PRACTICA III: Estimacion, Inferencia y Prediccion (Fecha de Entrega: En la Página Web)

Problema 1. Supon que en una muestra de tamaño 100 extraida de un proceso AR(1) con media μ , $\phi = 0.6$ y $\sigma^2 = 2$, obtenemos $\overline{x}_{100} = 0.271$. Construye un intervalo aproximado de confianza al 95% para μ . ¿Suguieren los datos que $\mu = 0$?

Problema 2. Supon que en una muestra de tamaño 100 extraida de un proceso MA(1) con media μ , $\theta=-0.6$ y $\sigma^2=1$, obtenemos $\overline{x}_{100}=0.157$. Construye un intervalo aproximado de confianza al 95% para μ . ¿Suguieren los datos que $\mu=0$?

Problema 3. Considera el siguiente proceso AR(2)

$$X_t - \phi X_{t-1} - \phi^2 X_{t-2} = Z_t, \qquad Z_t \sim WN(0, \sigma^2).$$

- ¿Para qué valores de ϕ es éste un proceso causal?
- Los siguientes momentos muestrales fueron computados tras observar $X_1,...,X_{200}$:

$$\hat{\gamma}(0) = 6.06, \qquad \hat{\rho}(1) = 0.687, \qquad \hat{\rho}(2) = 0.610$$

Encuentra estimaciones de ϕ y σ^2 resolviendo las ecuaciones de Yule-Walker. (Si encuentras más de una solución, escoje la causal)

Problema 4. Doscientas observaciones de una serie temporal, $X_1, ..., X_{200}$, ofrecieron los siguientes estadísticos muestrales

$$media - muestral: \quad \bar{x}_{200} = 3.82$$

$$varianza - muestral: \quad \hat{\gamma}(0) = 1.15$$

$$FAC - muestral:$$
 $\hat{\rho}(1) = 0.427, \hat{\rho}(2) = 0.475, \hat{\rho}(3) = 0.169$

- Basándonos en los estadísticos muestrales, ¿es razonable suponer que $\{X_t \mu\}$ es ruido blanco?
- Asumid que $\{X_t \mu\}$ puede ser modelizado como un proceso AR(2),

$$X_t - \mu - \phi_1(X_{t-1} - \mu) - \phi_2(X_{t-2} - \mu) = Z_t$$

donde $Z_t \sim IID(0, \sigma^2)$, encuentra estimaciones de μ , ϕ_1 , ϕ_2 y σ^2 .

- ¿Concluírias que $\mu = 0$?
- Construye intervalos de confianza al 95% para ϕ_1 y ϕ_2 .

• Asumiendo que los datos fueron generados a partir de un modelo AR(2), deriva estimaciones de la FACP para todos los retardos $h \ge 1$.

Problema 5. Supon que $X_1, X_2...$ es una serie estacionaria con media μ y FAC $\rho(\cdot)$. Muestra que el mejor predictor de X_{n+h} de la forma $aX_n + b$ se obtiene escogiendo $a = \rho(h)$ y $b = \mu(1 - \rho(h))$.

Problema 6. Supon que $X_t, t = 0, \pm 1, ...,$ es un proceso estacionario que satisface las siguientes ecuaciones

$$X_t = \phi_1 X_{t-1} + \dots + \phi_p X_{t-p} + Z_t$$

donde $Z_t \sim WN(0, \sigma^2)$ y Z_t no está correlacionado con X_s para s < t. Muestra que el mejor predictor lineal $P_n X_{n+1}$ de X_{n+1} en términos de $1, X_1, ..., X_n$, asumiendo que n > p, es

$$P_n X_{n+1} = \phi_1 X_n + \dots + \phi_p X_{n+1-p}$$

¿Cuál es el error cuadrático medio de P_nX_{n+1} ?

Problema 7. Sea X_t un proceso estacionario definido por las ecuaciones

$$X_t = Z_t - \theta Z_{t-1}, t = 0, \pm 1, ...,$$

donde $|\theta| < 1$ y $Z_t \sim WN(0, \sigma^2)$. Muestra que el mejor predictor lineal $\tilde{P}_n X_{n+1}$ de X_{n+1} basado en X_j , $-\infty < j \le n$, es

$$\tilde{P}_n X_{n+1} = -\sum_{j=1}^{\infty} \theta^j X_{n+1-j}.$$

¿Cuál es el error cuadrático medio del predictor $\tilde{P}_n X_{n+1}$?

Problema 8. Si X_t se ha definido como en el problema 5 y $\theta = 1$, encuentra el mejor predictor lineal $P_n X_{n+1}$ de X_{n+1} en términos de $X_1, ..., X_n$. ¿Cuál es su correspondiente error cuadrático medio?

Problema 9. Sean X_1, X_2, X_4 y X_5 observaciones del siguiente modelo $\operatorname{MA}(1)$

$$X_t = Z_t + \theta Z_{t-1}, \qquad Z_t \sim WN(0, \sigma^2).$$

- \bullet Encuentra la mejor estimación lineal del valor omitido X_3 en términos de X_1 y $X_2.$
- Encuentra la mejor estimación lineal del valor omitido X_3 en términos de X_4 y X_5 .
- \bullet Encuentra la mejor estimación lineal del valor omitido X_3 en términos de X_1,X_2,X_4 y $X_5.$
- Computa el error cuadrático medio de las estimaciones en los subapartados previos.