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| Serial Correlation and Heteroskedast1c1ty
in Time Series Regressmns
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of a multiple regression model. We saw in Chapter 11 that when, in an appropriate

sense, the dynamics of a model have been completely specified, the errors will not
be serially correlated. Thus, testing for serial correlation can be used to detect dynamic
misspecification. Furthermore, static and finite distributed lag models often have seri-
ally correlated errors even if there is no underlying misspecification of the model.
Therefore, it is important to know the consequences and remedies for serial correlation
for these useful classes of models.

In Section 12.1, we present the properties of OLS when the errors contain serial cor-
relation. In Section 12.2, we demonstrate how to test for serial correlation. We cover
tests that apply to models with strictly exogenous regressors and tests that are asymp-
totically valid with general regressors, including lagged dependent variables. Section
12.3 explains how to correct for serial correlation under the assumption of strictly ex-
ogenous explanatory variables, while Section 12.4 shows how using differenced data
often eliminates serial correlation in the errors. Section 12.5 covers more recent ad-
vances on how to adjust the usual OLS standard errors and test statistics in the presence
of very general serial correlation.

In Chapter 8, we discussed testing and correcting for heteroskedasticity in cross-
sectional applications. In Section 12.6, we show how the methods used in the cross-
sectional case can be extended to the time series case. The mechanics are essentially the
same, but there are a few subtleties associated with the temporal correlation in time se-
ries observations that must be addressed. In addition, we briefly touch on the conse-
quences of dynamic forms of heteroskedasticity.

In this chapter, we discuss the critical problem of serial correlation in the error terms

12.1 PROPERTIES OF OLS WITH SERIALLY CORRELATED
ERRORS

Unbiasedness and Consistency

In Chapter 10, we proved unbiasedness of the OLS estimator under the first three
Gauss-Markov assumptions for time series regressions (TS.1 through TS.3). In partic-
ular, Theorem 10.1 assumed nothing about serial correlation in the errors. It follows
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392 Part 2 Regression Analysis with Time Series Data

that, as long as the explanatory variables are strictly exogenous, the B_; are unbiased, re-
gardless of the degree of serial correlation in the errors. This is analogous to the obser-
vation that heteroskedasticity in the errors does not cause bias in the Bf-.

In Chapter 11, we relaxed the strict exogeneity assumption to E(u,/x,) = 0 and
showed that, when the data are weakly dependent, the 3, are still consistent (although
not necessarily unbiased). This result did not hinge on any assumption about serial cor-
relation in the errors.

Efficiency and Inference

Since the Gauss-Markov Theorem (Theorem 10.4) requires both homoskedasticity and
serially uncorrelated errors, OLS is no longer BLUE in the presence of serial correla-
tion. Even more importantly, the usual OLS standard errors and test statistics are not
valid, even asymptotically. We can see this by computing the variance of the OLS esti-
mator under the first four Gauss-Markov assumptions and the AR(1) model for the er-
ror terms. More precisely, we assume that

w,=pu,_, +e,t=12,..,n (12.1)
Il < 1, (12.2)

where the ¢, are uncorrelated random variables with mean zero and variance o; recall
from Chapter 11 that assumption (12.2) is the stability condition.
We consider the variance of the OLS slope estimator in the simple regression model

Y= BU + ler & “f’

and, just to simplify the formula, we assume that the sample average of the x, is zero
(¥ = 0). Then, the OLS estimator 3, of 3, can be written as

B, = B, + SST;!' D, xu, (12.3)
— __

where SST, = E x7. Now, in computing the variance of B1 (conditional on X'), we must

t=1

account for the serial correlation in the u,:

Var(B,) = SST,?Var (2 xru,) = SST;2(2 x?Var(u,)

=1 =1

n—1n—t
e 2 E ZXIXI{IJ'E(HIHJ'{-_;')) (12.4)

=1 j=1
n=1n—t

= g?/SST, + 2(d*SST?) >, X p'x,x,4,,

=1 j=1

where o = Var(u,) and we have used the fact that E(uu, ;) = Cov(u,u, g} = ,o-’c:r2 [see
equation (11.4)]. The first term in equation (12.4), o*/SST,, is the variance of él when
p = 0, which is the familiar OLS variance under the Gauss-Markov assumptions. If we
ignore the serial correlation and estimate the variance in the usual way, the variance
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estimator will usually be biased when p # 0 because it ignores the second term in (12.4).
As we will see through later examples, p

> () is most common, in which case, p’ > 0
for all j. Further, the independent variables in regression models are often positively cor-
related over time, so that x,x,, ; is positive for most pairs 7 and ¢ + j. Therefore, in most

n—ln—tr
economic applications, the term E E p’x,x, ;s positive, and so the usual OLS variance
=1 j=1
formula o*/SST, underestimates the true variance of the OLS estimator. If p is large or
x, has a high degree of positive serial correlation—a common case—the bias in the
usual OLS variance estimator can be substantial. We will tend to think the OLS slope
estimator is more precise than it actually is.
When p < 0, p’ is negative when j is odd and positive when j is even, and so it is

n—ln—t
difficult to determine the sign of >, 2, p’x,x
=1 j=1 N
variance formula actually overstates the true variance of ,. In either case, the usual
variance estimator will be biased for Var(f3,) in the presence of serial correlation.
Because the standard error of 3, is an
estimate of the standard deviation of S,

++;- In fact, it is possible that the usual OLS

2 QUESHIOR using the usual OLS standard error in the
Suppose that, rather than the AR(1) model, u, follows the MA(1) |  Presence of serial correlation is invalid.
model u, = e, + ae,_,. Find Var(B,) and show that it is different Therefore, t statistics are no longer valid
from the usual formula if a # 0. for testing single hypotheses. Since a

smaller standard error means a larger  sta-

tistic, the usual ¢ statistics will often be too
large when p > 0. The usual F and LM statistics for testing multiple hypotheses are also
invalid.

Goodness-of-Fit

Sometimes, one sees the claim that serial correlation in the errors of a time series re-
gression model invalidates our usual goodness-of-fit measures, R-squared, and adjusted
R-squared. Fortunately, this is not the case, provided the data are stationary and weakly
dependent. To see why these measures are still valid, recall that we defined the popula-
tion R-squared in a cross-sectional context to be ]—(r{ffarlf (see Section 6.3). This def-
inition is still appropriate in the context of time series regressions with stationary,
weakly dependent data: the variances of both the errors and the dependent variable do
not change over time. By the law of large numbers, R* and R? both consistently estimate
the population R-squared. The argument is essentially the same as in the cross-sectional
case, whether or not there is heteroskedasticity (see Section 8.1). Since there is never
an unbiased estimator of the population R-squared, it makes no sense to talk about bias
in R? caused by serial correlation. All we can really say is that our goodness-of-fit mea-
sures are still consistent estimators of the population parameter. This argument does not
go through if {y,} is an I(1) process because Var(y,) grows with t; goodness-of-fit does
not make much sense in this case. As we discussed in Section 10.5, trends in the mean
of y,, or seasonality, can and should be accounted for in computing an R-squared. Other
departures from stationarity do not cause difficulty in interepreting R and R? in the
usual ways.
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Serial Correlation in the Presence of Lagged Dependent
Variables

Beginners in econometrics are often warned of the dangers of serially correlated errox
in the presence of lagged dependent variables. Almost every textbook on econometric
contains some form of the statement “OLS is inconsistent in the presence of lagged de
pendent variables and serially correlated errors.” Unfortunately, as a general assertior
this statement is false. There is a version of the statement that is correct, but it is im
portant to be very precise.

To illustrate, suppose that the expected value of y,, given y,_,, is linear:

E(yr|y:—]) = Bﬂ * Blyr—ls (12.5)

where we assume stability, |3,| < 1. We know we can always write this with an erro
term as

V== B() + Bly.r—] 2 Uy, (12"6)
Euy,_,) = 0. (12.7)

By construction, this model satisfies the key Assumption TS.3" for consistency of OLS
therefore, the OLS estimators 3, and ﬁ, are consistent. It is important to see that, with-
out further assumptions, the errors {u,} can be serially correlated. Condition (12.7) en-
sures that u, is uncorrelated with y, ,, but «, and y, , could be correlated. Then, since
u,_y = y,—1 — Bo — Byy,_», the covariance between u, and u,_, is —3,Cov(u,,y,_,).
which is not necessarily zero. Thus, the errors exhibit serial correlation and the model
contains a lagged dependent variable, but OLS consistently estimates 3, and 3, because
these are the parameters in the conditional expectation (12.5). The serial correlation in
the errors will cause the usual OLS statistics to be invalid for testing purposes, but it
will not affect consistency.

So when is OLS inconsistent if the errors are serially correlated and the regressors
contain a lagged dependent variable? This happens when we write the model in error
form, exactly as in (12.6), but then we assume that {u,} follows a stable AR(1) model
as in (12.1) and (12.2), where

E(e,|u,_],u,___2, var) = E(e,|y,_l,y,_z, s ) 5= 0, (12'8)

Since e, is uncorrelated with y, , by assumption, Cov(y, ,.u,) = pCov(y,_,u, ),
which is not zero unless p = 0. This causes the OLS estimators of 3, and 3, from the
regression of y, on y, , to be inconsistent.

We now see that OLS estimation of (12.6), when the errors u, also follow an AR(1)
model, leads to inconsistent estimators. However, the correctness of this statement
makes it no less wrongheaded. We have to ask: What would be the point in estimating
the parameters in (12.6) when the errors follow an AR(1) model? It is difficult to think
of cases where this would be interesting. At least in (12.5) the parameters tell us the ex-
pected value of y, given y, _,. When we combine (12.6) and (12.1), we see that y, really
follows a second order autoregressive model, or AR(2) model. To see this, write i, | =
v,y — By — By, > and plug this into u, = pu, , + e,. Then, (12.6) can be rewritten as
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Vi = By * Bi¥i= F Pl B Bi¥ies) * &,
Bl = p) + By + Py — pBuys 2 + e,

o, T ooy il ¢ 2 L,
4] 1.7i—1 2 E—2

i

where a, = B,(1 — p), a, = B, + p, and a, = —pP,. Given (12.8), it follows that
ECY, | ¥ mto¥iser) = B emidinz) = 05+ 01V Ty (12.9)

This means that the expected value of y,, given all past y, depends on two lags of y. It
is equation (12.9) that we would be interested in using for any practical purpose, in-
cluding forecasting, as we will see in Chapter 18. We are especially interested in the
parameters «;. Under the appropriate stability conditions for an AR(2) model—which
we will cover in Section 12.3—OLS estimation of (12.9) produces consistent and as-
ymptotically normal estimators of the «;.

The bottom line is that you need a good reason for having both a lagged dependent
variable in a model and a particular model of serial correlation in the errors. Often, se-
rial correlation in the errors of a dynamic model simply indicates that the dynamic re-
gression function has not been completely specified: in the previous example, we
should add y, , to the equation.

In Chapter 18, we will see examples of models with lagged dependent variables
where the errors are serially correlated and are also correlated with y, ;. But even in
these cases, the errors do not follow an autoregressive process.

12.2 TESTING FOR SERIAL CORRELATION

In this section, we discuss several methods of testing for serial correlation in the error
terms in the multiple linear regression model

Y= Bot+ Bixy + ...+ Bixy tou,.

We first consider the case when the regressors are strictly exogenous. Recall that this re-
quires the error, u,, to be uncorrelated with the regressors in all time periods (see Section
10.3), and so, among other things, it rules out models with lagged dependent variables.

A t Test for AR(1) Serial Correlation with Strictly
Exogenous Regressors

While there are numerous ways in which the error terms in a multiple regression
model can be serially correlated, the most popular model—and the simplest to work
with—is the AR(1) model in equations (12.1) and (12.2). In the previous section, we
explained the implications of performing OLS when the errors are serially correlated
in general, and we derived the variance of the OLS slope estimator in a simple re-
gression model with AR(1) errors. We now show how to test for the presence of AR(1)
serial correlation. The null hypothesis is that there is no serial correlation. Therefore,
just as with tests for heteroskedasticity, we assume the best and require the data to pro-
vide reasonably strong evidence that the ideal assumption of no serial correlation is
violated.
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We first derive a large sample test, under the assumption that the explanatory vari-
ables are strictly exogenous: the expected value of u,, given the entire history of inde-
pendent variables, is zero. In addition, in (12.1), we must assume that

E(eJu,_4,_5,...) =0 (12.10)

and
Var(e,|u,_,) = Var(e,) = o2. (12.11)

These are standard assumptions in the AR(1) model (which follow when {e,} is an 1.i.d.
sequence), and they allow us to apply the large sample results from Chapter 11 for dy-
namic regression.

As with testing for heteroskedasticity, the null hypothesis is that the appropriate
Gauss-Markov assumption is true. In the AR(1) model, the null hypothesis that the er-
rors are serially uncorrelated is

Hy: p= 0. (12.12)

How can we test this hypothesis? If the u, were observed, then, under (12.10) and
(12.11), we could immediately apply the asymptotic normality results from Theorem
11.2 to the dynamic regression model

u,=pu, ; +e,t=2...,n (12.13)

(Under the null hypothesis p = 0, {u,} is clearly weakly dependent.) In other words, we
could estimate p from the regression of u, on u,_,, for all t = 2, ..., n, without an inter-
cept, and use the usual 7 statistic for p. This does not work because the errors i, are not
observed. Nevertheless, just as with testing for heteroskedasticity, we can replace u,
with the corresponding OLS residual, i,. Since i, depends on the OLS estimators [30
B,. ..., B. it is not obvious that using #, for u, in the regression has no effect on the dis-
tributlon of the 7 statistic. Fortunately, it turns out that, because of the strict exogeneity
assumption, the large sample distribution of the 7 statistic is not affected by using the
OLS residuals in place of the errors. A proof is well beyond the scope of this text, but
it follows from the work of Wooldridge (1991b).
We can summarize the asymptotic test for AR(1) serial correlation very simply:

TESTING FOR AR(1) SERIAL CORRELATION WITH STRICTLY EXOGENOUS REGRESSORS:

(1) Run the OLS regression of y, on x,,, ..., x,, and obtain the OLS residuals, i, for
allt=12,...,n
(ii) Run the regression of

fi;onii,_y forallt=2,...,n, (12.14)

obtaining the coefficient p on &, , and its ¢ statistic, #;. (This regression may or may not
contain an intercept; the 7 statistic for p will be slightly affected, but it is asymptotically
valid either way.)

(iii) Use z; to test Hy: p = 0 against H;: p # 0O in the usual way. (Actually, since
p = 0 is often expected a priori, the alternative can be H,: p > 0.) Typically, we con-




clude that serial correlation is a problem to be dealt with only if H,, is rejected at the 5%
level. As always, it is best to report the p-value for the test.

In deciding whether serial correlation needs to be addressed, we should remember
the difference between practical and statistical significance. With a large sample size, it
is possible to find serial correlation even though p is practically small; when p is close
to zero, the usual OLS inference procedures will not be far off [see equation (12.4)].
Such outcomes are somewhat rare in time series applications because time series data
sets are usually small.

EXAMPLE 12.1
[Testing for AR(1) Serial Correlation in the Phillips Curve]

In Chapter 10, we estimated a static Phillips curve that explained the inflation-
unemployment tradeoff in the United States (see Example 10.1). In Chapter 11, we studied
a particular expectations augmented Phillips curve, where we assumed adaptive expecta-
tions (see Example 11.5). We now test the error term in each equation for serial correlation.
Since the expectations augmented curve uses Ainf, = inf, — inf,_, as the dependent vari-
able, we have one fewer observation.

For the static Phillips curve, the regression in (12.14) yields p = 573, t = 4.93, and
p-value = .000 (with 48 observations). This is very strong evidence of positive, first order se-
rial correlation. One consequence of this is that the standard errors and t statistics from
Chapter 10 are not valid. By contrast, the test for AR(1) serial correlation in the expectations
augmented curve gives p = —.036, t = —.297, and p-value = .775 (with 47 observations):
there is no evidence of AR(1) serial correlation in the expectations augmented Phillips curve.

Although the test from (12.14) is derived from the AR(1) model, the test can detect
other kinds of serial correlation. Remember, p is a consistent estimator of the correla-
tion between u, and u,_,. Any serial correlation that causes adjacent errors to be corre-
lated can be picked up by this test. On the other hand, it does not detect serial
correlation where adjacent errors are uncorrelated, Corr(u,.u, ) = 0. (For example, u,
and u,_, could be correlated.)

In using the usual ¢ statistic from (12.14), we must assume that the errors in (12.13)
satisfy the appropriate homoskedasticity assumption, (12.11). In fact, it is easy to make
the test robust to heteroskedasticity in e,: we simply use the usual, heteroskedasticity-
robust ¢ statistic from Chapter 8. For the static Phillips curve in Example 12.1, the

heteroskedasticity-robust 7 statistic is 4.03,

which is smaller than the nonrobust 7 sta-

O — : tistic but still very significant. In Section

How would you use regression (12.14) to construct an approxi- 12.6, we further discuss heteroskedasticity

mate 95% confidence interval for p? in time series regressions, including its dy-
namic forms.

The Durbin-Watson Test under Classical Assumptions

Another test for AR(1) serial correlation is the Durbin-Watson test. The Durbin-
Watson (DW) statistic is also based on the OLS residuals:
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i~ 8,27
DW="2— (12.15)

2
=1
Simple algebra shows that DW and p from (12.14) are closely linked:

DW = 2(1 — p). (12.16)

One reason this relationship is not exact is that p has Eﬁf , in its denominator, while
=2

the DW statistic has the sum of squares of all OLS residuals in its denominator. Even
with moderate sample sizes, the approximation in (12.16) is often pretty close. There-
fore, tests based on DW and the ¢ test based on p are conceptually the same.

Durbin and Watson (1950) derive the distribution of DW (conditional on X ), some-
thing that requires the full set of classical linear model assumptions, including normal-
ity of the error terms. Unfortunately, this distribution depends on the values of the
independent variables. (It also depends on the sample size, the number of regressors,
and whether the regression contains an intercept.) While some econometrics packages
tabulate critical values and p-values for DW, many do not. In any case, they depend on
the full set of CLM assumptions.

Several econometrics texts report upper and lower bounds for the critical values that
depend on the desired significance level, the alternative hypothesis, the number of ob-
servations, and the number of regressors. (We assume that an intercept is included in
the model.) Usually, the DW test is computed for the alternative

H,: p>0. (12.17)

From the approximation in (12.16), p = 0 implies that DW = 2, and p > 0 implies that
DW < 2. Thus, to reject the null hypothesis (12.12) in favor of (12.17), we are looking
for a value of DW that is significantly less than two. Unfortunately, because of the prob-
lems in obtaining the null distribution of DW, we must compare DW with two sets of
critical values. These are usually labelled as d,, (for upper) and d, (for lower). If
DW < d,, then we reject H,, in favor of (12.17); if DW > d,,, we fail to reject H. If
d, = DW = d,,, the test is inconclusive.

As an example, if we choose a 5% significance level withn = 45and k = 4, d,, =
1.720 and d, = 1.336 [see Savin and White (1977)]. If DW < 1.336, we reject the null
of no serial correlation at the 5% level; if DW > 1.72, we fail to reject H; if 1.336 =
DW = 1.72, the test is inconclusive.

In Example 12.1, for the static Phillips curve, DW is computed to be DW = .80. We
can obtain the lower 1% critical value from Savin and White (1977) fork = 1 and n =
50: d, = 1.32. Therefore, we reject the null of no serial correlation against the alterna-
tive of positive serial correlation at the 1% level. (Using the previous f test, we can con-
clude that the p-value equals zero to three decimal places.) For the expectations
augmented Phillips curve, DW = 1.77, which is well within the fail-to-reject region at
even the 5% level (d,, = 1.59).




The fact that an exact sampling distribution for DW can be tabulated is the only ad-
vantage that DW has over the ¢ test from (12.14). Given that the tabulated critical val-
ues are exactly valid only under the full set of CLM assumptions and that they can lead
to a wide inconclusive region, the practical disadvantages of the DW statistic are sub-
stantial. The ¢ statistic from (12.14) is simple to compute and asymptotically valid with-
out normally distributed errors. The ¢ statistic is also valid in the presence of
heteroskedasticity that depends on the x,; it is easy to make it robust to any form of het-
eroskedasticity.

Testing for AR(1) Serial Correlation without Strictly
Exogenous Regressors

When the explanatory variables are not strictly exogenous, so that one or more x,; are
correlated with u, _,, neither the ¢ test from regression (12.14) nor the Durbin-Watson
statistic are valid, even in large samples. The leading case of nonstrictly exogenous re-
gressors occurs when the model contains a lagged dependent variable: y, , and u, , are
obviously correlated. Durbin (1970) suggested two alternatives to the DW statistic when
the model contains a lagged dependent variable and the other regressors are nonrandom
(or, more generally, strictly exogenous). The first is called Durbin’s h statistic. This sta-
tistic has a practical drawback in that it cannot always be computed, and so we do not
cover it here.

Durbin’s alternative statistic is simple to compute and is valid when there are any
number of nonstrictly exogenous explanatory variables. The test also works if the ex-
planatory variables happen to be strictly exogenous.

TESTING FOR SERIAL CORRELATION WITH GENERAL REGRESSORS:

(i) Run the OLS regression of y, on x,,, ..., x,, and obtain the OLS residuals, #,, for
allt =12, ....n
(i) Run the regression of

000Xy, X, oo i X B TOr dll £ = 2, .00 (12.18)

to obtain the coefficient p on #,_, and its ¢ statistic, ;.
(iii) Use ¢; to test Hy: p = 0 against H,: p # 0 in the usual way (or use a one-sided
alternative).

In equation (12.18), we regress the OLS residuals on all independent variables, includ-
ing an intercept, and the lagged residual. The ¢ statistic on the lagged residual is a valid
test of (12.12) in the AR(1) model (12.13) [when we add Var(u,|x,.u, ,) = o under H,).
Any number of lagged dependent variables may appear among the x,;, and other non-
strictly exogenous explanatory variables are allowed as well.

The inclusion of x,,, ..., x, explicitly allows for each x,; to be correlated with u,_,,
and this ensures that #; has an approximate ¢ distribution in large samples. The ¢ statis-
tic from (12.14) ignores possible correlation between x,; and u, _, sonit is not valid with-
out strictly exogenous regressors. Incidentally, because i, = y, — By — Bix,, — ... —
B}.x,,\_, it can be shown that the  statistic on &, , is the same if y, is used in place of &,
as the dependent variable in (12.18).

j
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The ¢ statistic from (12.18) is easily made robust to heteroskedasticity of unknown
form [in particular, when Var(u,|x,,u, ) is not constant]: just use the heteroskedasticity-
robust ¢ statistic on 4

—1

EXAMPLE 12.2

[Testing for AR(1) Serial Correlation in the
Minimum Wage Equation]

In Chapter 10 (see Example 10.9), we estimated the effect of the minimum wage on the
Puerto Rican employment rate. We now check whether the errors appear to contain serial
correlation, using the test that does not assume strict exogeneity of the minimum wage or
GNP variables. [We add the log of Puerto Rican real GNP to equation (10.38), as in Prob-
lem 10.9.] We are assuming that the underlying stochastic processes are weakly dependent,
but we allow them to contain a linear time trend (by including t in the regression).

Letting &, denote the OLS residuals, we run the regression of

i, on log(mincov,), log( prgnp,), log(usgnp,), t, and i, _,,

using the 37 available observations. The estimated coefficient on G,_, is p = .481 with t =
2.89 (two-sided p-value = .007). Therefore, there is strong evidence of AR(1) serial corre-
lation in the errors, which means the t statistics for the ,@ that we obtained before are not
valid for inference. Remember, though, the ,B; are still consistent if u, is contemporaneously
uncorrelated with each explanatory variable. Incidentally, if we use regression (12.14) in-
stead, we obtain p = .417 and t = 2.63, so the outcome of the test is similar in this case.

Testing for Higher Order Serial Correlation

The test from (12.18) is easily extended to higher orders of serial correlation. For ex-
ample, suppose that we wish to test

Ho:pp =0,p,=0 (1219)

in the AR(2) model,
“: = plur—l v pZ“:—2 + e.f'

This alternative model of serial correlation allows us to test for second order serial cor-
relation. As always, we estimate the model by OLS and obtain the OLS residuals, #,.
Then, we can run the regression of

0,00 X\, Xp5y ooy Xy U,y and @i, _,, forall t = 3,....n,
to obtain the F test for joint significance of &, , and i, . If these two lags are jointly
significant at a small enough level, say 5%, then we reject (12.19) and conclude that the
errors are serially correlated.
More generally, we can test for serial correlation in the autoregressive model of
order ¢:

u=pi_, +pu_,+ ..+pu_,+e,.

(12.20)



The null hypothesis is

Ho:p, =0,p,=0,...,p, = 0. (12.21)

TESTING FOR AR(g) SERIAL CORRELATION:

(i) Run the OLS regression of y, on x,, ...,: x,, and obtain the OLS residuals, i,, for
allt=12.n.
(ii) Run the regression of

BOR X Xy i o s By B g il tr il = (g +1), . B (12.22)

(iii) Compute the F test for joint significance of &,_,, &, ,, ..., 4,_,in (12.22). [The
F statistic with y, as the dependent variable in (12.22) can also be used, as it gives an
identical answer.]

If the x,; are assumed to be strictly exogenous, so that each x,; is uncorrelated with u,_,
U, ... U, then the x,; can be omitted from (12.22). Including the x,; in the regres-
sion makes the test valid with or without the strict exogeneity assumption. The test re-
quires the homoskedasticity assumption

Var(u,[x u,_y, ..., 4-p) = o (12.23)

A heteroskedasticity-robust version can be computed as described in Chapter 8.

An alternative to computing the F test is to use the Lagrange multiplier (LM) form
of the statistic. (We covered the LM statistic for testing exclusion restrictions in Chap-
ter 5 for cross-sectional analysis.) The LM statistic for testing (12.21) is simply

LM = (n — q)R:, (12.24)

where R} is just the usual R-squared from regression (12.22). Under the null hypothe-
sis, LM ~ ,\/f{. This is usually called the Breusch-Godfrey test for AR(g) serial correla-
tion. The LM statistic also requires (12.23), but it can be made robust to het-
eroskedasticity. [For details, see Wooldridge (1991b).]

EXAMPLE 12.3
[Testing for AR(3) Serial Correlation]

In the event study of the barium chloride industry (see Example 10.5), we used monthly
data, so we may wish to test for higher orders of serial correlation. For illustration purposes,
we test for AR(3) serial correlation in the errors underlying equation (10.22). Using regres-
sion (12.22), the F statistic for joint significance of &,_,, &,_,, and &,_5 is F = 5.12. Origi-
nally, we had n = 131, and we lose three observations in the auxiliary regression (12.22).
Because we estimate 10 parameters in (12.22) for this example, the df in the F statistic are
3 and 118. The p-value of the F statistic is .0023, so there is strong evidence of AR(3) ser-
ial correlation.
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With quarterly or monthly data that have not been seasonally adjusted, we some-
times wish to test for seasonal forms of serial correlation. For example, with quarterly
data, we might postulate the autoregressive model

u, = pgit,_4 + e, (12.25)

From the AR(1) serial correlation tests, it is pretty clear how to proceed. When the re-
gressors are strictly exogenous, we can use a f test on &,_, in the regression of

doni, ,forallt=35,... n.

A modification of the Durbin-Watson statistic is also available [see Wallis (1972)].
When the x,; are not strictly exogenous, we can use the regression in (12.18), with 4, _,
replacing #,_,.

In Example 12.3, the data are monthly and are not seasonally adjusted. Therefore, it
makes sense to test for correlation between u, and u,_,,. A regression of &, on i, , yields
P = —.187 and p-value = .028, so
there is evidence of negative seasonal
autocorrelation. (Including the regres-

. Suppose you have quarterly data and you want to test for the = sors changes things only modestly: p,,
presence of first order or fourth order serial correlation. With = —.170 and p-value = .052.) This is

| strictly exogenous regressors, how would you proceed? . somewhat unusual and does not have an

s

NP S e —

obvious explanation.

12.3 CORRECTING FOR SERIAL CORRELATION WITH
STRICTLY EXOGENOUS REGRESSORS

If we detect serial correlation after applying one of the tests in Section 12.2, we have to
do something about it. If our goal is to estimate a model with complete dynamics, we
need to respecify the model. In applications where our goal is not to estimate a fully dy-
namic model, we need to find a way to carry out statistical inference: as we saw in Sec-
tion 12.1, the usual OLS test statistics are no longer valid. In this section, we begin with
the important case of AR(1) serial correlation. The traditional approach to this problem
assumes fixed regressors. What are actually needed are strictly exogenous regressors.
Therefore, at a minimum, we should not use these corrections when the explanatory
variables include lagged dependent variables.

Obtaining the Best Linear Unbiased Estimator in the
AR(1) Model

We assume the Gauss-Markov assumptions TS.1 through TS.4, but we relax Assump-
tion TS.5. In particular, we assume that the errors follow the AR(1) model

u, = pu,_, +e,foraller=1.2,.... (12.26)
Remember that Assumption TS.2 implies that u, has a zero mean conditional on X. In

the following analysis, we let the conditioning on X be implied in order to simplify the
notation. Thus, we write the variance of u, as
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Var(u,) = a2/(1 — p?). (12.27)

For simplicity, consider the case with a single explanatory variable:
Y, =B+ Bix, tu,foralle =1.2,...,n
Since the problem in this equation is serial correlation in the u,, it makes sense to trans-
form the equation to eliminate the serial correlation. For 1 = 2, we write
Vi1 = Bo + BiXe—y t U,
vy, = By + Bx, + u,.
Now, if we multiply this first equation by p and subtract it from the second equation,
we get
Ye = Pi1 =1 = p)Bo + Bilx, — px,—) + e, 1 =2,

where we have used the fact that e, = u, — pu,_,. We can write this as
Jo=0—=pBo+ Bix, te,t=2, (12.28)
where
Joe=y =gy =X P (12.29)

are called the quasi-differenced data. (If p = 1, these are differenced data, but re-
member we are assuming |p| << 1.) The error terms in (12.28) are serially uncorrelated;
in fact, this equation satisfies all of the Gauss-Markov assumptions. This means that, if
we knew p, we could estimate B, and 3, by regressing ¥, on X,, provided we divide the
estimated intercept by (1 — p).

The OLS estimators from (12.28) are not quite BLUE because they do not use the
first time period. This is easily fixed by writing the equation for f = 1 as

Y1 = Bot+ Bixy t uy. (12.30)

Since each e, is uncorrelated with u,, we can add (12.30) to (12.28) and still have seri-
ally uncorrelated errors. However, using (12.27), Var(u,) = J:Tf(l - p) > (rf = Var(e,).
[Equation (12.27) clearly does not hold when |p| = 1, which is why we assume the sta-
bility condition.] Thus, we must multiply (12.30) by (1 — p®)"/? to get errors with the

same variance:

(1 =p)'"y, =1 = p)'"?By + i1 — p*)'%x; + (1 — p*)'u,

or

Fo= 1 =)0 + 8% + i (12.31)

where i, = (1 — p*)"?u,, 3, = (1 — p*)"?y,, and so on. The error in (12.31) has vari-
ance Var(ii,) = (1 — p’)Var(u,) = o2, so we can use (12.31) along with (12.28) in an
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OLS regression. This gives the BLUE estimators of 3, and 3, under Assumptions TS.1
through TS.4 and the AR(1) model for «,.This is another example of a generalized least
squares (or GLS) estimator. We saw other GLS estimators in the context of het-
eroskedasticity in Chapter 8.

Adding more regressors changes very little. For t = 2, we use the equation

o= (1. < p)Bs 1B % ¥ .. ¥ By gy (12.32)

where %,; = x,; — px,_, ;. For t = 1, we have 3, = (1 — p»"%,, %, = (1 — p»)"x,,
and the intercept is (1 — p?)"/?B,. For given p, it is fairly easy to transform the data and
to carry out OLS. Unless p = 0, the GLS estimator, that is, OLS on the transformed
data, will generally be different from the original OLS estimator. The GLS estimator
turns out to be BLUE, and, since the errors in the transformed equation are serially un-
correlated and homoskedastic, r and F statistics from the transformed equation are valid
(at least asymptotically, and exactly if the errors e, are normally distributed).

Feasible GLS Estimation with AR(1) Errors

The problem with the GLS estimator is that p is rarely known in practice. However, we
already know how to get a consistent estimator of p: we simply regress the OLS resid-
uals on their lagged counterparts, exactly as in equation (12.14). Next, we use this es-
timate, p, in place of p to obtain the quasi-differenced variables. We then use OLS on
the equation

V.= foko + Beka + ... + Bk + etvor,, (12.33)

where %,, = (1 — p) forr = 2, and ¥,, = (1 — p°)"*. This results in the feasible GLS
(FGLS) estimator of the 3;. The error term in (12.33) contains e, and also the terms in-
volving the estimation error in p. Fortunately, the estimation error in p does not affect
the asymptotic distribution of the FGLS estimators.

FEASIBLE GLS ESTIMATION OF THE AR(1) MODEL:

(1) Run the OLS regression of y, on x,,, ..., x,, and obtain the OLS residuals, #,, t =
1,2,...,n.

(i1) Run the regression in equation (12.14) and obtain p.

(iii) Apply OLS to equation (12.33) to estimate 3, 3,, ..., B;. The usual standard er-
rors, ¢ statistics, and F statistics are asymptotically valid.

The cost of using p in place of p is that the feasible GLS estimator has no tractable fi-
nite sample properties. In particular, it is not unbiased, although it is consistent when
the data are weakly dependent. Further, even if ¢, in (12.32) is normally distributed, the
t and F statistics are only approximately ¢ and F distributed because of the estimation
error in p. This is fine for most purposes, although we must be careful with small sam-
ple sizes.

Since the FGLS estimator is not unbiased, we certainly cannot say it is BLUE. Nev-
ertheless, it is asymptotically more efficient than the OLS estimator when the AR(1)
model for serial correlation holds (and the explanatory variables are strictly exogenous).
Again, this statement assumes that the time series are weakly dependent.
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There are several names for FGLS estimation of the AR(1) model that come from
different methods of estimating p and different treatment of the first observation.
Cochrane-Orcutt (CO) estimation omits the first observation and uses p from
(12.14), whereas Prais-Winsten (PW) estimation uses the first observation in the pre-
viously suggested way. Asymptotically, it makes no difference whether or not the first
observation is used, but many time series samples are small, so the differences can be
notable in applications.

In practice, both the Cochrane-Orcutt and Prais-Winsten methods are used in an it-
erative scheme. Once the FGLS estimator is found using g from (12.14), we can com-
pute a new set of residuals, obtain a new estimator of p from (12.14), transform the data
using the new estimate of p, and estimate (12.33) by OLS. We can repeat the whole
process many times, until the estimate of p changes by very little from the previous it-
eration. Many regression packages implement an iterative procedure automatically, so
there is no additional work for us. It is difficult to say whether more than one iteration
helps. It seems to be helpful in some cases, but, theoretically, the large sample proper-
ties of the iterated estimator are the same as the estimator that uses only the first itera-
tion. For details on these and other methods, see Davidson and MacKinnon (1993,
Chapter 10).

EXAMPLE 12.4
(Cochrane-Orcutt Estimation in the Event Study)

We estimate the equation in Example 10.5 using iterated Cochrane-Orcutt estimation. For
comparison, we also present the OLS results in Table 12.1.

The coefficients that are statistically significant in the Cochrane-Orcutt estimation do not
differ by much from the OLS estimates [in particular, the coefficients on log(chempi),
log(rtwex), and afdec6). It is not surprising for statistically insignificant coefficients to
change, perhaps markedly, across different estimation methods.

Notice how the standard errors in the second column are uniformly higher than
the standard errors in column (1). This is common. The Cochrane-Orcutt standard errors ac-
count for serial correlation; the OLS standard errors do not. As we saw in Section 12.1, the
OLS standard errors usually understate the actual sampling variation in the OLS estimates
and should not be relied upon when significant serial correlation is present. Therefore, the
effect on Chinese imports after the International Trade Commissions decision is now less
statistically significant than we thought (t,/y.ce = —1.68).

The Cochrane-Orcutt (CO) method reports one fewer observation than OLS; this reflects
the fact that the first transformed observation is not used in the CO method. This slightly
affects the degrees of freedom that are used in hypothesis tests.

Finally, an R-squared is reported for the CO estimation, which is well below the
R-squared for the OLS estimation in this case. However, these R-squareds should not be
compared. For OLS, the R-squared, as usual, is based on the regression with the untrans-
formed dependent and independent variables. For CO, the R-squared comes from the fi-
nal regression of the transformed dependent variable on the transformed independent
variables. It is not clear what this R? is actually measuring; nevertheless, it is traditionally
reported.
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Table 12.1
Dependent Variable: log(chnimp)
Coefficient OLS Cochrane-Orcutt
log(chempi) 3.12 2.95
(0.48) (0.65)
log(gas) .196 1.05
(.907) (0.99)
log(rtwex) 983 1.14
(.400) (0.51)
befile6 .060 —.016
(.261) (.321)
affile6 =032 =.033
(.264) (.323)
afdec6 —.565 =i/
(.286) (.343)
intercept —17.80 -37.31
(21.05) (23.22)
p _ .293
(.084)
Observations 131 130
R-Squared 305 193

Comparing OLS and FGLS

In some applications of the Cochrane-Orcutt or Prais-Winsten methods, the FGLS esti-
mates differ in practically important ways from the OLS estimates. (This was not the
case in Example 12.4.) Typically, this has been interpreted as a verification of feasible
GLS’s superiority over OLS. Unfortunately, things are not so simple. To see why, con-
sider the regression model

.‘I: - ﬁ(l + Bl-rx + “:'

where the time series processes are stationary. Now, assuming that the law of large
numbers holds, consistency of OLS for 3, holds if

Cov(x,,u,) = 0. (12.34)
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Earlier, we asserted that FGLS was consistent under the strict exogeneity assumption,
which is more restrictive than (12.34). In fact, it can be shown that the weakest as-
sumption that must hold for FGLS to be consistent, in addition to (12.34), is that the
sum of x, , and x,,, is uncorrelated with u,:

Cov[(x,_, + x,.)u] = 0. {12.35)

Practically speaking, consistency of FGLS requires u, to be uncorrelated with x, |, x,,
and x, .

How can we show that condition (12.35) is needed along with (12.34)? The argu-
ment is simple if we assume p is known and drop the first time period, as in Cochrane-
Orcutt. The argument when we use p is technically harder and yields no additional
insights. Since one observation cannot affect the asymptotic properties of an estimator,
dropping it does not affect the argument. Now, with known p, the GLS estimator uses
X, — px,_, as the regressor in an equation where u, — pu,_, is the error. From Theorem
11.1, we know the key condition for consistency of OLS is that the error and the re-
gressor are uncorrelated. In this case, we need E[(x, — px,_)(u, — pu,_,)] = 0. If we
expand the expectation, we get

El(x, — px,_ )%, — pu,_;)] = E(xu,) — pE(x,_,u) — pE(xu,_,) + p°E(x,_1t,_;)
- _P[EU: u,) + E{'qul—l)l

because E(xu,) = E(x,_,u,_,) = 0 by assumption (12.34). Now, under stationarity,
E(xu, ) = E(x,,u,) because we are just shifting the time index one period forward.
Therefore,

E{xr—lui) + E(I;“:—I) £ E[('xr | + x;i ])”.r]r

and the last expectation is the covariance in equation (12.35) because E(u,) = 0. We
have shown that (12.35) is necessary along with (12.34) for GLS to be consistent for
B.. [Of course, if p = 0, we do not need (12.35) because we are back to doing OLS.]

Our derivation shows that OLS and FGLS might give significantly different esti-
mates because (12.35) fails. In this case, OLS—which is still consistent under
(12.34)—is preferred to FGLS (which is inconsistent). If x has a lagged effect on y, or
X4, reacts to changes in u,, FGLS can produce misleading results.

Since OLS and FGLS are different estimation procedures, we never expect them
to give the same estimates. If they provide similar estimates of the f3;, then FGLS is
preferred if there is evidence of serial correlation, because the estimator is more effi-
cient and the FGLS test statistics are at least asymptotically valid. A more difficult
problem arises when there are practical differences in the OLS and FGLS estimates:
it is hard to determine whether such differences are statistically significant. The gen-
eral method proposed by Hausman (1978) can be used, but it is beyond the scope of
this text.

Consistency and asymptotic normality of OLS and FGLS rely heavily on the time
series processes y, and the x,; being weakly dependent. Strange things can happen if we
apply either OLS or FGLS when some processes have unit roots. We discuss this fur-
ther in Chapter 18.




408 Part 2 Regression Analysis with Time Series Data

EXAMPLE 12.5

(Static Phillips Curve)

Table 12.2 presents OLS and iterated Cochrane-Orcutt estimates of the static Phillips curve
from Example 10.1.

Table 12.2
Dependent Variable: inf
Coefficient OLS Cochrane-Orcutt
unem 468 —.665
(.289) (.320)
intercept 1.424 7.580
(1.719) (2.379)
p — 174
(.091)
Observations 49 48
R-Squared .053 086

The coefficient of interest is on unem, and it differs markedly between CO and OLS. Since
the CO estimate is consistent with the inflation-unemployment tradeoff, our tendency is to
focus on the CO estimates. In fact, these estimates are fairly close to what is obtained by
first differencing both inf and unem (see Problem 11.11), which makes sense because the
quasi-differencing used in CO with g = .774 is similar to first differencing. It may just be
that inf and unem are not related in levels, but they have a negative relationship in first dif-
ferences.

Correcting for Higher Order Serial Correlation

It is also possible to correct for higher orders of serial correlation. A general treatment
is given in Harvey (1990). Here, we illustrate the approach for AR(2) serial correlation:
U, = pyt,—, + Palt, > F €
where {e,} satisfies the assumptions stated for the AR(1) model. The stability condi-
tions are more complicated now. They can be shown to be [see Harvey (1990)]

P> —Lp,—p <landp, +p, <1

For example, the model is stable if p, = .8 and p, = —.3; the model is unstable if p, =
.7 and p, = 4.

Assuming the stability conditions hold, we can obtain the transformation that elim-
inates the serial correlation. In the simple regression model, this is easy when 1 > 2:
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Ye~ P1Yi-1 — P2Yi-2 = Bo(l — oy — p2) + Bi(x, — pix,— — paX,—2) T e,
or

J,=B1—p,—p)+ Bi%, + e, t =34,...,n (12.36)

If we know p, and p,, we can easily estimate this equation by OLS after obtaining the
transformed variables. Since we rarely know p, and p,, we have to estimate them. As
usual, we can use the OLS residuals, i,: obtain p, and p, from the regression of

doonii,_,0,_,t=3,..,n.

[This is the same regression used to test for AR(2) serial correlation with strictly ex-
ogenous regressors.] Then, we use p, and p, in place of p, and p, to obtain the trans-
formed variables. This gives one version of the feasible GLS estimator. If we have
multiple explanatory variables, then each one is transformed by X, = x,, — p\x,_,;, —
PaX,_5j, Whent > 2, '

The treatment of the first two observations is a little tricky. It can be shown that the
dependent variable and each independent variable (including the intercept) should be
transformed by

Z = {1+ pl(1 = po)* = piW(1 = )} 7%z

Z = (1= p2)"z, = [p(1 = pD)"ZI(1 = p))lzy,
where z, and z, denote either the dependent or an independent variable at 7 = 1 and ¢t =
2, respectively. We will not derive these transformations. Briefly, they eliminate the se-
rial correlation between the first two observations and make their error variances equal
to (Tf.

Fortunately, econometrics packages geared toward time series analysis easily esti-

mate models with general AR(g) errors; we rarely need to directly compute the trans-
formed variables ourselves.

12.4 DIFFERENCING AND SERIAL CORRELATION

In Chapter 11, we presented differencing as a transformation for making an integrated
process weakly dependent. There is another way to see the merits of differencing when
dealing with highly persistent data. Suppose that we start with the simple regression
model:

Yo ﬁO + B!‘x: Y U, b 1,2,.‘., (12-37)

where u, follows the AR(1) process in (12.26). As we mentioned in Section 11.3, and
as we will discuss more fully in Chapter 18, the usual OLS inference procedures can be
very misleading when the variables y, and x, are integrated of order one, or I(1). In the
extreme case where the errors {u,} in (12.37) follow a random walk, the equation makes
no sense because, among other things, the variance of u, grows with ¢. It is more logi-
cal to difference the equation:

Ay, = BAx, + Au,,t =2,...,n. (12.38)




Suppose after estimating a model by OLS that you estimate p

410 Part 2 Regression Analysis with Time Series Data

If u, follows a random walk, then e, = Au, has zero mean and a constant variance and
is serially uncorrelated. Thus, assuming that ¢, and Ax, are uncorrelated, we can esti-
mate (12.38) by OLS, where we lose the first observation.

Even if u, does not follow a random walk, but p is positive and large, first differ-
encing is often a good idea: it will eliminate most of the serial correlation. Of course,
(12.38) is different from (12.37), but at least we can have more faith in the OLS stan-
dard errors and ¢ statistics in (12.38). Allowing for multiple explanatory variables does
not change anything. '

EXAMPLE 12.6
(Differencing the Interest Rate Equation)

In Example 10.2, we estimated an equation relating the three-month T-bill rate to inflation
and the federal deficit [see equation (10.15)]. If we regress the residuals from this equation
on a single lag, we obtain p = .530 (.123), which is statistically greater than zero. If we dif-
ference i3, inf, and def and then check the residuals for AR(1) serial correlation, we obtain
p = .068 (.145), so there is no evidence of serial correlation. The differencing has apparently
eliminated any serial correlation. [In addition, there is evidence that i3 contains a unit root,
and inf may as well, so differencing might be needed to produce I(0) variables anyway.]

As we explained in Chapter 11, the de-
cision of whether or not to difference is a
tough one. But this discussion points out

from regression (12.14) and you obtain 5 = .92. What would you another benefit of differencing, which is

do about this?

that it removes serial correlation. We will
come back to this issue in Chapter 18.

12.5 SERIAL CORRELATION-ROBUST INFERENCE AFTER OLS

In recent years, it has become more popular to estimate models by OLS but to correct the
standard errors for fairly arbitrary forms of serial correlation (and heteroskedasticity).
Even though we know OLS will be inefficient, there are some good reasons for taking this
approach. First, the explanatory variables may not be strictly exogenous. In this case,
FGLS is not even consistent, let alone efficient. Second, in most applications of FGLS,
the errors are assumed to follow an AR(1) model. It may be better to compute standard
errors for the OLS estimates that are robust to more general forms of serial correlation.

To get the idea, consider equation (12.4), which is the variance of the OLS slope es-
timator in a simple regression model with AR(1) errors. We can estimate this variance
very simply by plugging in our standard estimators of p and 0. The only problem with
this is that it assumes the AR(1) model holds and also homoskedasticity. It is possible
to relax both of these assumptions.

A general treatment of standard errors that are both heteroskedasticity and serial
correlation-robust is given in Davidson and MacKinnon (1993). Right now, we provide
a simple method to compute the robust standard error of any OLS coefficient.



Our treatment here follows Wooldridge (1989). Consider the standard multiple lin-
ear regression model

¥ = Bs + Bix;yt oo ¥ Bt us =12, 500, (12.39)

which we have estimated by OLS. For concreteness, we are interested in obtaining a se-
rial correlation-robust standard error for 3,. This turns out to be fairly easy. Write x,; as
a linear function of the remaining independent variables and an error term,

Xy =G s ¥l B XA Ty (12.40)

where the error r, has zero mean and is uncorrelated with x,,, x,3, ..., X.
Then, it can be shown that the asymptotic variance of the OLS estimator f3, is

n ~2 n
A\-’ar(B,) = (E E(rf)) Var (E ru, .

=1 =1
Under the no serial correlation Assumption TS.5", {a, = r,u,} is serially uncorrelated,
and so either the usual OLS standard errors (under homoskedasticity) or the
heteroskedasticity-robust standard errors will be valid. But if TS.5' fails, our expression
for Avar(BE} must account for the correlation between a, and a,, when t # s. In prac-
tice, it is common to assume that, once the terms are farther apart than a few periods,
the correlation is essentially zero. Remember that under weak dependence, the correla-
tion must be approaching zero, so this is a reasonable approach.

Following the general framework of Newey and West (1987), Wooldridge (1989)
shows that A\-'ar(ﬂ,) can be estimated as follows. Let “se(B,)” denote the usual (but in-
correct) OLS standard error and let & be the usual standard error of the regression (or
root mean squared error) from estimating (12.39) by OLS. Let 7, denote the residuals
from the auxiliary regression of

Xy Ol Xas Ko <o s Xy (12.41)

(including a constant, as usual). For a chosen integer g > 0, define

n

$=2a+2 [1-hig+1)] ( 3 4z ,,) (12.42)

t=1 t=h+1

where
(}\f = Pxﬁpf = 1,2,‘”,.‘1.

This looks somewhat complicated, but in practice it is easy to obtain. The integer g in
(12.42) controls how much serial correlation we are allowing in computing the standard
error. Once we have v, the serial correlation-robust standard error of 3, is simply

se(B,) = [“se(B)"161 V3. (12.43)
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In other words, we take the usual OLS standard error of BAE, divide it by &, square the
result, and then multiply by the square root of v. This can be used to construct confi-
dence intervals and ¢ statistics for ﬁl‘

It is useful to see what v looks like in some simple cases. When g = 1,

b= a%+ 244, (12.44)
=1 =2
and when g = 2,

P = a%+ (4/3) (2 a,a,_,) + (2/3) (E a,a,_z). (12.45)
=1 =2 =3

The larger that g is, the more terms are included to correct for serial correlation. The
purpose of the factor [1 — h/(g + 1)] in (12.42) is to ensure that v is in fact nonnega-
tive [Newey and West (1987) verify this]. We clearly need v = 0, since v is estimating
a variance and the square root of v appears in (12.43).

The standard error in (12.43) also turns out to be robust to arbitrary heteroskedas-
ticity. In fact, if we drop the second term in (12.42), then (12.43) becomes the usual
heteroskedasticity-robust standard error that we discussed in Chapter 8 (without the de-
grees of freedom adjustment).

The theory underlying the standard error in (12.43) is technical and somewhat sub-
tle. Remember, we started off by claiming we do not know the form of serial correlation.
If this is the case, how can we select the integer g? Theory states that (12.43) works for
fairly arbitrary forms of serial correlation, provided g grows with sample size n. The idea
is that, with larger sample sizes, we can be more flexible about the amount of correla-
tion in (12.42). There has been much recent work on the relationship between g and n,
but we will not go into that here. For annual data, choosing a small g, such as g = 1 or
g = 2, is likely to account for most of the serial correlation. For quarterly or monthly
data, g should probably be larger (such as g = 4 or 8 for quarterly and g = 12 or 24 for
monthly), assuming that we have enough data. Newey and West (1987) recommend tak-
ing g to be the integer part of 4(n/100)*’?; others have suggested the integer part of n'/*.
The Newey-West suggestion is implemented by the econometrics program Eviews®. For,
say, n = 50 (which is reasonable for annual, postwar data from World War II), g = 3.
(The integer part of n'* gives g = 2.)

We summarize how to obtain a serial correlation-robust standard error for él. Of
course, since we can list any independent variable first, the following procedure works
for computing a standard error for any slope coefficient.

SERIAL CORRELATION-ROBUST STANDARD ERROR FOR f,:

(i) Estimate (12.39) by OLS, which yields "sc(ﬂ,)”, a, and the OLS residuals
{g:t=1,..:;n):

(i1) Compute the residuals {r,: t = 1,...,n} from the auxiliary regression (12.41).
Then, form a, = F,u, (for each 1).

(iii) For your choice of g, compute v as in (12.42).

(iv) Compute sc(Bll from (12.43).
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Empirically, the serial correlation-robust standard errors are typically larger than the
usual OLS standard errors when there is serial correlation. This is because, in most
cases, the errors are positively serially correlated. However, it is possible to have sub-
stantial serial correlation in {u,} but to also have similarities in the usual and serial
correlation-robust (SC-robust) standard errors of some coefficients: it is the sample au-
tocorrelations of @, = 7,i, that determine the robust standard error for £,.

The use of SC-robust standard errors has lagged behind the use of standard errors
robust only to heteroskedasticity for several reasons. First, large cross sections, where
the heteroskedasticity-robust standard errors will have good properties, are more com-
mon than large time series. The SC-robust standard errors can be poorly behaved when
there is substantial serial correlation and the sample size is small (where small can even
be as large as, say, 100). Second, since we must choose the integer g in equation
(12.42), computation of the SC-robust standard errors is not automatic. As mentioned
earlier, some econometrics packages have automated the selection, but you still have to
abide by the choice.

Another important reason that SC-robust standard errors are not yet routinely com-
puted is that, in the presence of severe serial correlation, OLS can be very inefficient,
especially in small sample sizes. After performing OLS and correcting the standard
errors for serial correlation, the coefficients are often insignificant, or at least less sig-
nificant than they were with the usual OLS standard errors.

The SC-robust standard errors after OLS estimation are most useful when we
have doubts about some of the explanatory variables being strictly exogenous, so that
methods such as Cochrane-Orcutt are not even consistent. It is also valid to use the
SC-robust standard errors in models with lagged dependent variables, assuming, of
course, that there is good reason for allowing serial correlation in such models.

'EXAMPLE 12.7
(The Puerto Rican Minimum Wage)

We obtain an SC-robust standard error for the minimum wage effect in the Puerto Rican
employment equation. In Example 12.2, we found pretty strong evidence of AR(1) serial
correlation. As in that example, we use as additional controls log(usgnp), log(prgnp), and
a linear time trend.

The OLS estimate of the elasticity of the employment rate with respect to the minimum
wage is B, = —.2123, and the usual OLS standard error is “se(B,)" = .0402. The standard
error of the regression is ¢ = .0328. Further, using the previous procedure with g = 2 [see
(12.45)], we obtain v = .000805. This gives the SC/heteroskedasticity-robust standard er-
ror as se({?]) = [(.0402/.0328)?]V.000805 = .0426. Interestingly, the robust standard error
is only slightly greater than the usual OLS standard error. The robust t statistic is about
—4.98, and so the estimated elasticity is still very statistically significant.

For comparison, the iterated CO estimate of B, is —.1111, with a standard error of
.0446. Thus, the FGLS estimate is much closer to zero than the OLS estimate, and we might
suspect violation of the strict exogeneity assumption. Or, the difference in the OLS and FGLS
estimates might be explainable by sampling error. It is very difficult to tell.
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Before leaving this section, we note that it is possible to construct serial correlation-
robust, F-type statistics for testing multiple hypotheses, but these are too advanced to
cover here. [See Wooldridge (1991b, 1995) and Davidson and MacKinnon (1993) for

treatments. |

12.6 HETEROSKEDASTICITY IN TIME SERIES REGRESSIONS

We discussed testing and correcting for heteroskedasticity for cross-sectional applica-
tions in Chapter 8. Heteroskedasticity can also occur in time series regression models,
and the presence of heteroskedasticity, while not causing bias or inconsistency in the [i
does invalidate the usual standard errors, ¢ statistics, and F statistics. This is just as in
the cross-sectional case.

In time series regression applications, heteroskedasticity often receives little, if any,
attention: the problem of serially correlated errors is usually more pressing. Never-
theless, it is useful to briefly cover some of the issues that arise in applying tests and
corrections for heteroskedasticity in time series regressions.

Since the usual OLS statistics are asymptotically valid under Assumptions TS.1’
through TS.5', we are interested in what happens when the homoskedasticity assump-
tion, TS.4', does not hold. Assumption TS.2' rules out misspecifications such as omit-
ted variables and certain kinds of measurement error, while TS.5 rules out serial
correlation in the errors. It is important to remember that serially correlated errors cause
problems which tests and adjustments for heteroskedasticity are not able to address.

Heteroskedasticity-Robust Statistics

In studying heteroskedasticity for cross-sectional regressions, we noted how it has no
bearing on the unbiasedness or consistency of the OLS estimators. Exactly the same
conclusions hold in the time series case, as we can see by reviewing the assumptions
needed for unbiasedness (Theorem 10.1) and consistency (Theorem 11.1).

In Section 8.2, we discussed how the usual OLS standard errors, t statistics, and F
statistics can be adjusted to allow for the presence of heteroskedasticity of unknown
form. These same adjustments work for time series regressions under Assumptions
TS.1', TS.2', TS.3’, and TS.5'. Thus, provided the only assumption violated is the ho-
moskedasticity assumption, valid inference is easily obtained in most econometric
packages.

Testing for Heteroskedasticity

Sometimes, we wish to test for heteroskedasticity in time series regressions, especially
if we are concerned about the performance of heteroskedasticity-robust statistics in rel-
atively small sample sizes. The tests we covered in Chapter 8§ can be applied directly,
but with a few caveats. First, the errors u, should not be serially correlated; any serial
correlation will generally invalidate a test for heteroskedasticity. Thus, it makes sense
to test for serial correlation first, using a heteroskedasticity-robust test if heteroskedas-
ticity is suspected. Then, after something has been done to correct for serial correlation,

we can test for heteroskedasticity.



How would you compute the White test for heteroskedasticity in

equation (12.47)?

leternskedasticity in Time Series Reqgressions

Second. consider the equation used to motivate the Breusch-Pagan test for het-

eroskedasticity:
W= 8+ 8x, ¥ ... + §x, + v, (12.46)

where the null hypothesis is Hy: 8, = 8, = ... = §, = 0. For the F statistic—with &;
replacing u; as the dependent variable—to be valid, we must assume that the errors {v,}
are themselves homoskedastic (as in the cross-sectional case) and serially uncorrelated.
These are implicitly assumed in computing all standard tests for heteroskedasticity, in-
cluding the version of the White test we covered in Section 8.3. Assuming that the {v,}
are serially uncorrelated rules out certain forms of dynamic heteroskedasticity, some-
thing we will treat in the next subsection.

If heteroskedasticity is found in the u, (and the u, are not serially correlated), then
the heteroskedasticity-robust test statistics can be used. An alternative is to use
weighted least squares, as in Section 8.4. The mechanics of weighted least squares for
the time series case are identical to those for the cross-sectional case.

EXAMPLE 12.8

(Heteroskedasticity and the Efficient Markets Hypothesis)

In Example 11.4, we estimated the simple model
return, = 3, + B,return,_, + u,. (12.47)

The EMH states that 8, = 0. When we tested this hypothesis using the data in NYSE.RAW,
we obtained t; = 1.55 with n = 689. With such a large sample, this is not much evidence
against the EMH. While the EMH states that
the expected return given past observable in-
formation should be constant, it says noth-
ing about the conditional variance. In fact,
the Breusch-Pagan test for heteroskedasticity
entails regressing the squared OLS residuals
G? on return,_,:

i; = 4.66 — 1.104 return,_, + residual,
(0.43) (0.201) (12.48)
n = 689, R? = .042.

The t statistic on return,_, is about —5.5, indicating strong evidence of heteroskedasticity.
Because the coefficient on return,_, is negative, we have the interesting finding that volatil-
ity in stock returns is lower when the previous return was high, and vice versa. Therefore,
we have found what is common in many financial studies: the expected value of stock re-
turns does not depend on past returns, but the variance of returns does.
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Autoregressive Conditional Heteroskedasticity

In recent years, economists have become interested in dynamic forms of heteroskedas-
ticity. Of course, if x, contains a lagged dependent variable, then heteroskedasticity as
in (12.46) is dynamic. But dynamic forms of heteroskedasticity can appear even in
models with no dynamics in the regression equation.

To see this, consider a simple static regression model:

Yi = Bot Bz, + u,

and assume that the Gauss-Markov assumptions hold. This means that the OLS esti-
mators are BLUE. The homoskedasticity assumption says that Var(x,|Z) is constant,
where Z denotes all n outcomes of z,. Even if the variance of u, given Z is constant, there
are other ways that heteroskedasticity can arise. Engle (1982) suggested looking at the
conditional variance of u, given past errors (where the conditioning on Z is left im-
plicit). Engle suggested what is known as the autoregressive conditional het-
eroskedasticity (ARCH) model. The first order ARCH model is

E@?|u,_u,_s,...) = E@?u,_,) = ap + ayi?_,, (12.49)

where we leave the conditioning on Z implicit. This equation represents the conditional
variance of u, given past u,, only if E(u,|u,_,.u,_»....) = 0, which means that the errors
are serially uncorrelated. Since conditional variances must be positive, this model only
makes sense if a;, > 0 and a, = 0; if «, = 0, there are no dynamics in the variance
equation.

It is instructive to write (12.49) as

uwr=ay+ au’_, +v, (12.50)

where the expected value of v, (given u,_,, u,_,, ...) is zero by definition. (The v, are
not independent of past u, because of the constraint v, = —a, — a,u?_,.) Equation
(12.50) looks like an autoregressive model in «? (hence the name ARCH). The stability
condition for this equation is ; < 1, just as in the usual AR(1) model. When «, > 0,
the squared errors contain (positive) serial correlation even though the u, themselves
do not.

What implications does (12.50) have for OLS? Since we began by assuming the
Gauss-Markov assumptions hold, OLS is BLUE. Further, even if «, is not normally dis-
tributed, we know that the usual OLS test statistics are asymptotically valid under As-
sumptions TS.1" through TS.5’, which are satisfied by static and distributed lag models
with ARCH errors.

If OLS still has desirable properties under ARCH, why should we care about ARCH
forms of heteroskedasticity in static and distributed lag models? We should be con-
cerned for two reasons. First, it is possible to get consistent (but not unbiased) estima-
tors of the S, that are asymptotically more efficient than the OLS estimators. A weighted
least squares procedure, based on estimating (12.50), will do the trick. A maximum
likelihood procedure also works under the assumption that the errors u«, have a condi-
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tional normal distribution. Second, economists in various fields have become interested
in dynamics in the conditional variance. Engle’s original application was to the variance
of United Kingdom inflation, where he found that a larger magnitude of the error in the
previous time period (larger u; ) was associated with a larger error variance in the cur-
rent period. Since variance is often used to measure volatility, and volatility is a key el-
ement in asset pricing theories, ARCH models have become important in empirical
finance.

ARCH models also apply when there are dynamics in the conditional mean. Suppose
we have the dependent variable, y,, a contemporaneous exogenous variable, z,, and

LpYe—12&— 1Y -2 s ) [T B{} i Bl‘zf W BE.“r--I + B_]Z, 12

so that at most one lag of y and z appears in the dynamic regression. The typical ap-
proach is to assume that Var(y,|z,.y, 1,2, 1»Y;_2,---) is constant, as we discussed in
Chapter 11. But this variance could follow an ARCH model:

E(y,

Var(y,

e Yi— 158 —1Y1—25 -+ ) = VE[I‘{HJZF,}-‘, 1% —15Yi—2 -+ 2)

_ 2
= oy + oy,

where u, = y, = E(y|z:»Yi— 1,2~ 1:Y:—2» ---). As we know from Chapter 11, the presence
of ARCH does not affect consistency of OLS, and the usual heteroskedasticity-robust
standard errors and test statistics are valid. (Remember, these are valid for any form of
heteroskedasticity, and ARCH is just one particular form of heteroskedasticity.)

If you are interested in the ARCH model and its extensions, see Bollerslev, Chou,
and Kroner (1992) and Bollerslev, Engle, and Nelson (1994) for recent surveys.

EXAMPLE 12.9

(ARCH in Stock Returns)

In Example 12.8, we saw that there was heteroskedasticity in weekly stock returns. This het-
eroskedasticity is actually better characterized by the ARCH model in (12.50). If we com-
pute the OLS residuals from (12.47), square these, and regress them on the lagged squared
residual, we obtain

0% = 2.95 + 337 4%, + residual,
(44) (.036) (12.51)

n = 688, R* = .114.

The t statistic on G7_, is over nine, indicating strong ARCH. As we discussed earlier, a larger
error at time t — 1 implies a larger variance in stock returns today.

It is important to see that, while the squared OLS residuals are autocorrelated, the OLS
residuals themselves are not (as is consistent with the EMH). Regressing G, on d,_, gives
p = .0014 with t; = .038.
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Heteroskedasticity and Serial Correlation in Regression
Models

Nothing rules out the possibility of both heteroskedasticity and serial correlation being
present in a regression model. If we are unsure, we can always use OLS and compute
fully robust standard errors, as described in Section 12.5.

Much of the time serial correlation is viewed as the most important problem, because
it usually has a larger impact on standard errors and the efficiency of estimators than
does heteroskedasticity. As we concluded in Section 12.2, obtaining tests for serial cor-
relation that are robust to arbitrary heteroskedasticity is fairly straightforward. If we
detect serial correlation using such a test, we can employ the Cochrane-Orcutt transfor-
mation [see equation (12.32)] and, in the transformed equation, use heteroskedas[icity—
robust standard errors and test statistics. Or, we can even test for heteroskedasticity in
(12.32) using the Breusch-Pagan or White tests.

Alternatively, we can model heteroskedasticity and serial correlation and correct for
both through a combined weighted least squares AR(1) procedure. Specifically, con-
sider the model

A - e - P S o - R
u! = ‘\’/Evf (12052)

Ve = PV ¥ € Ipl <

where the explanatory variables X are independent of ¢, for all ¢, and A, is a function of
the x,;. The process {e,} has zero mean and constant variance o? and is serially uncor-
related. Therefore, {v,} satisfies a stable AR(1) process. Suppressing the conditioning
on the explanatory variables, we have

Var(u,) = o’h,,

where o2 = o2/(1 — p?). But v, = u,/\/h, is homoskedastic and follows a stable AR(1)
model. Therefore, the transformed equation

vV, = Bo(1IVI) + B/ Vi) + ... + BiGcul/ V) + v,  (12.53)

has AR(1) errors. Now, if we have a particular kind of heteroskedasticity in mind—that
is, we know h,—we can estimate (12.52) using standard CO or PW methods.

In most cases, we have to estimate A, first. The following method combines the
weighted least squares method from Section 8.4 with the AR(1) serial correlation cor-
rection from Section 12.3.

FEASIBLE GLS WITH HETEROSKEDASTICITY AND AR(1) SERIAL CORRELATION:

(1) Estimate (12.52) by OLS and save the residuals, ,.

(i) Regress log(@i) on x,,, ..., v, (or on ¥, y7) and obtain the fitted values, say g,.
(1i1) Obtain the estimates of h,: h, = exp(g,).

(iv) Estimate the transformed equation



Chapter 12 Serial Correlation and Heteroskedasticity in Time Series Regressions

h 2y, = h By + Bih, \x, + ...+ Bk, Vx, + error,  (12.54)

by standard Cochrane-Orcutt or Prais-Winsten methods.

These feasible GLS estimators are asymptotically efficient. More importantly, all
standard errors and test statistics from the CO or PW methods are asymptotically valid.

We have covered the important problem of serial correlation in the errors of multiple
regression models. Positive correlation between adjacent errors is common, especially
in static and finite distributed lag models. This causes the usual OLS standard errors and
statistics to be misleading (although the B} can still be unbiased, or at least consistent).
Typically, the OLS standard errors underestimate the true uncertainty in the parameter
estimates.

The most popular model of serial correlation is the AR(1) model. Using this as the
starting point, it is easy to test for the presence of AR(1) serial correlation using the
OLS residuals. An asymptotically valid ¢ statistic is obtained by regressing the OLS
residuals on the lagged residuals, assuming the regressors are strictly exogenous and a
homoskedasticity assumption holds. Making the test robust to heteroskedasticity is sim-
ple. The Durbin-Watson statistic is available under the classical linear model assump-
tions, but it can lead to an inconclusive outcome, and it has little to offer over the 7 test.

For models with a lagged dependent variable or other nonstrictly exogenous re-
gressors, the standard 7 test on #, , is still valid, provided all independent variables are
included as regressors along with &, ,. We can use an F or an LM statistic to test for
higher order serial correlation.

In models with strictly exogenous regressors, we can use a feasible GLS proce-
dure—Cochrane-Orcutt or Prais-Winsten—to correct for AR(1) serial correlation. This
gives estimates that are different from the OLS estimates: the FGLS estimates are ob-
tained from OLS on quasi-differenced variables. All of the usual test statistics from the
transformed equation are asymptotically valid. Almost all regression packages have
built-in features for estimating models with AR(1) errors.

Another way to deal with serial correlation, especially when the strict exogeneity
assumption might fail, is to use OLS but to compute serial correlation-robust standard
errors (that are also robust to heteroskedasticity). Many regression packages follow a
method suggested by Newey and West (1987); it is also possible to use standard re-
gression packages to obtain one standard error at a time.

Finally, we discussed some special features of heteroskedasticity in time series mod-
els. As in the cross-sectional case, the most important kind of heteroskedasticity is that
which depends on the explanatory variables; this is what determines whether the usual
OLS statistics are valid. The Breusch-Pagan and White tests covered in Chapter 8 can be
applied directly, with the caveat that the errors should not be serially correlated. In recent
years, economists—especially those who study the financial markets—have become inter-
ested in dynamic forms of heteroskedasticity. The ARCH model is the leading example.
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Autoregressive Conditional Feasible GLS (FGLS)

Heteroskedasticity (ARCH) Prais-Winsten (PW) Estimation
Breusch-Godfrey Test Quasi-Differenced Data
Cochrane-Orcutt (CO) Estimation Serial Correlation-Robust Standard Error
Durbin-Watson (DW) Statistic Weighted Least Squares

12.1 When the errors in a regression model have AR(1) serial correlation, why do the
OLS standard errors tend to underestimate the sampling variation in the 3,7 Is it always
true that the OLS standard errors are too small?

12.2 Explain what is wrong with the following statement: “The Cochrane-Orcutt and
Prais-Winsten methods are both used to obtain valid standard errors for the OLS esti-
mates.”

12.3 In Example 10.6, we estimated a variant on Fair’s model for predicting presiden-
tial election outcomes in the United States.
(i)  What argument can be made for the error term in this equation being seri-
ally uncorrelated? (Hint: How often do presidential elections take place?)
(1)) When the OLS residuals from (10.23) are regressed on the lagged resid-
uals, we obtain p = —.068 and se(p) = .240. What do you conclude
about serial correlation in the u,?
(ii1) Does the small sample size in this application worry you in testing for
serial correlation?

12.4 True or False: “If the errors in a regression model contain ARCH, they must be se-
rially correlated.”

12.5 (i) In the enterprise zone event study in Problem 10.11, a regression of the OLS
residuals on the lagged residuals produces p = .841 and se(p) = .053. What
implications does this have for OLS?

(i) If you want to use OLS but also want to obtain a valid standard error for
the EZ coefficient, what would you do?

12.6 In Example 12.8, we found evidence of heteroskedasticity in u, in equation
(12.47). Thus, we compute the heteroskedasticity-robust standard errors (in [-]) along
with the usual standard errors:

return, = .180 + .059 return, ,
(.081) (.038)
[.O85] [.069]

n = 689, R = .0035. R* = .0020.



What does using the heteroskedasticity-robust ¢ statistic do to the significance of re-

turn, !

[ 12.7 In Example 11.6, we estimated a finite DL model in first differences:

W Agfr, = vo + 8,Ape, + 8,Ape,_, + 8,Ape, , + u,
Use the data in FERTIL3.RAW to test whether there is AR(1) serial correlation in the
eITors.

12.8 (i) Using the data in WAGEPRC.RAW, estimate the distributed lag model from
Problem 11.5. Use regression (12.14) to test for AR(1) serial correlation.
(i1) Reestimate the model using iterated Cochrane-Orcutt estimation. What
is your new estimate of the long-run propensity?
(iii) Using iterated CO, find the standard error for the LRP. (This requires
you to estimate a modified equation.) Determine whether the estimated
LRP is statistically different from one at the 5% level.

12.9 (i) In part (i) of Problem 11.13, you were asked to estimate the accelerator model
for inventory investment. Test this equation for AR(1) serial correlation.
(i) If you find evidence of serial correlation, reestimate the equation by
Cochrane-Orcutt and compare the results.

12.10(i) Use NYSE.RAW to estimate equation (12.48). Let F:, be the fitted values
from this equation (the estimates of the conditional variance). How many ,-';;
are negative?

(ii) Add returr’_, to (12.48) and again compute the fitted values, A, Are
any h, negative?

(iii) Use the A, from part (ii) to estimate (12.47) by weighted least squares
(as in Section 8.4). Compare your estimate of 3, with that in equation
(11.16). Test Hy: B, = 0 and compare the outcome when OLS is used.

(iv) Now, estimate (12.47) by WLS, using the estimated ARCH model in
(12.51) to obtain the f;,. Does this change your findings from part (iii)?

12.11 Consider the version of Fair’s model in Example 10.6. Now, rather than predict-
ing the proportion of the two-party vote received by the Democrat, estimate a linear
probability model for whether or not the Democrat wins.
(i)  Use the binary variable demwins in place of demvote in (10.23) and re-
port the results in standard form. Which factors affect the probability of
winning? Use the data only through 1992.
(11) How many fitted values are less than zero? How many are greater than
one?
(iii) Use the following prediction rule: if demwins > .5, you predict the De-
mocrat wins; otherwise, the Republican wins. Using this rule, deter-
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(iv)

(v)

(vi)

12.12 (i)

(ii)

12.13 i)

(i1)
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mine how many of the 20 elections are correctly predicted by the
model.

Plug in the values of the explanatory variables for 1996. What is the
predicted probability that Clinton would win the election? Clinton did
win; did you get the correct prediction?

Use a heteroskedasticity-robust ¢ test for AR(1) serial correlation in the
errors. What do you find?

Obtain the heteroskedasticity-robust standard errors for the estimates in
part (i). Are there notable changes in any  statistics?

In Problem 10.13, you estimated a simple relationship between consumption
growth and growth in disposable income. Test the equation for AR(1) serial

correlation (using CONSUMP.RAW).

In Problem 11.14, you tested the permanent income hypothesis by re-
gressing the growth in consumption on one lag. After running this re-
gression, test for heteroskedasticity by regressing the squared residuals
on gc,_, and gc7_,. What do you conclude?

For Example 12.4, using the data in BARIUM.RAW, obtain the iterative

Prais-Winsten estimates.
Are the Prais-Winsten and Cochrane-Orcutt estimates similar? Did you
expect them to be?

12.14 Use the data in TRAFFIC2.RAW for this exercise.

6)

(i1)

(iii)

12.15 The file FISH.RAW contains 97 daily price and quantity observations on fish
prices at the Fulton Fish Market in Manhattan. Use the variable log(avgprc) as the de-

Run an OLS regression of prcfat on a linear time trend, monthly
dummy variables, and the variables wkends, unem, spdlaw, and beltlaw.
Test the errors for AR(1) serial correlation using the regression in equa-
tion (12.14). Does it make sense to use the test that assumes strict exo-
geneity of the regressors?

Obtain serial correlation- and heteroskedasticity-robust standard errors
for the coefficients on spdlaw and bltlaw, using four lags in the Newey-
West estimator. How does this affect the statistical significance of the
two policy variables?

Now, estimate the model using iterative Prais-Winsten and compare the
estimates with the OLS estimates. Are there important changes in the
policy variable coefficients or their statistical significance?

pendent variable.

(1)

(i1)

Regress log(avgpre) on four daily dummy variables, with Friday as the
base. Include a linear time trend. Is there evidence that price varies sys-
tematically within a week?

Now, add the variables wave2 and wave3, which are measures of wave
heights over the past several days. Are these variables individually sig-
nificant? Describe a mechanism by which stormier seas would increase
the price of fish.
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(1v)

(v)
(vi)
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What happened to the time trend when wave2 and wave3 were added to
the regression? What must be going on?
Explain why all explanatory variables in the regression are safely as

sumed to be strictly exogenous.

Test the errors for AR(1) serial correlation.

Obtain the Newey-West standard errors using four lags. What happens
to the 7 statistics on wave2 and wave3? Did you expect a bigger or
smaller change compared with the usual OLS ¢ statistics?

(vii) Now, obtain the Prais-Winsten estimates for the model estimated in part
(ii). Are wave2 and wave3 jointly statistically significant?

“J




