression for the BIC for the k equations in the VAR in Equation (14.4)
extends the expression for a single equation given in Section 12.5. When there is
a single equation, the first term simplifies to In(SSR(p)/T). The second term in
Equation (14.4) is the penalty for adding additional regressors; k(kp + 1) is the
total number of regression coefficients in the VAR (there are k equations, each of

which has an intercept and p lags of each of the k time series variables).

"This section uses matrices and may be skipped for less mathematical treatmens.

14,1 Vector Autoregressions

Lag length estimation in a VAR using the BIC proceeds analogously
single equation case: among a set of candidate values of p, the estimated lag

p is the value of p that minimizes BIC(p).

Using VARs for causal analysis.  The discussion so far has focused or
VARG for forecasting. Another use of VAR models is for analyzing causal re
ships among economic time series variables; indeed, it was for this purpo
VAR were first introduced to econoniics by the econometrician and macr
omist Christopher Sims (1980). The use of VAR for causal inference is kn
structural VAR modeling, “structural” because in this application VAR are
model the underlying structure of the economy. Structural VAR analysis u
techniques introduced in this section in the context of forecasting, plus som
tional tools. The biggest conceptual difference between using VAR for fore
and using them for structural modeling, however, is that structural modeling r
very specific assumptions, derived from economic theory and institutional ]
edge, of what is exogenous and what is not. The discussion of structural V
best undertaken in the context of estimation of systems of simultaneous equ
which goes beyond the scope of this book. For an introduction to using VA
forecasting and policy analysis, see Stock and Watson (2001). For additional
ematical detail on structural VAR modeling, see Hamilton (1994) or Watson:

A VAR Model of the Rates of Inflation

and Unemployment

As an illustration, consider a two-variable VAR for the inflation rate, Inf, 2
rate of unemployment, Unemp, As in Chapter 12, we treat the rate of infls
having a stochastic trend, so that it is appropriate to transform it by compu
first difference, Alnf,.

A VAR for Alnf, and Unemp, consists of two equations, one in which
the dependent variable and one in which Unemp, is the dependent variabl
regressors in both equations are lagged values of Alnf, and Unemp,. In Sectic
(Equation (12.17)), we reported the following regression of Alnf, on four la
of Aluf, and Unemp,, estimated using quarterly U.S. data from 1962:1-199

Alnf, = 1.32 = 0.36AInf_, — 0.34AInf_, + 0.07AInf_; — 0.03Alnf,_,

0.47) (0.09) (0.10) (0.08) (0.09)
— 2.68Unemp,_, + 3.43Unemp,_> — 1.04Unemp,_+ + 0.07Unemp, _,.
(0.47) (0.89) 0.89) (0.44)

The adjusted R? is R? = 0.35.
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14.2

This is in fact the first equation of a VAR (4) model of the change in inflation
and the unemployment rate. The second equation has the same regressors, but
the dependent variable is the unemployment rate:

e — P = ~
Unemp, = 0.12 + 0.043AInf,; + 0.000Alnf_, + 0.021Alnf,_5 + 0.021AInf,_,

(0.09) (0.020) (0.015) (0.16) (0.15)
(14.6)
+ 1.68Unemp,_| — 0.70Unemp, 5 — 0.03Unemp,_5 + 0.02Unemp,_,.

0.12) (0.20) (0.20) (0.09)

The adjusted R? is R? = 0.975.

Equations (14.5) and (14.6), taken together, are 2 VAR (4) model of the
change in the rate of inflation, Alnf, and the unemployment rate, Unemp,.

These VAR equations can be used to perform Granger causality tests. The
Fostatistic testing the null hypothesis that the coefficients on Unemp,_;, Unemp,_,,
Unemp,_,, and Unemp,_, are zero in the inflation equation (Equation (14.5)) is
8.51, which has a p-value less than 0.001. Thus, the null hypothesis is rejected,
so we can conclude that the unemployment rate is a useful predictor of changes
in inflation, given lags in inflation (that is, the unemployment rate Granger-causes
changes in inflation). Similarly, the F-statistic testing the hypothesis that the coef-
ficients on the four lags of Alnf, are zero in the unemployment equation (Equa-
tion (14.6)) is 2.41, which has a p-value of 0.051. Thus four lags of the change
in the inflation rate Granger-cause the unemployment rate at the 10% significance
level but not at the 5% significance level.

Forecasts of the rates of inflation and unemployment one period ahead are
obtained exactly as discussed in Section 12.4. The forecast of the change of infla-
tion from 1999:1V to 2000:1, based on Equation A:.m\v.ma using data through
1999:1V, was computed in Section 12.4; this forecast is Alnfypp01) 19991y = 0.5 per-
centage points. A similar calculation using Equation (14.6) gives a forecast of the un-~
employment rate in 2000:1 based on data through 1999:1V of g&:’%ﬁsi 119991V =
4.1%, very close to its actual value, Unemp,g; = 4.0%.

Multiperiod Forecasts

The discussion of forecasting so far has focused on making forecasts one period
in advance. Often, however, forecasters are called upon to make forecasts further
into the future. The forecasting regression models of Chapter 12 can produce
such multiperiod forecasts, but some modifications are needed. This section

14.2  Multiperiod Forecasts

discusses those modifications, first for univariate autoregressions and th
multivariate forecasting.

Multiperiod Forecasting: Univariate
Autoregressions

We present two methods for making multiperiod forecasts from a unis
autoregression. The first is the “multiperiod regression method”; the second

“iterated autoregression” method.

The multiperiod regression method: AR(1). Suppose you want to 1
autoregression to make a forecast two periods ahead. In the multiperiod r
sion method, each predictor is replaced by its lagged value, and the coeffici
this modified autoregression are estimated by OLS. If Y, follows an AR (1)
in the one-step ahead regression Y] is regressed onto a constant and Y, ;.
two-step ahead regression, however, Y, | is unavailable, so the two-step
regression entails regressing Y; onto a constant and Y,_,.

For example, consider forecasting the quarterly change in the inflatio
two quarters ahead using an AR (1) model for the change in inflation. The
ified ewo-period ahead regression, estimated over the period 1962:1-1999:

—
Alnf, > = 0.02 - 0.30Alnf,_,,
0.12) (0.09)
——
where Alnf,,, is the predicted value of Alnf, based on values of the inflatio
through period £ — 2.

Equation (14.7) illustrates the key idea of the multiperiod regression meth
data from period t — 1 appear as a regressor, so only values of inflation dated
and earlier are used to forecast Alnf,. For example, according to Equation (
the forecast of the change of inflation between the first and the second quarter of
based on information through the fourth quarter of 1999, is D\N/:\mccc”::c&
0.02 = 0.30AInf 999.1y. From Table 12.1 (p. 434), Alnf,g99.1v = 0.4.
Alnfasgont rossay = 0.02 = 0.30 X 0.4 = —0.1. That is, based on data throug
fourth quarter of 1999, inflation is forecasted to decline by one tenth of -
centage point from the first to the second quarter of 2000.

To compute forecasts into the more distant future, the multiperiod r
sion method involves using more distant lags. For example, when Y, follo
AR(1), the three-period ahead forecast is computed from a regression of Y
a constant and Y, ;.
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The multiperiod regression method: AR(p}. The multiperiod regression
approach can be extended to higher order autoregressions by including additional
lagged values in the regression. In general, in an AR (p), the modified two-step ahead

regression would entail regressing ¥ onto a constant and ¥, 5, Y5, ..., Y .
Similarly, the three-step ahead regression would entail regressing Y, onto a con-
stantand Y,_5, Y, ..., «JTN.

For axms:&ﬂ the two-period ahcad forecast from an AR{4) model for Alnf,
1s obtained using the regression of Alnf, onto Alnf,_,, . . ., Alnf,_s:

Alif, iy = 0.02 = 0.27AInf_ + 0251y, ~ 0.08Alnf_, — 0.01AInf ;. (14.8)
0.10) (0.08) (0.09) (0.10) (0.08)

The values in Table 12.1 and the coefficients in Equation (14.8) can be used
to forecast the change in inflation from 2000:1 to 2000:1I: D\NWN%O”::%@“E =
0.02 = 0.27AInf, 9901y + 0.25A00f 0011 = 0.08AInfy gg0.4y — 0.01AInf, g0, = 0.02 —
027 x0.4+025%x0.0-0.08 x1.1~0.01x(-0.4) = —0.2. That is, based on
Equation (14.8), based on inflation data through the fourth quarter of 1999, infla-
tion is forecasted to decline by 0.2 percentage points from the first to the second
quarter of 2000.

To make forecasts three periods in advance using an AR(4), Equation (14.8)
would be modified so that Alnf, is regressed onto Alnf, 5, . . ., Alnf, .. More generally,
to make an fi-period ahead forecast of Y, using an AR (p), the variable of interest

is regressed on its p lags, where the most recent date of the regressors is t — h.

Standard errors in multiperiod regressions. Because the dependent variable
in a multiperiod regression occurs two or more periods into the future, the error
term in a multiperiod regression is serially correlated. To see this, consider the two-
period ahead inflation forecasts, and suppose there is a surprise jump in oil prices
next quarter. Then today’s two-period ahead forecast of inflation will be too low
because it does not incorporate this unexpected event. Because the oil price rise
was also unknown last quarter, the two-period ahead forecast made last quarter will
also be too low: thus, the surprise oil price hike next quarter means that both last
quarter’s and this quarter’s two-period ahead forecasts are too low. Because of such
intervening events, the error term in a multiperiod regression is serially correlated.

As discussed in Section 13.4, if the error term is serially correlated, the usual
OLS standard errors are incorrect or, more precisely, they are not a reliable basis
for inference. Therefore heteroskedasticity- and autocorrelation-consistent (HAC)
standard errors must be used with multiperiod regressions. The standard errors

reported in this section for multiperiod regressions therefore are Newey-West HAC

14.2  Multiperiod Forecas

standard errors, where the truncation parameter m is set according to
(13.17); for these data (for which T = 152), Equation (13.17) yields m
longer forecast horizons the amount of overlap, and thus the degree of s
relation in the error, increases: in general, the first h — 1 autocorrelation c«
of the errors in an h-period ahead regression are nonzero. Thus, larger v.
than indicated by Equation (13.17) are appropriate for multiperiod regress

long forecast horizons.

The iterated AR forecast method: AR(1). The iterated AR forecas
uses the AR model to extend a one-period ahead forecast to two or m
ods ahead. The two-period ahead forecast is computed in two steps. I
step, the one-period ahead forecast is computed as in Section 12.3. In t}
step, the two-period ahead forecast is computed using the one-period at
cast for the intervening period. Thus, the one-period ahead forecast is «
intermediate step to make the two-period ahead forecast. For more dist
zons, this process is repeated or “iterated.”

As an example, consider the first order autoregression for Alnf, (
(12.7)), which is

—
Alnf, = 0.02 — 0.21AInf ..
(0.14) (0.11)

The first step in computing the two-quarter ahead forecast of Alnfyq.
Equation (14.9) using data through 1999:1V is to noamzﬁwm one-quar
forecast of Alnfyyp based on data through 1999:IV: Alnfynn0.1 1999:1v -
0.21AInf 999,y = 0.02 - 0.21 X 0. 4=- —0.1. In the second step, this for forecast
tuted into Equation (14.9); that is, >~Q.Nooo 11999y = 0.02-0.21 D?&mooo I
0.02 — 0.21 X (-=0.1) = 0.0. Thus, based on information through the fou
ter of 1999, this forecast is that the rate of inflation will not change bet

first and second quarters of 2000.

The iterated AR forecast method: AR(p). The iterated AR(1) s
extended to an AR(p) by replacing Y, in the estimated AR (p) with it
made the previous period.

For example, consider the iterated two-step ahead forecast of inflati

on the AR (4) model from Section 12.3 (Equation (12.13)),

Alnf, = 0.02 = 0.21AInf, — 0.32AInf., + 0.19AInf,_, — 0.04AInf,_,.
(0.12) (0.10) (0.09) 0.09) 0.10)
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The multiperiod regression forecast h periods into the future based on an
AR(p) is computed by estimating the multiperiod regression

Y,=0,+6Y_, + - +O,Y_

t=h prep-htd Tty AHAHC

then using the estimated coefficients to compute the forecast h periods in advance.

The iterated AR forecast is computed in steps: first compute the one-
period ahead forecast, next use that to compute the two-period ahead forecast,
and so forth. The two- and three-period ahead iterated forecasts based on an
AR (p) are

Y2 = B+ PW\T:TN Yy B+t mnxé (14.12)

A

Mv\_l =py+ w_%l_l + PW\TN_TW +BY gt e m%\@ (14.13)

where the % are the OLS estimates of the AR(p) coefficients. Continuing this

process (“iterating”) produces forecasts further into the future.

The iterated two-quarter ahead forecast is computed by replacing Alnf, ; in Equa-
tion (14.10) with the forecast D\~.A/?L. In Section 12.3, we 85@:\%/& the forecast of
Alnfygop, based on data through 1999:1V using this AR (4) to be AMlnfygn.; 19991y =
0.2. Thus, the two-quarter ahead iterated forecast based on the AR(4) is
— ——
Alnfappoar 19991y = 0-02 =0.21AInfo000.1 19990y = 0.32Antf 99,y + 0.19A1f 990y —
0.04Alnf, ooy = 0.02 = 0.21 X 02 = 032X 0.4 + 0.19 X 0.1 = 0.04 X 1.1 = —0.2.
According to this iterated AR (4) forecast, based on data through the fourth quar-
ter of 1999, the rate of inflation will fall by 0.2 percentage points between the first
and second quarters of 2000.

Both methods for multiperiod univariate forecasting are summarized in Key
Concept 14.2.

Multiperiod Forecasting:
Multivariate Forecasts

The same two methods for multiperiod forecasting from univariate models can
be used 1in multivariate forecasting regressions.

14.2  Multiperiod Forecasts

The multiperiod regression method. In the general multiperiod
ston method, all predictors are lagged I periods to produce the it
ahead forecast.

For example, the forecast of Alnf, two quarters ahead using four lags

Alnf, and Unemp, is computed by first estimating the regression

—
Alnfy,s = 0.27 — 0.28AInf, , + 0.15AIf, 5 — 0.21AInf_, — 0.06AIn,
(0.40) (0.11) (0.10) (0.11) (0.08)

= 0.21Unemp, 5 + 0.79Unemp,_; — 2.11Unemp_, + 1.49Unemp,_;.
(0.40) (0.98) (1.12) (0.56)

The two-quarter ahead forecast is computed by substituting the va
Alnfiggo.ps - - - » Afiggg.0ys Unempiggg s - - ., Unemp,gge.y into Equation (14.
yields >\~/§8@::8§< = 0.27 = 0.28AInf 999,y + 0.15AInf 999,y = -21A
= 0.06AInf 19991 — 0.21Unemp,gg.1y + 0.79Unempggo.; — 2.11Unemp
1.49Unemp, 499, = 0.0.

The three-quarter ahead forecast of Alnf, is computed by lagging
regressors in Equation (14.14) by one additional quarter, estimating that
sion, and computing the forecast, and so forth for forecasts farther into the

The iterated VAR forecast method. The iterated AR method ext
a VAR, with the modification that because the VAR has one or mor
tional predictors it is necessary to compute intermediate forecasts of
predictors.

The two-period ahead iterated VAR forecast is computed in two s
the first step, the VAR is used to produce one-quarter ahead forecasts o
variables in the VAR, as discussed in Section 14.1. In the second step, the
casts take the place of the first lagged values in the VAR, that is, the two
ahead forecast is based on the one-period ahead forecast, plus additiona
specified in the VAR. Repeating this produces the iterated VAR forecast
into the future.

As an example, we compute the iterated VAR forecast of Alufygaq b
data through 1999:IV based on the VAR (4) for Alnf, and Unemp, in Sectis
(Equations (14.5) and(14.6)). The first step is to compute the one-quarte

———. ——
mW.H/mnmma Al 1999:1v and Unentp a1,y from that VAR, The
Alnfanoo.rrese:rv based on Equation (14.5) was computed in Section 12.3 ar

percentage points (Equation (12.18)); a similar calculation based on Equatio
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e —
shows that Unemp 119990y = 4-1%. In the second step, these forecasts are

substituted into Equations (14.5) and (14.6) to produce the two-quarter ahead
forecast. Accordingly,

—

D\Nwmcc;::%p:\ = 1.32 = 0.36AInfy00.1 19991y — U-34AInfig99.1y (14.15)
+ 0.07AInf g9, = 0.03A1nf 9991y — N.om§wg;:_££<
+ 3.43Unemp gg9.v — 1.04Unempyggg.1p + 0.07 Unemp 9994,
1.32-036x0.7-034x04 + 007 x0.1-0.03x 1.1

il

—268x41+343x41-1.04x42+0.07x43
-0.1.

1l

Thus, the iterated VAR (4) forecast, based on data through the fourth quarter of
1999, is that inflation will decline by 0.1 percentage points between the first
and second quarters of 2000.

Multiperiod forecasts with multiple predictors are summarized in Key

Concept 14.3.

Which Method Should You Use?

Each of the two methods has its advantages and disadvantages. If the autoregres-
sive (or vector autoregressive) model provides a good approximation to the cor-
relations in the data, then the iterated forecast method will tend to produce more
precise forecasts. This is because the iterated forecasts use coefficient estimators in
a one-period ahead regression, which have a smaller variance (are more efficient)
than the estimators from the multiperiod regression.

On the other hand, if the AR or VAR is incorrectly specified and does not
provide a good approximation to the correlations in the data, then extrapolating
these forecasts by iterating can lead to biased forecasts. Accordingly, if the AR or
VAR model is poor, the multiperiod regression forecasts can be more accurate.

Thus there is no easy answer as to whether one method is better than the
other. If the difference between the two forecasts is large, this could be an indi-
cation that the one-period ahead model is incorrectly specified, and if so the mul-
tiperiod ahead forecast tends to be more accurate. Often, however, the differences
between the two forecasts is small, as was the case in the inflation forecasts com-
puted in this section, in which case the choice of which method to use can be
based on which is most conveniently implemented in your software.

14.3  Orders of Integration and Another Unit Root Test

The multiperiod regression forecast b periods into the future based on p lags
each of ¥, and an additional predictor X, is computed by first estimating the
multiperiod regression

(14.16)

S Xen T o+ 00, X Uy

Lo +8Y, »

pt-p—h+1 +
then using the estimated coefficients to make the forecast h periods in advance.
The iterated VAR forecast is computed in steps: first compute the one-
period ahead forecasts of all the variables in the VAR, next use those to com-
pute the two-period ahead forecasts, and so forth. The two-period ahead iterated
forecast of Y, based on the two-variable VAR (p) in Key Concept 14.1 is

Y2 =B+ BuYegya + BioYip + Bis¥is + -+ +BY,

(14.17)

X T Xt e Xis T NpXep

where the coefficients in Equation (14.17) are the OLS estimates of the VAR
coefficients. Iterating produces forecasts further into the future.

Key
Conc
14.3

14.3 Orders of Integration and Another
Unit Root Test

This section extends the treatment of stochastic trends in Section 12.6 by ad

ing two further topics. First, the trends of some time series are not well des

by the random walk model, so we introduce an extension of that model ar

cuss its implications for regression modeling of such series. Second, we cor

the discussion of testing for a unit root in time series data and, among other t

introduce a second test for a unit root.
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Other Models of Trends and Orders
of Integration

Reecall that the random walk model for a trend, introduced in Section 12.6, spec-
ifies that the trend at date r equals the trend at date ¢ — 1, plus a random error
term. If Y, follows a random walk with drift f3;, then

Y, =0+ Y, +u, (14.18)

where 4, is serially uncorrelated. Also recall from Section 12.6 that, if a series has
a random walk trend, then it has an autoregressive root that equals one.

Although the random walk model of a trend describes the long-run move-
ments of many economic time series, some economic time series have trends that
are smoother—that is, vary less from one period to the next—than is implied by
Equation (14.18). A different model is needed to describe the trends of such series.

One model of a smooth trend makes the first difference of the trend follow
a random walk; that is,

AY, = B, + AY_, + u, (14.19)

where u, is serially uncorrelated. Thus, if Y, follows Equation (14.19), AY, follows
a random walk, so AY, ~ AY, | is stationary. The difference of the first differences,
AY, - AY,_,, 15 called the second difference of Y, and is denoted A>Y, = AY,— AY, .
In this terminology, if Y, follows Equation (14.19), then its second difference is
stationary. If a series has a trend of the form in Equation (14.19), then the first
difference of the series has an autoregressive root that equals one.

“Orders of integration’ terminology. Some additional terminology is use-
ful for distinguishing between these two models of trends. A series that has a ran-
dom walk trend is said to be integrated of order one, or I(1). A series that has
a trend of the form in Equation (14.19) is said to be integrated of order two,
or I(2). A series that does not have a stochastic trend and is stationary is said to
be integrated of order zero, or 1(0).

The order of integration in the (1} and I(2) terminology is the number
of times that the series needs to be differenced for it to be stationary: if Y, is (1),
then the first difference of Y;, AY,, is stationary, and if Y, is I(2), then the second
difference of Y, A%Y, is stationary. If ¥, is 1{0), then Y, is stationary.

Orders of integration are summarized in Key Concept 14.4.

How to test whether a series is [(2) or I(1). I Y,is I(2), then AY, is I(1), so

that AY, has an autoregressive root that equals one. If, however, Y, is I(1), then AY,

14.3  Orders of Integration and Another Unit Root Test

w» If Y} is integrated of order 1, that 1s, if ¥ is :CﬁnTm: Y, has a unit autore-
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gressive root and its first difference, AY), is stationary.
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» If Y is integrated of order d (is I(d)), then Y, must be differenced d times

to eliminate its stochastic trend, that is, DJ\N 1s stationary.

14.4

is stationary. Thus the null hypothesis that Y] is I{2) can be tested against the a
native hypothesis that Y, is I(1) by testing whether AY; has a unit autoregre
root. If the hypothesis that AY; has a unit autoregressive root is rejected, ther
hypothesis that Y, is I(2) is rejected in favor of the alternative that Y, is I(1).

Examples of I(2) and I{1) series: The price level and the rate of inflat
In Chapter 12, we concluded that the rate of inflation in the United States §
sibly has a random walk stochastic trend, that is, that the rate of inflation is
If inflation is I(1), then its stochastic trend is removed by first differencing, so
is stationary. Recall from Section 12.2 (Equation (12.2)) that quarterly infla
at an annual rate is the first difference of the logarithm of the price level, t
400; that is, Inf, = 400Ap,, where p, = In(CP1). Thus treating the rate of infl:
as I(1) is equivalent to treating Ap, as I(1), but this in turn is equivalent to t
ing p, as I(2). Thus, we have all along been treating the logarithm of the |
level as I(2), even though we have not used that terminology.

The logarithm of the price level, p,, and the rate of inflation are plotte
Figure 14.1. The long-run trend of the logarithm of the price level (Figure 1:
varies more smoothly than the long-run trend in the rate of inflation (Fi
14.1b). The smoothly varying trend in the logarithm of the price level is ty
of I{2) series.

The DF-GLS Test for a Unit Root

This section continues the discussion of Section 12.6 regarding testing for a
autoregressive root. We first describe another test for a unit autoregressive root
so-called DF-GLS test. Next, in an optional mathematical section, we discuss

unit root test statistics do not have normal distributions, even in large sampl
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_ FIGURE 14.1 The Logarithm of the Price Level and the Inflation Rate in the United States,
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i The trend in the logarithm of prices (Figure 14.1a) is much smoother than the trend in inflation

14.3  Orders of Integration and Another Unit Root Test

The DF-GLS test. The ADF test was the first test developed for testin
null hypothesis of a unit root and is the most commonly used test in pra
Other tests subsequently have been proposed, however, many of which
higher power (Key Concept 3.5) than the ADF test. A test with higher p
than the ADF test is more likely to reject the null hypothesis of a unit root a
the stationary alternative when the alternative is true; thus, a more powerft
is better able to distinguish between a unit AR root and a root that is larg
less than one.

This section discusses one such test, the so-called DF-GLS test devel
by Elliott, Rothenberg, and Stock (1996). The test 1s introduced for the case
under the null hypothesis, Y has a random walk trend, possibly with drift
under the alternative Y, is stationary around a linear time trend.

The DF-GLS test is computed in two steps. In the first step, the intercep
trend are estimated by generalized least squares (GLS; see Section 13.5). The
estimation is performed by computing three new variables, ¥/, X, and X, v
V=YandV=Y-0c'Y ,t=2.. ., T,Xy=land X, =1-¢ ,t=2,..
and X,y =land X, =t - ot — 1), where o is computed using the formula,
1 —13.5/T. Then Vis regressed against X;,and X;,; that is, OLS is used to

mate the coefficients of the population regression equation
W= 08Xy + 0,Xy + ¢, (

using the observations t = 1, . .., T, where ¢, is the error term. Note that
is no intercept in the regression in Equation (14.20). The OLS estimators 5
5, are then used to compute a “detrended” version of Y, Y=Y, — 6y + 6,
In the second step, the Dickey-Fuller test is used to test for a unit autore
sive root in Y, where the Dickey-Fuller regression does not include an inte
or a time trend. That 1s, DM\\ is regressed against KD and DM\N RN DM\MN& v
the number of lags p is determined, as usual, either by expert knowledge
using a data-based method such as the AIC or BIC as discussed in Section
If the alternative hypothesis is that Y; is stationary with a mean that mig
nonzero but without a time trend, then the preceding steps are modified. Sy
ically, " is computed using the formula 0" = 1 — 7/T, X,, is omitted fror
regression in Equation (14.20), and the series K; is computed as Ku =Y -
The GLS regression in the first step of the DF-GLS test makes this test
complicated than the conventional ADF test, but it is also what improves its
ity to discriminate between the null hypothesis of a unit autoregressive
and the alternative that Y, is stationary. This improvement can be substantia
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example, suppose that Y, is in fact a stationary AR(1) with autoregressive cocffi-
cient ff, = 0.95, that there are T = 200 observations, and the unit root tests are
computed without a time trend (that is, 1 is excluded from the Dickey-Fuller
regression, and X, is omitted from Equation (14.20)). Then the probability that
the ADF test correctly rejects the null hypothesis at the 5% significance level is
approximately 31% compared to 75% for the DF-GLS test.

Critical values for DF-GLS test. Because the coefficients on the determin-
istic terms are estimated differently in the ADF and DF-GLS tests, the tests have
different critical values. The critical values for the DF-GLS test are given in Table
14.1. If the DF-GLS test statistic (the t-statistic on Y, in the regression in the sec-
ond step) is less than the critical value, then the null hypothesis that Y, has a unit
root is rejected. Like the critical values for the Dickey-Fuller test, the appropriate
critical value depends on which version of the test is used, that 1s, on whether or
not a time trend is included (whether or not X,, is included in Equation (14.20)).

Application to Inflation. The DF-GLS statistic, computed for the rate of CPI
inflation, Inf, over the period 1962:1 to 1999:1V, is —1.98 when three lags of DM\,&
are included in the Dickey-Fuller regression in the second stage. This value is just
less than the 5% critical value in Table 14.1, —=1.95, so using the DF-GLS test with
three lags leads to rejecting the null hypothesis of a unit root at the 5% significance
level. The choice of three lags was based on the AIC (out of a maximum of six
lags), which in this case happens to choose the same number of lags as the BIC.
Because the DF-GLS test is better able to discriminate between the unit root
null hypothesis and the stationary alternative, one interpretation of this finding is
that inflation is in fact stationary, but the Dickey-Fuller test implemented in Sec-
tion 12.6 failed to detect this (at the 5% level). This conclusion, however, should
be tempered by noting that whether the DE-GLS test rejects is, in this application,
sensitive to the choice of lag length. If the test is based on four lags, it rejects at the

TABLE 14.1 Critical Values of the DF-GLS Test

Deterministic Regressors
(Regressors in Equation (14.20)) 10% 5% 1%

_:Hmnam? o:? AX: o:_é -1.62 -1.95 —2.58

Intercept and time trend (X, u:m VN.V ~2.57 ~2.89 lm 48

Source: Fuller (1976) and Elliott, Rothenberg, and Stock (1996, Table 1).
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10% but not the 5% level, and if it 15 instead based on two lags it does not rejec
the 10% level. The result is also sensitive to the choice of sample; if the statisti
instead computed over the period 1963:1 to 19991V (that is, dropping just the f
year), the test rejects at the 10% level but not at the 5% level. The overall pict
therefore is rather ambiguous (as it 15-based on the ADF test, as discussed follc
ing Equation (12.34)) and requires the forecaster to make an informed judgm

about whether it is better to model inflation as 23 or statio

Why Do Unit Root Tests Have Nonnormal
Distributions?

In Section 12.6, it was stressed that the large-sample normal distribution uy
which regression analysis relies so heavily does not apply if the regressors are n
stationary. Under the null hypothesis that the regression contains a unit root,
regressor Y, in the Dickey-Fuller regression (and the regressor ¥?, in the mq
ified Dickey-Fuller regression in the second step of the DF-GLS test) is non:
tionary. The nonnormal distribution of the unit root test statistics is a conseque;
of this nonstationarity.

To gain some mathematical insight into this nonnormality, consider the s
plest possible Dickey-Fuller regression, in which AY, is regressed against the s
gle regressor Y,_; and the intercept is excluded. In the notation of Key Conc
12.8, the OLS estimator in this regression is § = MM\IBM\\M ?,, so that

H T
ﬂMx Ay,

Té = — = (14
2 ¥

Consider the numerator in Equation (14.21). Under the additional assur
tion that Y, = 0, a bit of algebra (Exercise 14.5) shows that

S

T T
&2y = ) [0 VT - 3| (14
t=1 t=

Under the null hypothesis, AY, = u,, which is serially uncorrelated and

a finite variance, so the second term in Equation (14.22) has the probability 1
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14.4

n

\MA Vz\v LN o2, Under the assumption that Y, = v_, he first term in Equation
(1 R« 2) can be written Y,/VT = z,, i M \Y, = v “ M , which In turn obeys
ﬁrc central _::: theorem; that is, Y, \/ T |;+ /\A 52). Thus C\.N\/Q;vu —

Aﬁxv R 6>(Z% — 1), where 7 is a standard normal random variable. Recall,
T%a cver, that the square of a standard normal distribution has a chi-squared dis-
tribution with one degree of freedom. It therefore follows from Equation (14.22)

ing distribution

l\)

MFp w& -1). (14.23)
=1

The large-sample distribution in Equation (14.23) is different than the usual
large-sample normal distribution when the regressor is stationary. Instead, the
numerator of the OLS estimator of the coefficient on Y] in this Dickey-Fuller
regression has a distribution that is proportional to a chi-squared distribution with
one degree of freedom, minus one.

This discussion has only considered the numerator of T65. The denominator
also behaves unusually under Hrn Sc: hypothesis: because Y, follows a random
walk under the null rvﬁoﬁrwﬁf T Mv\x does not converge in wmovmgrﬁ\ to a con-
stant. Instead, the denominator in mmzwios C# 21) 1s a random variable, even
in large samples: under the null hypothests, ﬁM 2, converges in distribution jointly
with the numerator. The unusual distributions of the numerator and denomina-
tor in Equation {14.21) are the source of the nonstandard distribution of the
Dickey-Fuller test statistic and the reason that the ADF statistic has its own spe-
cial table of critical values.

Cointegration

Sometimes two or more series have the same stochastic trend in common. In this
special case, referred to as cointegration, regression analysis can reveal long-run

relationships among time series variables, but some new methods are needed.

Cointegration and Error Correction
Two or more time series with stochastic trends can move together so closely over
the long run that they appear to have the same trend component, that is, they

appear to have a common trend. For example, two interest rates on U.S.

14.4  Cointegration
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One-year and three-month interest rates share a common stochastic frend. The spread, or the differe
between the two rates does not exhibit a frend. These two interest rates appear to be cointegrated.

government debt are plotted in Figure 14.2. One of the rates is the interest
on 90-day U.S. Treasury bills, at an annual rate (R90,); the other is the in
rate on a one-year U.S. Treasury bond (Rlyr,); these interest rates are disct
in Appendix 14.1. The interest rates exhibit the same long-run tendenci
trends: both were low in the 1960s, both rose through the 1970s to peaks 1
early 1980s, then both fell through the 1990s. Moreover, the difference bet
the two series, Rlyr, — R90,, which is called the “spread” between the two i
est rates and is also plotted in Figure 14.2, does not appear to have a trend.
is, subtracting the 90-day interest rate from the one-year interest rate appe:
eliminate the trends in both of the individual rates. Said differently, althoug]
two interest rates differ, they appear to share a common stochastic trend: be:
the trend in each individual series is eliminated by subtracting one series fror
other, the two series must have the sane trend, that is, they must have a comn
stochastic trend.
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Two or more series that have a common stochastic trend are said to be coin-
tegrated. The formal definition of cointegration (due to Granger, 1983) is given
in Key Concept 14.5. In this section, we introduce a test for whether cointegra-
tion is present, discuss estimation of the coefficients of regressions relating coin-
tegrated variables, and illustrate the use of the cointegrating relationship for

forecasting. The discussion initially focuses on the case that there are only two

variables, X, and Y.

Vector error correction model.  Until now, we have eliminated the stochas-
tic trend in an I(1) variable Y, by computing its first difference, AY;; the problems
created by stochastic trends were then avoided by using AY; instead of ¥, in time
series regressions. If X, and Y, are cointegrated, however, another way to elimi-
nate the trend is to compute the difference Y, - 6.X,. Because the term Y, — 06X, is
stationary, it too can be used in regression analysis.

In fact, if X, and Y, are cointegrated, the first differences of X, and Y, can be mod-
eled using a VAR, augmented by including Y., — 6X,_, as an additional regressor:

AY, = Bio + PudYiq + + B AY, AKX o
V\{DXT“ + oy (Yoy — 60X ) + iy (14.24)

AX, = Bog + By AY,y + -+ P A+ AX e
1opAXp+ 0oV — 60X, 4) + 1 (14.25)

The term Y, — 0X, 1s called the error correction term. The combined
model in Equations (14.24) and (14.25) is called a vector error correction
model (VECM). In a VECM, past values of ¥, — 06X, help to predict future val-
ues of AY, and/or AX,.

How Can You Tell Whether Two Variables
Are Cointegrated?

There are three ways to decide whether two variables can plausibly be modeled
as cointegrated: use expert knowledge and economic theory, graph the series and
see whether they appear to have a common stochastic trend, and perform statis-
tical tests for cointegration. All three methods should be used in practice.

First, you must use your expert knowledge of these variables to decide
whether cointegration is in fact plausible. For example, the two interest rates in
Figure 14.2 are linked together by the so-called expectations theory of the term
structure of interest rates. According to this theory, the interest rate on January 1

14.4  Cointegration 5

Suppose X, and Y, are integrated of order one. If, for some coefficient 0,
Y, — 0X, is integrated of order zero, then X, and Y are said to be cointegrated.

The coefficient 6 is called the cointegrating coeflicient. Ka
. NG
If X, and Y, are cointegrated, then they have the same, or common, sto-
chastic trend. Computing the difference Y, — 6X, eliminates this common C

stochastic trend.

b/
once|
5

=

3

on the one-year Treasury bond is the average of the interest rate on a 90-day Tr
sury bill for the first quarter of the year and the expected interest rates on fut
90-day Treasury bills issued in the second, third, and fourth quarters of the ye
if not, then investors could expect to make money by holding either the one-y
Treasury note or a sequence of four 90-day Treasury bills, and they would bid
prices until the expected returns are equalized. If the 90-day interest rate h:
random walk stochastic trend, this theory implies that this stochastic trend is inh
ited by the one-year interest rate and that the difference between the two ra
that is, the spread, is stationary. Thus, the expectations theory of the term str
ture implies that, if the interest rates are I(1), then they will be cointegrated w
a cointegrating coefficient of = 1 (Exercise 14.2).

Second, visual inspection of the series helps to identify cases in which cc
tegration is plausible. For example, the graph of the two interest rates in Fig
14.2 shows that each of the series appears to be I(1) but that the spread app
to be I(0), so that the two series appear to be cointegrated.

Third, the unit root testing procedures introduced so far can be extendec
test for cointegration. The insight on which these tests are based is that if Y,
X, are cointegrated with cointegrating coefficient 6, then Y, — 6X; 1s station;
otherwise, Y, — 8X, is nonstationary (is I(1)). The hypothesis that Y, and X, are
cointegrated (that is, that Y, — 8X, is I(1)) therefore can be tested by testing
null hypothesis that Y, — 6X, has a unit root; if this hypothesis is rejected, the
and X, can be modeled as cointegrated. The details of this test depend on whet

the cointegrating coeflicient 8 is known.

Testing for cointegration when 8 s known. Insome cases expert knowle
or economic theory suggests values of 8. When 8 is known, the Dickey-Fuller
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DF-GLS unit root tests can be used to test for colntegration by first constructing
the series z, = Y, — 0X,, then testing the null hypothesis that =z, has a unit autore-

gressive root.

Testing for cointegration when 8is unknown. If the cointegrating coeffi-
cient 6 1s unknown then it must be estimated prior to testing for a unit root in
the error correction term. This preliminary step makes it necessary to use differ-
ent critical values for the subsequent unit root test.

Specifically, in the first step the cointegrating coefficient 6 is estimated by OLS

estimation of the regression
Y=a+6X + z,. (14.26)

In the second step, a Dickey-Fuller t-test (with an intercept but no time trend)
is used to test for a unit root in the residual from this regression, 2,. This two-step
procedure is called the Engle-Granger Augmented Dickey-Fuller test for cointe-
gration, or EG-ADF (Engle and Granger, 1987).

Critical values of the EG-ADF statistic are given in Table 14.2.
cal values in the first row apply when there is a single regressor in Equation

> The criti-
(14.26), so that there are two cointegrated variables (X, and Y}. The subsequent
rows apply to the case of multiple cointegrated variables, which 1s discussed at the

end of this section.

Estimation of Cointegrating Coefficients

If X, and Y, are cointegrated, then the OLS estimator of the coefficient in the
cointegrating regression in Equation (14.26) is consistent. However, in general
the OLS estimator has a nonnormal distribution, and inferences based on its
t-statistics can be misleading whether or not those #-statistics are computed using
HAC standard errors. Because of these drawbacks of the OLS estimator of 6,
econometricians have developed a number of other estimators of the cointe-
grating coethicient.

One such estimator of § that is simple to use in practice is the so-called

dynamic OLS (DOLS) estimator (Stock and Watson, 1993). The DOLS esti-

r (1976) and Phillips and Ouliaris (1990). Fol-
lowing a suggestion by Hansen (1992), the critical values in Table 4.2 are chosen so that they apply

The critical values in Table 14.2 are taken from Ful

whether or not X, and Y have drift components.
i f
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| TABLE 14.2 Critical Values for the Engle-Granger ADF statistic

i
|
7 Number of X’s in Equation {14.26) 10% 5%
!
1

1 o302 —3.41 -
i
, 2 -352 ~3.80 -
P3 -3.84 —4.16 :

mator is based on a modified version of Equation (14.26) that includes pa
sent, and future values of the change in X

»
Y, = B+ 0X, + D0AX, + u,. (

j==p
Thus, in Equation (14.27), the regressors are X, DXE: RN .CAJ‘. The ]
estimator of 6 is the OLS estimator of 6 in the regression of Equation (14.

If X, and Y] are cointegrated, then the DOLS estimator is efficient ir
samples. Moreover, statistical inferences about ¢ and the §% in Equation (
based on HAC standard errors are valid. For example, the ¢-statistic const
using the DOLS estimator with HAC standard errors has a standard norm
tribution in large samples.

One way to interpret Equation (14.27) 1s to recall from Section 13.
cumulative dynamic multipliers can be computed by modifying the distr
lag regression of Y, on X, and its lags. Specifically, in Equation (13.7), the
lative dynamic multipliers were computed by regressing ¥, on AX, lags o
and X, ; the coefficient on X_, in that specification is the long-run cum
dynamic multiplier. Similarly, if X, were strictly exogenous, then in Eq
(14.27), the coefficient on X, 6, would be the long-run cumulative mul
that is, the long-run effect on Y of a change in X. If X, is not strictly exog:
then the coefficients do not have this interpretation. Nevertheless, because |
Y, have a common stochastic trend if they are cointegrated, the IDOLS esti
is consistent even if X, is endogenous.

The DOLS estimator is not the only efficient estimator of the cointeg
coefficient. The first such estimator was developed by Seren Johansen (Joh.
1988). For a discussion of Johansen’s method and of other ways to estima
cointegrating coefficient, see Hamilton (1994, Chapter 20).
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Even if cconomic theory does not suggest a specitic value of the cointegrat-
ing coefficient, it is important to check whether the estimated cointegrating rela-
tionship makes sense in practice. Because cointegration tests can be misleading
(they can improperly reject the null hypothesis of no cointegration more fre-
quently than they should, and frequently they improperly fail to reject the null),
it is especially important to rely on economic theory, institutional knowledge, and

common sense when estimating and using cointegrating relationships.

Extension to Multiple Cointegrated Variables

The concepts, tests, and estimators discussed here extend to more than two vari-
ables. For example, if there are three variables, Y, X, and X,,, each of which is
I(1), then they are cointegrated with cointegrating coefficients 6, and 8, if Y, —
0,X,, — 6,X,, 1s stationary. When there are three or more variables, there can be
multiple cointegrating relationships. For example, consider modeling the rela-
tionship among three interest rates: the three-month rate, the one-year rate, and
the five-year rate (R5y7). If they are I(1), then the expectations theory of the term
structure of interest rates suggests that they will all be cointegrated. One cointe-
grating relationship suggested by the theory is R90, — Rlyr, and a second rela-
tionship is R90, — R5yr. (The relationship Rlyr, — R5yr, is also a cointegrating
relationship, but it contains no additional information beyond that in the other
relationships because it is perfectly multicollinear with the other two cointegrat-
ing relationships.)

The EG-ADF procedure for testing for a single cointegrating relationship
among mulitple variables is the same as for the case of two variables, except that
the regression in Equation (14.26) is modified so that both X, and X, are regres-
sors; the critical values for the EG-ADF test are given in Table 14.2, where the
appropriate row depends on the number of regressors in the first-stage OLS coin-
tegrating regression. The DOLS estimator of a single cointegrating relationship
among multiple X5 involves including the level of each X along with leads and
lags of the first difference of each X. Tests for multiple cointegrating relationships
can be performed using the system methods, such as Johansen’s (1988) method, and
the DOLS estimator can be extended to multiple cointegrating relationships by esti-
mating multiple equations, one for each cointegrating relationship. For additional

discussion of cointegration methods for multiple variables, see Hamilton (1994).

A cautionary note. If two or more variables are cointegrated then the error
correction term can help to forecast these variables and, possibly, other related
variables. However, cointegration requires the variables to have the same stochastic

trends. Trends in economic variables typically arise from complex interactions of
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disparate forces, and closely related series can have different trends for subtle r

sons. If variables that are not cointegrated are incorrectly modeled using a VEC
then the error correction term will be I(1); this introduces a trend into the fo.
cast that can result in poor out-of-sample forecast performance. Thus forecasti
using a VECM must be based on a combination of compelling theoretical arg
ments in favor of cointegration and careful empirical analysis.

Application to Interest Rates

As discussed above, the expectations theory of the term structure of interest ra
implies that, if two interest rates of different maturities are (1), then they will
cointegrated with a cointegrating coeflicient of § = 1, that is, the spread between t
two rates will be stationary. Inspection of Figure 14.2 provides qualitative supp
for the hypothesis that the one-year and three-month interest rates are coint
grated. We first use unit root and cointegration test statistics to provide mc
formal evidence on this hypothesis, then estimate a vector error correction moc
for these two interest rates.

Unit root and cointegration tests. Various unit root and cointegration t
statistics for these two series are reported in Table 14.3. The unit root test stat
tics in the first two rows examine the hypothesis that the two interest rates, t
three-month rate (R90) and the one-year rate (Rlys), individually have a unit rog
Two of the four statistics in the first two rows fail to reject this hypothesis at tl
10% level, and three of the four fail to reject at the 5% level. The exception is t
ADF statistic evaluated for the 90-day Treasury bill rate (-2.96), which rejects o
unit root hypothesis at the 5% level. The ADF and DF-GLS statistics lead

TABLE 14.3 Unit Root and Coinfegration Test Statistics for Two Interest Rates

Series ADF Statistic DF-GLS Statistic
RO —2.96* -1.88%
Rlyr -2.22 -1.37

Rlyr— R90 —6.31% —5.59%*

R1yr—1.046R90 —6.97** —

R9( is the interest rate on 90-day U.S. Treasury bills, at an annual rate, and Rlyris the interest rate
one-year U.S. Treasury bonds. Regressions were estimated using quarterly data over the p
1962:1-1999:1V. The number of lags in the unit root test statistic regre: s were chosen by Al
lags maximumy). Unit root test statistics are significant at the *10%, *¥3%, or **1% significance leve
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different conclusions for this variable (the ADF test rejects the unit root hypoth-
esis at the 5% level while the DF-GLS test does not), which means that we must
exercise some judgment in deciding whether these variables are plausibly mod-
eled as I(1). Taken together, these results suggest that the interest rates are plausi-
bly modeled as I(1). ,

The unit root statistics for the spread, Rlyr — R90, test the further hypothe-
sis that these variables are not cointegrated against the alternative that they are.
The null hypothesis that the spread contains a unit root is rejected at the 1% level
using both unit root tests. Thus we reject the hypothesis that the series are not
cointegrated against the alternative that they are, with a cointegrating coefficient
6 = 1. Taken together, the evidence in the first three rows of Table 14.3 suggests
that these variables plausibly can be modeled as cointegrated with § = 1.

Because in this application economic theory suggests a value for 6 (the
expectations theory of the term structure suggests that 8 = 1) and because the
error correction term is 1(0) when this value is imposed (the spread is station-
ary), in principle it is not necessary to use the EG-ADF test, in which 6 is esti-
mated. Nevertheless, we compute the test as an illustration. The first step in
the EG-ADF test is to estirnate 6 by the OLS regression of one variable on the
other; the result is

— 9
Rly, = 0.361 + 1.046R90, R> = 0.973. (14.28)

The second step is computing the ADF statistic for the residual from this
regression, M\. The result, given in the final row of Table 14.3, is less than the
1% critical value of —=3.96 in Table 14.2, so the null hypothesis that 2, has a unit
autoregressive root is rejected. This statistic also points towards treating the two
Interest rates as cointegrated. Note that no standard errors are presented in
Equation (14.28) because, as previously discussed, the OLS estimator of the
cointegrating coefficient has a nonnormal distribution and its t-statistic is not
normally distributed, so presenting standard errors (HAC or otherwise) would
be misleading,.

A vector error correction model of the two interest rates.  If Y, and X, are
cointegrated, then forecasts of AY, and AX, can be improved by augmenting a
VAR of AY, and AX, by the lagged value of the error correction term, that is, by
computing forecasts using the VECM in Equations (14.24) and(14.25). If @ is
known, then the unknown coefficients of the VECM can be estimated by OLS,
including z,_, = ¥, -~ 0X,_, as an additional regressor. If § is unknown, then the

14.5

14.5 Conditional I&mqomrmmom__nmq

VECM can be estimated using 2, as a regressor, where £, = Y, — P&: whe
an estimator of 6.

In the application to the two interest rates, theory suggests that § = 1, ar
unit root tests supported modeling the two interest rates as cointegrated +
cointegrating coefficient of 1. We therefore specify the VECM using the
retically suggested value of 6 = 1, that is, by adding the lagged value of the s
Rlyr ; — R90,, to a VAR in ARlyr, and ARY0,. Specified with two lags ¢
differences, the resulting VECM is

AR90, = 0.14 — 0.24AR90, | — 0.44AR0,_, — 0.01ARlyr,,

0.17) (0.32) (0.34) (0.39)
+ 0.15AR1yr_, — 0.18(Rlyr_, — R90, ) (1
0.27) 0.27)

—
ARlyr, = 0.36 — 0.14AR90,_, — 0.33AR90,_, — 0.11AR1yz_,

(0.16) (0.30) (0.29) (0.35)
+ 0.10ARlyr,_, — 0.52(R1yr,_, - R90, ,) a
(0.25) (0.24)

In the first equation, none of the coefficients are individually significant
5% level and the coeflicients on the lagged first differences of the interest rat
not jointly significant at the 5% level. In the second equation, the coefficier
the lagged first differences are not jointly significant, but the coefficient o
lagged spread (the error correction termy), which is estimated to be -.52,
t-statistic of ~2.17, so it is statistically significant at the 5% level. Although I
values of the first difference of the interest rates are not useful for predicting 1
interest rates, the lagged spread does help to predict the change in the one
Treasury bond rate. When the one-year rate exceeds the 90-day rate, the
year rate is forecasted to fall in the future.

Conditional Heteroskedasticity

The phenomenon that some times are tranquil while others are not—that i
volatility comes in clusters—shows up in many economic time series. Thi
tion presents a pair of models for quantifying volatility clustering or, as it |
known, conditional heteroskedasticity.
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Volatility Clustering

Section 12.7 had a curious empirical result: the root mean squared forecast error
of the pseudo out-of-sample forecasts of inflation from 1996 to 1999, produced
using the four-lag Phillips curve, was 0.75 percentage points, whereas the stan-
dard error of the OLS regression that produced those forecasts was 1.47. That is,
the out-of-sample errors were half the size of the in-sample errors! A forecaster
faced with this happy situation might be forgiven for crowing about this to his or
her clients. Might it be, however, that forecasting is simply easier at some times
than at others, and the late 1990s was just one of those easy times?

Visual inspection of the residuals from the four-lag Phillips curve (Equation
(14.5)), plotted in Figure 14.3, suggest so: these residuals exhibit volatility clus-
tering. In the late 1970s and early 1980s the absolute forecast errors often
exceeded two percentage points. In the 1960s and 1990s, however, the absolute
forecast errors typically are less than one percentage point.

Volatility clustering is evident in many financial time series. An example dis-
cussed in Section 12.2 is shown in Figure 12.2d, a plot of 1,771 daily returns on
the NYSE Composite Index of stock prices from 1990 to 1998. The absolute

FIGURE 14.3 Residuals from Phillips Curve in Equation (14.5)
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The residuals from the Phillips curve show volatility clustering. Variability is relatively low in the 1960s

and 1990s and higher in the 1970s and 1980s.

14.5 Conditional Im.mﬂowrmmom:.n_q

daily percentage changes were, on average, larger in 1991 and 1998 than in
and 1995. Within any given year, some months have greater volatility than
ers. Like the Phillips curve residuals, these percentage price changes have exte
periods of high volatility and extended periods of relative tranquility.

Volatility clustering can be thought of as clustering of the variance of the
term over time: if the regression error has a small variance in one period, its
ance tends to be small in the next period too. In other words, voladlity clt
ing implies that the error exhibits time-varying heteroskedasticity.

Autoregressive Conditional Heteroskedasticity

Two models of volatility clustering are the autoregressive conditional
eroskedasticity (ARCH) model and its extension, the generalized AT
(GARCH) model.

ARCH. Consider the ADL(1,1) regression
Yo=0y+ BY + nXo+ou (1

In the ARCH model, developed by the econometrician Robert Engle (E
1982), the error ¢, is modeled as being normally distributed with mean zerc
variance Qm, where Qm depends on past squared values u,. Specifically, the AR
model of order p, denoted ARCH(p), is

-4 2 2 2
O = 0+ oquly ooty + o oS (1:

27032.?37.., O
then if recent squared errors are large the ARCH model predicts that the cu
squared error will be large in magnitude in the sense that its variance, 62, is Lz

Although it is described here for the ADL(1,1) model in Equation (14.31)
ARCH model can be applied to the error variance of any time series regre
model with an error that has a conditional mean of zero, including higher «

ADL models, autoregressions, and time series regressions with muldiple predic

GARCH. The generalized ARCH (GARCH) model, developed by the ec
metrician Timothy Bollerslev (1986), extends the ARCH model to let o7 de
on its own lags as well as lags of the squared error. The GAR CH(p,q) model

2 2 2 2 2 ;
o =0y oI b e o, 007 - F 0,0, (1:

where o, o, ..., o

o @10 o, @, are unknown coefficients.
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The ARCH model is analogous to a distributed lag model, and the GARCH
model is analogous to an ADL model. As discussed in Appendix 13.2, the ADL
model (when appropriate) can provide a more parsimonious model of dynamic
multipliers than the distributed lag model. Similarly, by incorporating lags of a2,
the GARCH model can capture slowly changing variances with fewer parame-
ters than the ARCH model.

An important application of ARCH and GARCH models is to measuring
and forecasting the time-varying volatility of returns on financial assets, particu-
latly assets observed at high sampling frequencies such as the daily stock returns
in Figure 12.2d. In such applications the return itself is often modeled as unpre-
dictable, so the regression in Equation (14.31) only includes the intercept.

Estimation and inference. ARCH and GARCH models are estimated by
the method of maximum likelihood (Appendix 9.2). The estimators of the ARCH
and GARCH coefficients are normally distributed in large samples, so in large
samples t-statistics have standard normal distributions and confidence intervals

for a coefficient can be constructed as its maximum likelihood estimate +1.96

standard errors.

Application to Inflation Forecasts

The four-lag Phillips curve, estimated by OLS in Equation (14.5), was re-estimated
using a GARCH(1,1) model for the error term over the same period, yielding

Rlnf, =1.20 — 0.41AInf_, — 0.31Alnf, , + 0.02AInf,_ = 0.03Alnf,,

(0.33) (0.10) (0.09) 0.11) (0.09) (14.34)
—2.50Unemp,_, + 2.76Unemp,_, + 0.15Unemp,_3 — 0.64Unemp,_4.
(0.34) 0.71) 0.81) (0.40)
62=0.26 + 0.47u2, + 0.4507,. (14.35)

0.14) (0200  (0.17)

The two coefficients in the GARCH model (the coefficients on 2, and ¢7,)
are both individually statistically significant at the 5% significance level, and the joint
hypothests that both coefficients are zero also can be rejected at the 5% significance
level, Thus, we can reject the null hypothesis that the Phillips curve errors are

homoskedastic against the alternative that they are conditionally heteroskedastic.

14.5  Conditional Heteroskedasticity

The ADL coeffictents estimated by OLS (Equation (14.5)) and by max
likelihood with the GARCH model (Equation (14.34)) are slightly &m,n%c:h
two GARCH coefficients in Equation (14.35) were exactly zero, then the tw
of estimates would be identical. However, these coefficients are nonzero; be
maximum likelthood estimation estimates the coefficients in Equations (14.3:
(14.35) simultaneously, the two sets of estimated ADL coeflicients differ.

The predicted variances, 62, can be computed using the coefficicuts in |
tion (14.35) and the residuals from Equation (14.34). These residuals are p
in Figure 14.4, along with bands of plus or minus one predicted standard
tion (that is, £6,) based on the GARCH(1,1) model. These bands quanti
changing volatility of the Phillips curve residuals over time. During the
1980s, these conditional standard deviation bands are wide, indicating cc

erable volatility in the Phillips curve regression error and thus consids

FIGURE 14.4 Residuals from the Phillips Curve in Equation (14.34) and GARCH(1,1) Ba
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uncertainty about the resulting inflation forecasts. In the late 1960s and late 1990s,
however, these bands are tight.

With these conditional standard deviation bands in hand, we now can return
to the question with which we started this section: was the late 1990s an unusu-
ally tranquil period for forecasting inflation? The estimated conditional variances
suggest that it was. For example, the predicted standard deviation in 1993:1V
1s Gyg93y = 0.97, well less than the OLS standard error of the regression in
Equation (14.5), which was 1.47. The actual pseudo out-of-sample RMSFE of
0.75 is still less than the GARCH estimate of 0.97, but not by much.

14.6 Conclusion

This part of the book has covered some of the most frequently used tools and con-
cepts of time series regression. Many other tools for analyzing economic time
series have been developed for specific applications. If you are interested in learn-
ing more about economic forecasting, see the introductory textbooks by Enders
(1995) and Diebold (2000). For an advanced, modern, and comprehensive treat-
ment of econometrics with time series data, see Hamilton (1994).

Summary

<

1. Vector autoregressions model a “vector” of k time series variables as each depends
on its own lags and the lags of the k — 1 other series. The forecasts of each of the
time series produced by a VAR are mutually consistent, in the sense that they are
based on the same information.

2. Forecasts two or more periods ahead can be computed either by iterating for-
ward a one-step ahead model (an AR or a VAR) or by estimating a multiperiod
ahead regression.

3. Two series that share a common stochastic trend are cointegrated; that is, Y; and
X, are cointegrated if ¥, and X, are I(1) but Y, — 6X, 15 1(0). If Y, and X are coin-
tegrated, the error correction term Y, — 68X, can help to predict AY, and/or AX,.
A vector error correction model is a VAR model of AY, and AX,, augmented to
include the lagged error correction term.

4. Volatility clustering—when the variance of a series is high in some periods and

low in others—is common in economic time series, especially financial time series.

Review the Concepts

5. The ARCH miodel of volatility clustering expresses the conditional vari
the regression error as a function of recent squared regression errot
GAR CH model augments the ARCH model to include lagged condition
ances as well. Estimated ARCH and GARCH models produce forecast i1
with widths that depend on Hrm,<onQ:Q of the most recent regression re

Key Terms

vector autoregression (VAR) (534) error correction term (554)
multiperiod regression forecast (542)
iterated AR forecast (542)

iterated VAR forecast (543)

second difference (546)

I(0), I(1), and I(2) (546)

order of integration (546) volatility clustering (561)
integrated of order d (I(d)) (547) conditional heteroskedasticity (561)
DE-GLS test (549) ARCH (563)

common trend (553) GARCH (563)

vector error correction model (554)
cointegration (555)

cointegrating coefficient (555)
EG-ADF test (556)

DOLS estimator (557)

Review the Concepts

14.1 A macroeconomist wants to construct forecasts for the following mac
nomic variables: GDP, consumption, investment, government pur
exports, imports, short-term interest rates, long-term interest rates,
rate of price inflation. He has quarterly time series for each of these v:
from 1970-2001. Should he estimate a VAR for these variables and 1
for forecasting? Why or why not? Can you suggest an alternative apf

14.2 Suppose that Y, follows a stationary AR (1) model with f; = 0 and 3,
If Y, = 5, what is your forecast of Y;,, (that is, what is Y}, )? What.
for i = 30? Does this forecast for h = 30 seem reasonable to you?

14.3 A version of the permanent income theory of consumption implies ¢
logarithm of real GDP (Y) and the logarithm of real consumption |
cointegrated with a cointegrating coefficient equal to 1. Explain he
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would mvestigate this implication by (a) plotting the data, and (b) using a b. Suppose that the distribution of u, conditional on lagged values o
statistical test. N, 6. Ifu_, = 0.2, what is Pr(-3 < u, $3)? Ifu_ = 2.0, what
14.4 Consider the ARCH model, 67 =1.0+ :.m:m_. Explain why this will lead Pr(=3 <u, < 3)?

2

to volatility clustering. (Hint: What happens when #Zy is unusually large?)

14.4 Suppose that Y, follows the AR (p) model Y, =f, + ,Y_, + - + 3,
14.5 The DF-GLS test for a unit root has higher power than the Dickey-Fuller :

P
u, where E(u,| Y., Y5, --+) = 0. Let Yo = BV Y Y, )

2oV ., oo ;

o ERY

test. Why should you use a more powerful test?

that Y for i > p.

=3 4 .
[t = Po T Pi¥ sy t—prhit

T I
14.5 Verify Equation (14.22). (Hint: use M_xw = (Y, + AY)? to show

t=1

4
. . ! .
mxm_\.n_mwm MJ% - MKW_ = NW Y_,AY, + M_DKM and solve for M_\M\T_DM\L
=1 =1 =1 = =

14.1 Suppose that Y follows a stationary AR(1) model, Yi= By + Y, + u.

*a. Show that the h-period ahead forecast of Y, is given by Y =ty +

By, - uy), where . = f,/(1 — B,).
)

b. Suppose that X, is related to Y, by X = M%K+ » Where < 1. Show

ly Y~ u,. =
that X, = A0, ST Hy APPENDIX

-6 1-p0 14.1 | U.S. Financial Data Used in Chapter 14

14.2 One version of the expectations theory of the term structure of interest rates

holds that a long-term rate equals the average of the expected values of short- ) |
i ; : The interest rates on three-month U.S. Treasury bills and on one-year U.S. Treasury
term mnterest rates into the future, plus a term premium that is 1{0). Specifically,

are the monthly average of their daily rates, converted to an annual basis, as report
let Rk, denote a k-period interest rate, let R1, denote a one-period interest rate, the USS. Federal Reserve Bank. The quarterly data used in this chapter are the mo

k .
and let ¢, denote an I{0) term premium. Then Rk, = WMWHI% + ¢, where average interest rates for the final month in the quarter.
i=1
Rl is the forecast made at date ¢ of the value of R1 at date ¢ + ;. Suppose

that R1, follows a random walk, so that RL,=RI1_, + u,.

a. Show that Rk, = Rl + e,

b. Show that Rk, and R1, are cointegrated. What is the cointegrating
coefficient?

¢. Now suppose that ARI, = 0.5AR1,_, + . How does your answer to
(b) change?

d. Now suppose that R1, = 0.5R1,_; + u,. How does your answer to
(b) change?

14.3 Suppose that u, follows the ARCH process, 67 = 1.0 + 0562,

*a. Let E(n?) = var(u,) be the unconditional variance of u,. Show that
var(n,) = 2.




