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Abstract We describe the concept of cointegration, its implications in modelling and forecasting, and discuss

inference procedures appropriate in integrated-cointegrated vector autoregressive processes (VARs). Particular

attention is paid to the properties of VARs, to the modelling of deterministic terms, and to the determination of

the number of cointegration vectors. The analysis is illustrated by empirical examples.
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1 Introduction

Hendry and Juselius (2000) investigated the properties of economic time series that were integrated
processes, such as random walks, which contained a unit root in their dynamics. Here we extend the
analysis to the multivariate context, and focus on cointegration in systems of equations.

We showed in Hendry and Juselius (2000) that when data were non-stationary purely due to unit
roots (integrated once, denotedI(1)), they could be brought back to stationarity by the linear transform-
ation of differencing, as inxt−xt−1 = ∆xt. For example, if the data generation process (DGP) were the
simplest random walk with an independent normal (IN) error having mean zero and constant variance
σ2

ε :
xt = xt−1 + εt where εt ∼ IN

[
0, σ2

ε

]
, (1)

then subtractingxt−1 from both sides delivers∆xt ∼ IN
[
0, σ2

ε

]
which is certainly stationary.1 Since

∆xt cannot have a unit root, it must beI(0). Such an analysis generalizes to (say) twice-integrated series
– which areI(2)– so must becomeI(0) after differencing twice.

It is natural to enquire if other linear transformations than differencing will also induce stationarity.
The answer is ‘possibly’, but unlike differencing, there is no guarantee that the outcome must beI(0):
cointegration analysis is designed to find linear combinations of variables that also remove unit roots.
In a bivariate context, ifyt andxt are bothI(1), there may (but need not) be a unique value ofβ such
thatyt −βxt is I(0): in other words, there is no unit root in the relation linkingyt andxt. Consequently,
cointegration is a restriction on a dynamic model, and so is testable. Cointegration vectors are of consid-
erable interest when they exist, since they determineI(0) relations that hold between variables which are
individually non-stationary. Such relations are often called ‘long-run equilibria’, since it can be proved
that they act as ‘attractors’ towards which convergence occurs whenever there are departures therefrom
(see e.g., Granger, 1986, and Banerjee, Dolado, Galbraith and Hendry, 1993, ch. 2).

Since I(1) variables ‘wander’ (often quite widely) because of their stochastic trends, whereas
(weakly) stationary variables have constant means and variances, if there exists a linear combination
that delivers anI(0) relation, it might be thought that it would be obvious from graphs of the variables.
Unfortunately, that need not be the case, as figure 1 shows. In panel a, three variables (denotedya, yb,
yc) are plotted that are actually very strongly cointegrated, whereas panel b plots another two (denoted
Ya, Yb) that are neither cointegrated, nor linked in any causal way. Panels c and d respectively show the
changes in these variables. It is not obvious from the graphs that the first set are closely linked whereas
the second are not connected at all. Nevertheless, thePcGivecointegration test, described in Hendry
and Juselius (2000), applied to simple dynamic models relatingya to yb andyc, andYa to Yb, respect-
ively takes the valuestur = −6.25∗∗ and tur = −2.31, so the first strongly rejects a unit root in the
relation, whereas the second does not. Thus, cointegration may or may not exist between variables that
do or do not ‘look cointegrated’, and the only way to find out is through a careful statistical analysis,
rather than rely on visual inspection. These two points, namely the importance but non-obvious nature
of cointegrated relations, motivates our discussion.

The organization of this paper is as follows. Section 2 begins by illustrating the inherently multivari-
ate nature of cointegration analysis: several variables must be involved, and this determines the form
of the statistical tools required. Section 3 then discusses the conditions under which a vector autore-
gressive process (VAR) would provide a feasible empirical model for integrated economic time series,
spelling out both its statistical and economic requirements, illustrated by the empirical example used in

1Notice that differencing is not anoperator for equations: one can difference data (to create∆xt), but attempting to
difference equation (1) would lead to∆xt = ∆xt−1 + ∆εt. Such an equation is not well defined, since∆ can be cancelled
on both sides, so is redundant.
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Figure 1 Cointegrated and non-cointegrated time series.

Hendry and Juselius (2000). In section 4, we consider alternative representations of the VAR that yield
different insights into its properties under stationarity, and also set the scene for deriving the necessary
and sufficient conditions that deliver an integrated-cointegrated process. The purpose of section 5 is to
define cointegration via restrictions on the VAR model, and relate the properties of the vector process
to stochastic trends and stationary components based on the moving-average representation. Section 6
considers the key role of deterministic terms (like constants and trends) in cointegration analyses.

At that stage, the formalization of the model and analysis of its properties are complete, so we turn
to issues of estimation (section 7) and inference (section 8), illustrated empirically in section 9. Section
10 considers the identification of the cointegration parameters, and hypothesis tests thereon, and section
11 discusses issues that arise in the analysis of partial systems (conditional on a subset of the variables)
and the closely related concept of exogeneity. Finally, we discuss forecasting in cointegrated systems
(section 12) and the associated topic of parameter constancy (section 13), also relevant to any policy
applications of cointegrated systems. Section 14 concludes. The paper uses matrix algebra extensively
to explain the main ideas, so we adopt the following notation: bold-face capital letters for matrices, bold-
face lower case for vectors, normal case for variables and coefficients, and Greek letters for parameters.
We generally assume all variables are in logs, which transformation produces more homogeneous series
for inherently-positive variables (see e.g., Hendry, 1995a, ch. 2), but we will not distinguish explicitly
between logs and the original units.2

2If a variable had a unit root in its original units of measurement, it would become essentially deterministic over time if
it had a constant error variance. Thus, absolute levels must have heteroscedastic errors to make sense; but if so, that is not a
sensible place to start modeling. Moreover, if the log had a unit root, then the original must be explosive. Many economic
variables seem to have that property, appearing to show quadratic trends in absolute levels.
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2 The multivariate nature of cointegration analysis

Cointegration analysis is inherently multivariate, as a single time series cannot be cointegrated. Con-
sequently, consider a set of integrated variables, such as gasoline prices at different locations as in
Hendry and Juselius (2000), where each individual gasoline price (denotedpi,t) is I(1), but follows a
common long-run path, affected by the world price of oil (po,t). Cointegration between the gasoline
prices could arise, for example, if the price differentials between any two locations were stationary.
However, cointegration as such does not say anything about the direction of causality. For example,
one of the locations could be a price leader and the others price followers; or, alternatively, none of the
locations might be more important than the others. In the first case, the price of the leading location
would be driving the prices of the other locations (be ‘exogenous’ to the other prices) and cointegration
could be analyzed from the equations for the other ‘adjusting’ prices, given the price of the leader. In
the second case, all prices would be ‘equilibrium adjusting’ and, hence, all equations would contain in-
formation about the cointegration relationships. In the bivariate analysis in Hendry and Juselius (2000),
cointegration was found in a single-equation model ofp1,t givenp2,t, thereby assuming thatp2,t was a
price leader. If this assumption was incorrect, then the estimates of the cointegration relation would be
inefficient, and could be seriously biased. To find out which variables adjust, and which do not adjust, to
the long-run cointegration relations, an analysis of the full system of equations is required, as illustrated
in Section 11.

Here, we will focus on a vector autoregression (VAR) as a description of the system to be investig-
ated. In a VAR, each variable is ‘explained’ by its own lagged values, and the lagged values of all other
variables in the system. To see which questions can be asked within a cointegrated VAR, we postulate
a trivariate VAR model for the two gasoline pricesp1,t andp2,t, together with the price of crude oil,
po,t. We restrict the analysis to one lagged change for simplicity, and allow for 2 cointegration relations.
Then the system can be written as: ∆p1,t

∆p2,t

∆po,t

 =

 φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33


 ∆p1,t−1

∆p2,t−1

∆po,t−1

+

 α11 α12

α21 α22

α31 α32

( (p1 − p2)t−1

(p2 − po)t−1

)

+

 ψ1

ψ2

ψ3

 d1,t +

 π1

π2

π3

+

 ε1,t

ε2,t

ε3,t

 , (2)

whereεt is assumedIN3[0,Ωε], andΩε is the (positive-definite, symmetric) covariance matrix of the
error process.

Within the hypothetical system (2), we could explain the three price changes from periodt − 1
(previous week) tot (this week) as a result of:

(i) an adjustment to previous price changes, with impactsφij for the jth lagged change in theith

equation;
(ii) an adjustment to previous disequilibria between prices in different locations,(p1 − p2), and

between the price in location 2 and the price of crude oil,(p2 − po), with impactsαi1 andαi2

respectively in theith equation;
(iii) an extraordinary intervention in the whole market, such as the outbreak of the Kuwait war, de-

scribed by the intervention dummyd1,t;
(iv) a constant termπ; and
(v) random shocks,εt.



5

When all three prices areI(1), whereas(p1,t − p2,t) and(p2,t − po,t) areI(0), then the latter describe
cointegrated relations, i.e., relations that are stationary even when the variables themselves are non-
stationary. Cointegration between the prices means that the three prices follow the same long-run trends,
which then cancel in the price differentials. This may seem reasonablea priori, but could nevertheless
be incorrect empirically: using multivariate cointegration analysis, we can formally test whether such is
indeed the case. In general, we write cointegration relations in the form:

β11p1,t + β12p2,t + β13po,t; and β21p1,t + β22p2,t + β32po,t (3)

etc., where, in (2), we have normalizedβ11 = β22 = 1, and setβ13 = β21 = 0. Such restrictions cannot
be imposed arbitrarily in empirical research, so we will discuss how to test restrictions on cointegration
relations in Section 10.

The existence of cointegration by itself does imply which prices ‘equilibrium adjust’ and which
do not; nor does it entail whether any adjustment is fast or slow. Information about such features can
be provided by theαij coefficients. For example,α31 = α32 = 0, would tell us that there were no
feed-back effects onto the price of crude oil from ‘deviant’ price behavior in the gasoline market. In
this case, the price of crude oil would influence gasoline prices, but would not be influenced by them.
Next, consider, for example, whenα11 = −0.6 whereasα21 = −0.1. Then, gasoline prices at location
1 adjust more quickly to restore an imbalance between its own price and the price at location 2 than
the other way around. Finally, considerα22 = −0.4: then the location-2 price would adjust quite
quickly to changes in the level of crude oil price. In that case, we would be inclined to say that the
price of crude oil influenced the price of location 2 which influenced the price at location 1. This would
certainly be the case if the covariance matrixΩε was diagonal, so there were no contemporaneous links:
if Ωε was not diagonal, revealing cross-correlated residuals, one would have to be careful about ‘causal’
interpretations. The interpretation of the parameter estimates is generally more straightforward when
Ωε is diagonal, but this is seldom the case; price shocks are often correlated, sometimes indicating
an modeled causal link. For example, if a shock to crude-oil prices affects gasoline prices within the
same week (say), the correlations between the residuals from the crude-oil equation and the gasoline
equations are the result of a current oil-price effect. Another explanation for residual cross-correlation
is omitted variables that simultaneously influence several variables in the system.

As already discussed in Hendry and Juselius (2000), the constant terms,πi, can both describe an
intercept in the cointegration relations and linear trends in the variables, and the empirical analysis can
be used to estimate both effects. Finally, the random shocks,εi,t, are assumed to be serially independent,
and homoscedastic. All these, and other issues, will be discussed and illustrated with an empirical
example below.

It should now be evident that a cointegrated VAR provides a rich model: theβij coefficients charac-
terize long-run relationships between levels of variables; theαij coefficients describe changes that help
restore an equilibrium market position; theφij coefficients describe short-term changes resulting from
previous changes in the market – which need not have permanent effects on the levels; we will com-
ment on the intercepts in Section 6; and the intervention effects,ψi, describe extraordinary events in the
market, like the Kuwait war. We might, for example, ask whether such an event affected the gasoline
prices differently at different locations (i.e., whetherψ1 6= ψ2), and hence, permanently changed the
mean of the price differential(p1 − p2): this will be investigated empirically in Section 9.1. First, we
must analyze the VAR model more generally.
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3 The statistical adequacy of a VAR model

To understand when a VAR is an adequate description of reality, it is important to know the limitations
as well as the possibilities of that model. The purpose of this section is, therefore, to demonstrate that
a VAR model can be a convenient way of summarizing the information given by the autocovariances
of the data under certain assumptions about the DGP: see Hendry (1995a) for details. However, the
required assumptions may not hold in any given instance, so the first step in any empirical analysis of a
VAR is to test if these assumptions are indeed appropriate.

In section 3.1, we first assume that there arep ≥ 2 variablesxi,t under analysis, and that thep-
dimensional processxt is stationary, so does not contain any unit roots. We then derive the VAR model
under this simplifying assumption. In section 3.2, we discuss an interpretation of the VAR in terms of
rational economic behavior, and finally, in section 3.4, we extend the discussion to consider stability and
unit-root properties. Notice that unit roots are a restriction of the initial VAR model, so can be tested,
but it transpires that the tests are not standardt, F or χ2.

3.1 Stochastic properties

A stationary VAR arises naturally as a model of a data set(x1, . . . ,xT )′ viewed as a sequence ofT
realizations from thep-dimensional process{xt}, given the two general simplifying assumptions of
multivariate normality and time-invariant covariances. Derivations of a VAR from a general DGP are
described in (e.g.) Hendry (1995a, ch. 9). The resulting VAR could have many lagged variables, but
for simplicity of notation, we restrict attention here to the case with 2 lags denoted VAR(2), which
suffices to illustrate all the main properties – and problems (the results generalize easily, but lead to
more cumbersome notation). We write the simplest VAR(2) as:

xt = π + Π1xt−1 + Π2xt−2 + εt (4)

where
εt ∼ INp [0,Ωε] , (5)

t = 1, . . . , T and the parameters(π,Π1,Π2,Ωε) are constant and unrestricted, except forΩε being
positive-definite and symmetric.

Given (4), the conditional mean ofxt is:

E [xt | xt−1,xt−2] = π + Π1xt−1 + Π2xt−2 = mt,

say, and the deviation ofxt from mt definesεt:

xt − mt = εt.

Hence, if the assumptions of multivariate normality, time-constant covariances, and truncation at lag2
are correct, then (4):

• is linear in the parameters;
• has constant parameters;
• has normally distributed errorsεt, with:
• (approximate) independence betweenεt andεt−h for lagsh = 1, 2, . . . .

These conditions provide the model builder with testable hypotheses on the assumptions needed to
justify the VAR. In economic applications, the multivariate normality assumption is seldom satisfied.
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This is potentially a serious problem, since derivations of the VAR from a general DGP rely heavily on
multivariate normality, and statistical inference is only valid to the extent that the assumptions of the
underlying model are correct. An important question is, therefore, how we should modify the standard
VAR model in practice. We would like to preserve its attractiveness as a reasonably tractable description
of the basic characteristics of the data, while at the same time, achieving valid inference. Simulation
studies have demonstrated that statistical inference is sensitive to the validity of some of the assumptions,
such as, parameter non-constancy, serially-correlated residuals and residual skewness, while moderately
robust to others, such as excess kurtosis (fat-tailed distributions) and residual heteroscedasticity. Thus,
it seems advisable to ensure the first three are valid. Both direct and indirect testing of the assumptions
can enhance the success of the empirical application. It is often useful to calculate descriptive statistics
combined with a graphical inspection of the residuals as a first check of the adequacy of the VAR model,
then undertake formal mis-specification tests of each key assumption (see Doornik and Hendry, 1999,
ch. 10: all later references to specific tests are explained there). Once we understand why a model fails
to satisfy the assumptions, we can often modify it to end with a ‘well-behaved’ model. Precisely how
depends on the application, as will be illustrated in section 3.3 for the gasoline price series discussed in
Hendry and Juselius (2000).

3.2 Economic interpretation and estimation

As discussed in Hendry (1995a), the conditional meanmt can be given an economic interpretation as
the agents’ plans at timet− 1 given the past information of the process,xt−1, xt−2, etc., denotedX0

t−1.
The IN distributional assumption in (5) implies that agents are rational, in the sense that the deviation
between the actual outcomext and the planEt−1[xt|X0

t−1] is a white-noise innovation, not explicable
by the past of the process. Thus, the VAR model is consistent with economic agents who seek to avoid
systematic forecast errors when they plan for timet based on the information available at timet− 1.

By way of contrast, a VAR with autocorrelated residuals would describe agents that do not use all
information in the data as efficiently as possible. This is because they could do better by including the
systematic variation left in the residuals, thereby improving the accuracy of their expectations about
the future. Checking the assumptions of the model, (i.e., checking the white-noise requirement of the
residuals, and so on), is not only crucial for correct statistical inference, but also for the economic
interpretation of the model as a description of the behavior of rational agents.

To derive a full-information maximum likelihood (FIML) estimator requires an explicit probability
formulation of the model. Doing so has the advantage of forcing us to take the statistical assumptions
seriously. Assume that we have derived an estimator under the assumption of multivariate normality.
We then estimate the model, and find that the residuals are not normally distributed, or that the residual
variance is heteroscedastic instead of homoscedastic, or that residuals exhibit significant autocorrelation,
etc. The parameter estimates (based on an incorrectly-derived estimator) may not have any meaning,
and since we do not know their ‘true’ properties, inference is likely to be hazardous. Therefore, to
claim that conclusions are based on FIML inference is to claim that the empirical model is capable of
accounting for all the systematic information in the data in a satisfactory way.

Although the derivation of a FIML estimator subject to parameter restrictions can be complicated,
this is not so when the parameters(π,Π1,Π2,Ωε) of the VAR model (4) are unrestricted. In that case,
the ordinary least squares (OLS) estimator is equivalent to FIML. After the model has been estimated by
OLS, theIN distributional assumption can be checked against the data using the residualsε̂t. As already
mentioned, the white-noise assumption is often rejected for a first tentatively-estimated model, and one
has to modify the specification of the VAR model accordingly. This can be done, for example, by:
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1987:26–98:29 x sx Skew Ex.K. Jarq.Bera min max

p1 −0.489 0.149 0.39 0.66 15.5 −0.91 0.02
p2 −0.499 0.139 0.17 0.42 6.1 −0.92 −0.06

∆p1 −0.00010 0.032 0.04 1.38 210.3 −0.13 0.21
∆p2 −0.00026 0.025 −0.03 −0.33 101.9 −0.11 0.14
ε̂p1 0.0 0.025 0.27 4.64 214.9 −0.09 0.17
ε̂p2 0.0 0.020 0.01 2.47 90.7 −0.08 0.11

Table 1 Descriptive statistics.

• investigating parameter constancy (e.g., ‘is there a structural shift in the model parameters’?);
• increasing the information set by adding new variables;
• increasing the lag length;
• changing the sample period;
• adding intervention dummies to account for significant political or institutional events;
• conditioning on weakly-exogenous variables;
• checking the adequacy of the measurements of the chosen variables.

Any or all of these steps may be needed, but we stress the importance of checking that the initial VAR
is ‘congruent’ with the data evidence before proceeding with empirical analysis.

3.3 A tentatively-estimated VAR

As a first step in the analysis, the unrestricted VAR(2) model, with a constant term and without dummy
variables, was estimated by OLS for the two gasoline prices at different locations. Table 1 reports some
descriptive statistics for the logs of the variables in levels, differences, and for the residuals. As discussed
in Hendry (1995a), since the gasoline prices are apparently non-stationary, the empirical density is not
normal, but instead bimodal. The price changes on the other hand, seem to be stationary around a
constant mean. From Table 1, the mean is not significantly different from zero for either price change.
Normality is tested with the Jarque–Bera test, distributed asχ2(2) under the null, so is strongly rejected
for both series of price changes and the VAR residuals. Since rejection could be due to either excess
kurtosis (the normal has kurtosis of 3), or skewness, we report these statistics separately in Table 1. It
appears that excess kurtosis is violated for both equations, but that forp1,t also seems to be skewed to
the right.

The graphs (in logs) of the two gasoline prices are shown in Figure 2 in levels and differences (with
99% confidence bands), as well as the residuals (similarly with 99% confidence bands). There seem
to be some outlier observations (larger than±3σ̂), both in the differenced prices and in the residuals.
The largest is at 1990:31, the week of the outbreak of the Kuwait war. This is clearly not a ‘normal’
observation, but must be adequately accounted for in the specification of the VAR model. The remaining
large price changes (> ±3σ̂) can (but need not necessarily) be intervention outliers. It is, however,
always advisable to check whether any large changes in the data correspond to some extraordinary
events: exactly because they are big, they will influence the estimates with a large weight and, hence,
potentially bias the estimates if they are indeed outliers. The role of deterministic components, such as
intervention dummies, will be discussed in more detail in Section 6.

In Figure 3, the autocorrelograms and the empirical densities (with the normal density) are reported
for the two VAR residuals. There should be no significant autocorrelation, if the truncation after the
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Figure 2 Graphs of gasoline prices 1 and 2 in levels and differences, with residuals from a VAR(2) and
99% confidence bands.

second lag is appropriate. Since all the autocorrelation coefficients are very small, this seems to be the
case. Furthermore, the empirical density should not deviate too much from the normal density; and the
residuals should be homoscedastic, so have similar variances over time. The empirical densities seem
to have longer tails (excess kurtosis) than the normal density, and the Kuwait war outlier sticks out,
confirming our previous finding of non-normality.

3.4 Stability and unit-root properties

Up to this point, we have discussed (and estimated) the VAR model as if it were stationary, i.e., without
considering unit roots.3 The dynamic stability of the process in (4) can be investigated by calculating
the roots of: (

Ip − Π1L− Π2L
2
)
xt = Π(L)xt,

whereLixt = xt−i. Define the characteristic polynomial:

Π(z) =
(
Ip − Π1z − Π2z

2
)
.

The roots of|Π (z)| = 0 contain all necessary information about the stability of the process and,
therefore, whether it is stationary or non-stationary. In econometrics, it is more usual to discuss stability
in terms of the companion matrix of the system, obtained by stacking the variables such that a first-order
system results. Ignoring deterministic terms, we have:(

xt

xt−1

)
=

(
Π1 Π2

Ip 0

)(
xt−1

xt−2

)
+

(
εt

0

)
, (6)

3One can always estimate the unrestricted VAR with OLS, but if there are unit roots in the data, some inferences are no
longer standard, as discussed in Hendry and Juselius (2000).
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Figure 3 The autocorrelogram and the empirical and normal density of the two VAR residuals.

where the first block is the original system, and the second merely an identity forxt−1. Now, sta-
bility depends on the eigenvalues of the coefficient matrix in (6), and these are precisely the roots of∣∣Π (z−1

)∣∣ = 0 (see e.g., Banerjeeet al., 1993). For ap-dimensional VAR with 2 lags, there are2p
eigenvalues. The following results apply:

(a) if all the eigenvalues of the companion matrix are inside the unit circle, then{xt} is stationary;
(b) if all the eigenvalues are inside or on the unit circle, then{xt} is non-stationary;
(c) if any of the eigenvalues are outside the unit circle, then{xt} is explosive.

For the bivariate gasoline-price VAR(2) model, we have2 × 2 = 4 roots, the moduli of which are:

0.93, 0.72, 0.72, 0.56.

Figure 4 illustrates these in relation to the unit circle.
We note that the system is stable (no explosive roots), that there is one near-unit root, suggesting

the presence of a stochastic trend, as well as a pair of complex roots (whether a pair of roots is real
or complex can depend on the third or smaller digits of the estimated coefficients, so is not usually a
fundamental property of such a figure). Since there is only one root close to unity for the two variables,
the series seem non-stationary and possibly cointegrated.

When there are unit roots in the model, it is convenient to reformulate the VAR into an equilibrium-
correction model (EqCM). The next section discusses different ways of formulating such models.

4 Different representations of the VAR

The purpose of this section is to demonstrate that the unrestricted VAR can be given different para-
metrizations without imposing any binding restrictions on the parameters of the model (i.e., without
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Figure 4 The roots of the characteristic polynomial for the VAR(2) model.

changing the value of the likelihood function). At this stage, we do not need to specify the order of in-
tegration ofxt: as long as the parameters(π,Π1,Π2,Ωε) are unrestricted, OLS can be used to estimate
them, as discussed in the previous section. Thus, any of the four parameterizations below, namely (4),
(7), (8), or (9) can be used to obtain the first unrestricted estimates of the VAR. Although the parameters
differ in the four representations, each of them explains exactly as much of the variation inxt.

The first reformulation of (4) is into the following equilibrium-correction form:

∆xt = Φ1∆xt−1 − Πxt−1 + π + εt, (7)

whereεt ∼ INp[0,Ωε], with the lagged levels matrixΠ = Ip − Π1 − Π2 andΦ1 = −Π2.4 In (7), the
lagged levels matrix,Π, has been placed at timet − 1, but could be chosen at any feasible lag without
changing the likelihood. For example, placing theΠ matrix at lag2 yields the next parameterization:

∆xt = Φ∗
1∆xt−1 − Πxt−2 + π + εt (8)

whereΦ∗
1 = (Π1 − Ip) , with an unchangedΠ matrix.5 In a sense, (7) is more appropriate if one wants

to discriminate between the short-run adjustment effects to the long-run relations (in levels), and the
effects of changes in the lagged differences (the transitory effects). The estimated coefficients and their
p-values can vary considerably between the two formulations (7) and (8), despite their being identical
in terms of explanatory power, and likelihood (note that they have identical errors{εt}). Often, many

4In the general VAR(k) model,Φ matrices cumulate the longer lag coefficients of the levels representation.
5In the general VAR(k), Φ∗ matrices cumulate the earlier lag coefficients.
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more significant coefficients are obtained with (8) than with (7), illustrating the increased difficulty
of interpreting coefficients in dynamic models relative to static regression models: many significant
coefficients need not imply high explanatory power, but could result from the parameterization of the
model.

The final convenient reformulation of the VAR model is into second-order differences (acceleration
rates), changes, and levels:

∆2xt = Φ∆xt−1 − Πxt−1 + π + εt (9)

whereΦ = Φ1 − Ip = −Ip −Π2, andΠ remains as before. This formulation is most convenient when
xt containsI(2) variables, but from an economic point of view it also provides a natural decomposition
of economic data which cover periods of rapid change, when acceleration rates (in addition to growth
rates) become relevant, and more stable periods, when acceleration rates are zero, but growth rates still
matter. It also clarifies that the ‘ultimate’ variable to be explained is∆2xt, which is often treated as a
‘surprise’, but as (9) demonstrates, can be explained by the determinants of the model. Indeed, it can be
seen that treating∆2xt purely as a ‘surprise’ imposesΦ = 0 andΠ = 0, and makes the differences
behave as random walks.

Although the above reformulations are equivalent in terms of explanatory power, and can be estim-
ated by OLS without considering the order of integration, inferences on some the parameters will not be
standard unlessxt ∼ I(0). For example, whenxt is non-stationary, the joint significance of the estim-
ated coefficients cannot be based on standardF-tests (see Hendry and Juselius, 2000, for a discussion
in the context of single-equation models). We will now turn to the issue of non-stationarity in the VAR
model.

5 Cointegration in the VAR

We first note that the general condition forxt ∼ I(0) is thatΠ has full rank, so is non-singular. In
this case,|Π (1)| = |Π| 6= 0, which corresponds to condition (a) in Section 3.4 that all the eigenvalues
should lie within the unit circle. Stationarity can be seen as follows: stationary variables cannot grow
systematically over time (that would violate the constant-mean requirement), so ifxt ∼ I(0) in (7),
thenE[∆xt] = 0. Taking expectations yields:

−ΠE [xt−1] + π = 0 (10)

so whenΠ has full rank,E [xt] = Π−1π. Thus, the levels of stationary variables have a unique
equilibrium mean – this is precisely why stationarity is so unreasonable for economic variables which
are usually evolving! WhenΠ is not full rank (i.e., whenxt exhibitsI(1) behavior), (10) leaves some of
the levels indeterminate. At the other extreme, whereΠ = 0, the VAR becomes one in the differences
∆xt, and these are stationary ifΦ1 − Ip has full rank, in which casext ∼ I(1). Notice thatΦ1 = Ip

whenΠ = 0 makes∆xt a vector of random walks, soxt ∼ I(2).
Section 5.1 presents the conditions for cointegration in theI(1) model as restrictions on theΠ matrix

and Section 5.2 discusses the properties of the vector process when the data areI(1) and cointegrated,
based on the moving-average representation.

5.1 Determining cointegration in the VAR model

As discussed in Section 3.4, when some of the roots of the system (4) are on the unit circle (case (b)),
the vector processxt is non-stationary. However, some linear combinations, denotedβ′xt, might be
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stationary even though the variables themselves are non-stationary. Then the variables are cointegrated
from I(1), down one step toI(0), which Engle and Granger (1987) expressed as beingCI(1, 1). There
are two general conditions forxt ∼ I(1), which we now discuss.

The first condition, needed to ensure that the data are notI(0), is thatΠ has reduced rankr < p, so
can be written as:

Π = −αβ′ (11)

whereα andβ arep × r matrices, both of rankr. Substituting (11) into (9) delivers the cointegrated
VAR model:

∆2xt = Φ∆xt−1 + α
(
β′xt−1

)
+ π + εt. (12)

An important feature of ‘reduced rank’ matrices likeα andβ is that they have orthogonal complements,
which we denote byα⊥ andβ⊥: i.e.,α⊥ andβ⊥ arep × (p− r) matrices orthogonal toα andβ (so
α′

⊥α = 0 andβ′
⊥β = 0), where thep × p matrices(α α⊥) and(β β⊥) both have full rankp. These

orthogonal matrices play a crucial role in understanding the relationship between cointegration and
‘common trends’ as we explain below (a simple algorithm for constructingα⊥ andβ⊥ from α andβ is
given in Hendry and Doornik, 1996). Note that multiplying (12) byα′

⊥ will eliminate the cointegrating
relations sinceα′

⊥α = 0.
The second condition, which is needed to ensure that the data are notI(2), is somewhat more tech-

nical, and requires that a transformation ofΦ in (12) must be of full rank.6 Here, we will disregard the
I(2) problem and only discuss the case when the footnoted condition is satisfied.

If r = p, thenxt is stationary, so standard inference (based ont, F, andχ2) applies. Ifr = 0, then
∆xt is stationary, but it is not possible to obtain stationary relations between the levels of the variables
by linear combinations. Such variables do not have any cointegration relations, and hence, cannot move
together in the long run. In this case, each of (7)–(9) becomes a VAR model in differences but, since
∆xt ∼ I(0), standard inference still applies. Ifp > r > 0, thenxt ∼ I(1) and there existr directions
in which the process can be made stationary by linear combinations,β′xt. These are the cointegrating
relations, exemplified in (2) above by the two price differentials.

5.2 The VAR model in moving-average form

When the characteristic polynomialΠ(z) = Ip − Π1z − Π2z
2 contains a unit root, the determinant

|Π(z)| = 0 for z = 1, soΠ(z) cannot be inverted to expressxt as a moving average of current and
pastεt. Instead, we must decompose the characteristic polynomial into a unit-root part and a stationary
invertible part, written as the product:

Π(z) = (1 − z)Π∗(z),

whereΠ∗(z) has no unit roots, and is invertible. The VAR model can now be written as:

(1 − L)xt = ∆xt = [Π∗(L)]−1 εt. (14)

Thus, ∆xt is a moving average of current and pastεt. To see the nature of that relation, expand
[Π∗(L)]−1 as a power series inL:

[Π∗(L)]−1 = C0 + C1L+ C2L
2 + . . . = C(L) (say).

6Specifically:
α′

⊥Φβ⊥ = ζη′ (13)

whereζ andη are(p − r)× s matrices fors = p− r, which is the number of ‘common stochastic trends’ of first order when
xt ∼ I(1). Thus, (13) must have full rank (s = p − r) for xt ∼ I(1). If s < p − r, then the model containsp − r − s

second-order stochastic trends, andxt ∼ I(2).
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In turn, expressC(L) as:
C (L) = C + C∗(L)(1 − L),

soC(1) = C asC∗(1)(1 − 1) = 0. We can now rewrite (14) as:

∆xt = [C + C∗(L)(1 − L)] εt.

By integration (dividing by the difference operator,(1 − L)):

xt = C
(

εt

1 − L

)
+ C∗(L)εt + x0,

for some initial condition denotedx0, we can expressxt as:

xt = C
t∑

i=1

εi + C∗(L)εt + x0. (15)

In (15), xt is decomposed into a stochastic trend,C
∑t

i=1 εi, and a stationary stochastic component,
et = C∗(L)εt.7 There are (p − r) linear combinations between the cumulated residuals,α′

⊥
∑t

i=1 ε̂i

which define the common stochastic trends that affect the variablesxt with weightsB, whereC =
Bα′

⊥. In this sense, there exists a beautiful duality between cointegration and common trends. The
following example illustrates.

Assume that there exists one common trend between the two gasoline price series, and hence one
cointegration relation as reported in Hendry and Juselius (2000). Then,r = 1 andp − r = 1, and we
can write the moving-average (common-trends) representation as:(

p1,t

p2,t

)
=

(
b11
b21

)(
t∑

i=1

ui

)
+

(
δ1
δ2

)
t+

(
e1,t

e2,t

)
, (17)

whereB′ = (b11, b21) are the weights of the estimated common trend given byûi = α′
⊥ε̂i,andδ1, δ2

are the coefficients of linear deterministic trends inp1,t, p2,t, respectively. Hendry and Juselius (2000)
showed that (p1,t − p2,t) ∼ I(0), i.e., that the two prices were cointegrated withβ′ = (1,−1). Fur-
thermore, the assumption behind the single-equation model in Hendry and Juselius (2000) was that
α′ = (∗, 0).These estimates ofβ andα correspond toB′ = (1, 1) andα′

⊥ = (0, 1) in (17). We
express this outcome as: cumulated shocks top2,t give an estimate of the common stochastic trend in
this small system. Both prices are similarly affected by the stochastic trend, so that in:

(p1,t − p2,t) = (b11 − b21)
t∑

i=1

ui + (δ1 − δ2)t+ (e1,t − e2,t) (18)

we have(b11−b21) = 0, and the linear relation (p1,t−p2,t) has no stochastic trend left, thereby defining
a cointegration relation.

Note that (17) also allows for a deterministic linear trendt in xt. If, in addition,δ1 = δ2, then both
the stochastic and the linear trend will cancel in the linear relation (p1,t−p2,t) in (18). If δ1 6= δ2, then we
need to allow for a linear trend in the cointegration relation, such that (p1,t −p2,t−d1t) contains neither
stochastic nor deterministic trends. In this case, we say that the price differential is trend stationary,
and that there is a trend in the cointegration space. We have reached the stage where we need a more
complete discussion of the key role played by deterministic terms in cointegrated models.

7It can be shown that:
C = β⊥(α′

⊥Φβ⊥)−1α′
⊥, (16)

so theC matrix is directly related to (13), and can be calculated from estimates ofα, β, andΦ: see e.g., Johansen (1992a).
LettingB = β⊥(α′

⊥Φβ⊥)−1, thenC = Bα′
⊥, so the common stochastic trends have a reduced-rank representation similar

to the stationary cointegration relations.



15

6 Deterministic components in a cointegrated VAR

A characteristic feature of the equilibrium-correction formulation (12) is the inclusion of both differ-
ences and levels in the same model, allowing us to investigate both short-run and long-run effects in
the data. As discussed in Hendry and Juselius (2000), however, the interpretation of the coefficients
in terms of dynamic effects is difficult. This is also true for the trend and the constant term,as well as
other deterministic terms like dummy variables. The following treatment starts from the discussion of
the dual role of the constant term and the trend in the dynamic regression model in Hendry and Juselius
(2000), and extends the results to the cointegrated VAR model.

When two (or more) variables share the same stochastic and deterministic trends, it is possible to find
a linear combination that cancels both the trends. The resulting cointegration relation is not trending,
even if the variables by themselves are. In the cointegrated VAR model, this case can be accounted for
by including a trend in the cointegration space. In other cases, a linear combination of variables removes
the stochastic trend(s), but not the deterministic trend, so we again need to allow for a linear trend in
the cointegration space. Similar arguments can be used for an intervention dummy: the intervention
might have influenced several variables similarly, such that the intervention effect cancels in a linear
combination of them, and no dummy is needed. Alternatively, if an intervention only affects a subset of
the variables (or several, but asymmetrically), the effect will not disappear in the cointegration relation,
so we need to include an intervention dummy.

These are only a few examples showing that the role of the deterministic and stochastic components
in the cointegrated VAR is quite complicated. However, it is important to understand their role in
the model, partly because one can obtain misleading (biased) parameter estimates if the deterministic
components are incorrectly formulated, partly because the asymptotic distributions of the cointegration
tests are not invariant to the specifications of these components. Furthermore, the properties of the
resulting formulation may prove undesirable for (say) forecasting, by inadvertently retaining unwanted
components – such as quadratic trends, as illustrated by Case 1 below. In general, parameter inference,
policy simulations, and forecasting are much more sensitive to the specification of the deterministic
than the stochastic components of the VAR model. Doornik, Hendry and Nielsen (1998) provide a
comprehensive discussion.

6.1 Intercepts in cointegration relations and growth rates

Another important aspect is to decompose the intercept,π, into components that induce growth in the
system, and those that capture the means of the cointegration relations.8 Reconsider the VAR represent-
ation (7):

∆xt = Φ1∆xt−1 + α
(
β′xt−1

)
+ π + εt (19)

where∆xt ∼ I(0) andεt ∼ I(0). To ‘balance’ (19),β′xt−1 must beI(0) also. Since ther cointegration
relationsβ′xt−1 are stationary, each of them has a constant mean. Similarly, ∆xt is stationary with a
constant mean, which we denote byE[∆xt] = γ, describing a (p × 1) vector of growth rates. This
was illustrated in (17) by allowing for linear trends in the two prices with slope coefficientsδ1 andδ2.
Furthermore, letE

[
β′xt−1

]
= µ describe a(r × 1) vector of intercepts in the cointegrating relations.

We now take expectations in (19):

(Ip −Φ1) γ = αE
[
β′xt−1

]
+ π = αµ + π.

8One of the reasons we assume all the variables are in logs is to avoid the growth rates depending on the levels of the
variables.
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Consequently,π = (Ip −Φ1) γ − αµ. Note that the constant termπ in the VAR model does indeed
consist of two components: one related to the linear growth rates in the data, and the other related
to the mean values of the cointegrating relations (i.e., the intercepts in the long-run relations). This
decomposition is similar to the simpler single-equation case discussed in Hendry and Juselius (2000).
When the cointegration relations are trend free as in (19):

β′E [∆xt] = E
[
∆β′xt

]
= β′γ = 0,

so we can express (19) in mean-deviation form as:

(∆xt − γ) = Φ1 (∆xt−1 − γ) + α
(
β′xt−1 − µ

)
+ εt. (20)

There are two forms of equilibrium correction in (20): that of the growth∆xt in the system to its mean
γ; and of the cointegrating vectorsβ′xt−1 to their meanµ. The two mean values,γ andµ, play an
important role in the cointegrated VAR model, and it is important to ascertain whether they are signific-
antly different from zero or not at the outset of the empirical analysis. In the next subsection, we will
present five baseline cases describing how the trend and the intercept can enter the VAR specification.

6.2 Five cases for trends and intercepts

The basic ideas are illustrated using thep-dimensional cointegrated VAR with a constant and a linear
trend, but to simplify notations we assume that only one lag is needed, soΦ1 = 0. As before,εt ∼
INp [0,Ωε]:

∆xt = αβ′xt−1 + π + δt+ εt. (21)

Without loss of generality, the two(p × 1) vectorsπ andδ can each be decomposed into two new
vectors, of which one is related to the mean value of the cointegrating relations,β′xt−1 (case (3) in
section 2 of Hendry and Juselius, 2000), and the other to growth rates in∆xt:

π = αµ + γ0

δ = αρ + τ
(22)

Substituting (22) into (21) yields:

∆xt = αβ′xt−1 + αµ + γ + αρt+ τ t+ εt, (23)

so, collecting terms in (23):

∆xt = α
(
β′ : µ : ρ

) xt−1

1
t

+ (γ + τ t) + εt. (24)

Thus, we can rewrite (21) as:

∆xt = α

 β

µ′

ρ′


′

x∗
t−1 + (γ + τ t) + εt, (25)

wherex∗
t−1 = (x′

t−1, 1, t)
′. We can always chooseµ andρ such that the equilibrium error(β∗)′ x∗

t = vt

has mean zero (whereβ∗ =
(
β′,µ,ρ

)′
), so the trend component in (25) can be interpreted from the

equation:
E [∆xt] = γ + τ t. (26)
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Thus,γ 6= 0 corresponds to constant growth in the variablesxt (case 1 in section 2 of Hendry and
Juselius, 2000), whereasτ 6= 0 corresponds to linear trends in growth, and so quadratic trends in the
variables. Hence, the constant term and the deterministic linear trend play a dual role in the cointegrated
model: in theα directions they describe a linear trend and an intercept in the steady-state relations; in
the remaining directions, they describe quadratic and linear trends in the data. To correctly interpret
the model, one has to understand the distinction between the part of the deterministic component that
‘belongs’ to the cointegration relations, and the part that ‘belongs’ to the differences.

In empirical work, usually one has some idea whether there are linear deterministic trends in some
(or all) of the variables. It might, however, be more difficult to know if they cancel in the cointegrating
relations or not. Luckily, we do not need to know beforehand, because the econometric analysis can
be used to find out. As discussed below, all these cases can be expressed as linear restrictions on the
deterministic components of the VAR model and, hence, can be tested. We now discuss five of the most
frequently used models arising from restricting the deterministic components in (21): see Johansen
(1994).

Case 1. No restrictions onπ andδ, so the trend and intercept areunrestrictedin the VAR model. With
unrestricted parameters,π, δ, the model is consistent with linear trends in the differenced series
∆xt as shown in (26) and, thus, quadratic trends inxt. Although quadratic trends may sometimes
improve the fit within the sample, forecasting outside the sample is likely to produce implausible
results. Be careful with this option: it is preferable to find out what induced the apparent quadratic
growth and, if possible, increase the information set of the model. Moreover, as shown in Doornik
et al. (1998), estimation and inference can be unreliable.

Case 2. τ = 0, butγ, µ, ρ remain unrestricted, so the trend isrestrictedto lie in the cointegration space,
but the constant is unrestricted in the model. Thus,τ being zero in (25) still allows linear, but
precludes quadratic, trends in the data. As illustrated in the previous section,E[∆xt] = γ 6= 0
implies linear deterministic trends in the levelxt.When, in addition,ρ 6= 0, these linear trends in
the variables do not cancel in the cointegrating relations, so the model contains ‘trend-stationary’
relations which can either describe a single trend-stationary variable, (x1,t − b1t) ∼ I(0), or an
equilibrium relation (β′

1xt − b2t) ∼ I(0). Therefore, the hypothesis that a variable is trend-
stationary can be tested in this model.

Case 3. δ = 0, so there are no linear trends in (21). Since the constant termπ is unrestricted, there
are still linear trends in the data, but no deterministic trends in any cointegration relations. Also,
E[∆xt] = γ 6= 0, is consistent with linear deterministic trends in the variables but, sinceρ = 0,
these trends cancel in the cointegrating relations. It appears from (24) thatπ 6= 0 accounts for
both linear trends in the DGP and a non-zero intercept in the cointegration relations.

Case 4. δ = 0, γ = 0, but µ 6= 0,so the constant term isrestrictedto lie in the cointegration space in
(25). In this case, there are no linear deterministic trends in the data, consistent withE[∆xt] = 0.
The only deterministic components in the model are the intercepts in any cointegrating relations,
implying that some equilibrium means are different from zero.

Case 5. δ = 0 andπ = 0, so the model excludes all deterministic components in the data, with both
E[∆xt] = 0 andE[β′xt] = 0, implying no growth and zero intercepts in every cointegrating re-
lation. Since an intercept is generally needed to account for the initial level of measurements,x0,

only in the exceptional case when the measurements start from zero, or when the measurements
cancel in the cointegrating relations, can the restrictionπ = 0 be justified.

Turning to our empirical example, Table 1 showed thatE[∆pi,t] = 0 could not be rejected. Hence,
there is no evidence of linear deterministic trends in the gasoline prices, at least not over the sample
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period. The graphs in Figure 1 support this conclusion. We conclude that the cointegrated VAR model
should be formulated according to case 4 here, with the constant term restricted to the cointegration
space, and no deterministic trend terms.

7 The likelihood-based procedure

So far, we have discussed the formulation of the VAR model in terms of well-specified stochastic and
deterministic properties. All this can be done before addressing the unit-root problem. As in Hendry
and Juselius (2000), we will now assume that some of the roots of the characteristic polynomial are on
the unit circle. This means thatxt ∼ I(1), and we consider the cointegrated VAR(2) model (7) where
Π = −αβ′ with a constant, a linear trend and a vector of dummy variablesdt included:

∆xt = Φ1∆xt−1 + αβ′xt−1 + π + δt+ Ψdt + εt. (27)

Since∆xt ∼ I(0) andεt ∼ I(0), all stochastic components in (27) are stationary by definition except for
β′xt−1. For (27) to be internally consistent, given thatxt ∼ I(1), β cannot be a full-rankp× p matrix
(because then something stationary would be equal to something non-stationary). The only possible
solution is thatβ is a reduced rank (p× r) matrix withr < p, sor linear combinations cancel stochastic
trends as shown in section 5. Below, we will only discuss the broad ideas of the maximum likelihood
estimation procedure, and will not go through the derivations of the results. The interested reader is
referred to Johansen (1988, 1995) and Banerjeeet al. (1993),inter alia, for details.

The derivation of the maximum likelihood estimator (MLE) is done via the ‘concentrated likeli-
hood’ of the VAR model. Since the latter is crucial for understanding both the statistical and economic
properties of the VAR, we will demonstrate how it is defined. We use the following shorthand notation:

z0,t = ∆xt

z1,t = xt−1

z2,t = (∆xt−1,1, t,dt) .

(additional lagged differences are easily included inz2,t). Rewrite (27) as:

z0,t = αβ′z1,t−1 + Θz2,t + εt,

whereΘ = (Φ1,π, δ,Ψ). By concentrating out the short-run dynamic adjustment effects,Θz2,t, we
are able to obtain a ‘simpler’ model. This is done by first defining the following auxiliary OLS regres-
sions:

z0,t = D̂′
1z2,t + ∆x̃t

z1,t = D̂′
2z2,t + x̃t−1,

where∆x̃t = z0,t − M02M−1
22 z2,t andx̃t−1 = z1,t − M12M−1

22 z2,t are the OLS residuals, andMij =∑
t(zi,tz′j,t)/T is a product-moment matrix, so thatD̂′

1 = M02M−1
22 andD̂′

2 = M12M−1
22 .

The concentrated model can now be written as:

∆x̃t = αβ′x̃t−1 + ut, (28)

so we have transformed the original VAR containing short-run adjustments and intervention effects
into the ‘baby model’ form, in which the adjustments are exclusively towards the long-run steady-state
relations.

The MLE is close to limited-information maximum likelihood (LIML: see Hendry, 1976, for a con-
solidation) in that the key issue is to handle a reduced-rank problem, which essentially amounts to
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solving an eigenvalue problem. In practice, the estimators are derived in two steps. First, to derive an
estimator ofα, assume thatβ is known: thenβ′x̃t−1 becomes a known variable in (28), soα can be
estimated by OLS. Next, insert thatα = α̂(β) in the expression for the concentrated likelihood func-
tion, which becomes a function ofβ alone, and no longer depends onα. To find the value of̂β that
maximizes this likelihood function is a non-linear problem, but one that can be solved by reduced-rank
regression (see Johansen, 1988). The solution deliversp eigenvaluesλi where0 ≤ λi ≤ 1:

λ
′
= (λ1, λ2, . . . , λp) ,

which are ordered such thatλ1 ≥ λ2 ≥ · · · ≥ λp. The estimate ofβ for r cointegrating vectors is
given by thep × r matrix of eigenvectors corresponding to the largestr eigenvalues (the selection of
r is discussed in Section 8). Given the MLÊβ of β, calculateα̂ = α(β̂). The estimates of the two
eigenvectors, and the correspondingα̂ weights for the empirical example are reported in Table 3.

Eachλi can be interpreted as the squared canonical correlation between linear combinations of the
levels,β′

ix̃t−1, and a linear combination of the differences,ϕ′
i∆x̃t . In this sense, the magnitude ofλi

is an indication of how strongly the linear combinationβ′
ix̃t−1 is correlated with the stationary part of

the processϕ′
i∆x̃t. If λi ≈ 0, the linear combinationβ′

ix̃t−1 is not at all correlated with the stationary
part of the process, and hence is non-stationary.

In the situation where bothα andβ are unrestricted (beyond normalizations), standard errors cannot
be obtained, but the imposition of rank and other identifying restrictions usually allows appropriate
standard errors to be obtained forα̂ andβ̂.

8 Testing cointegration rank

Given that the unrestricted VAR model has been found to satisfactorily describe the data (is a congruent
representation), one can start the simplification search, which means imposing valid restrictions on
the model such as a reduced-rank restriction, restrictions on the long-run parametersβ, and finally
restrictions on the short-run adjustment parametersα andΦ. The first, and most crucial, step is to
discriminate empirically between zero and non-zero eigenvalues when allowing for sample variation,
and then impose an appropriate cointegration rank restrictionr on theΠ matrix. Note that:

• if we underestimater, then empirically-relevant equilibrium-correction mechanisms (EqCMs)
will be omitted;

• whereas if we overestimater, the distributions of some statistics will be non-standard, so that
incorrect inferences may result from using conventional critical test values (based ont, F, χ2);

• forecasts will be less accurate due to incorrectly retainingI(1) components, which will increase
forecast variances.

A test for r cointegrating vectors can be based on the maximum likelihood approach proposed by
Johansen (1988). The statistical problem is to derive a test procedure to discriminate between theλi, i =
1, . . . , r, which are large enough to correspond to stationaryβ′

ix̃t−1, and thoseλi, i = r + 1, . . . , p,
which are small enough to correspond to non-stationary eigenvectors. The rankr is determined by a
likelihood-ratio test procedure between the two hypotheses:

Hp: rank= p, i.e., full rank, soxt is stationary;
Hr: rank= r < p, i.e.,r cointegration relations.

The test is:

LR(Hr | Hp) = −T ln [(1 − λr+1) · · · (1 − λp)] = −T
p∑

i=r+1

ln(1 − λi).
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If λr+1 = · · · = λp = 0, the test statistic should be small (close to zero), which delivers the critical
value under the null. The test is based on non-standard asymptotic distributions that have been simulated
for the five cases discussed in section 6. There is an additional problem, in thatHr may be correctly
accepted whenλr = 0, or evenλr−1 = 0. Therefore, ifHr is accepted, we conclude that there are at
leastp− r unit roots, i.e.,p − r ‘common trends’ in the process (but there can be more) corresponding
to at mostr stationary relations.

However, ifLR(Hr−1|Hp) is calculated, the test statistic includesln(1 − λr), which will not be
close to zero, so an outcome in excess of the critical value should be obtained, correctly rejecting the
false null of fewer thatr cointegration relations.

As discussed above, the asymptotic distributions depend on whether there is a constant and/or a
trend; and whether these are unrestricted or not in the model. However other deterministic components,
such as intervention dummies, are also likely to influence the shape of the test distributions. In par-
ticular, care should be taken when a deterministic component generates trending behavior in the levels
of the data such as an unrestricted shift dummy (· · · ,0,0,0,1,1,1,· · ·): an explanation of the procedure
is provided in Johansen, Mosconi and Nielsen (2000), and Juselius (2000): Doorniket al. (1998) also
consider the estimation and inference problems resulting from including dummies.

Because the asymptotic distributions for the rank test depend on the deterministic components in
the model and on whether these are restricted or unrestricted, the rank and the specification of the
deterministic components have to be determined jointly. Nielsen and Rahbek (2000) have demonstrated
that a test procedure based on a model formulation that allows a deterministic component, for example
a deterministic trendt, to be restricted to the cointegration relations and the differenced component,
∆t = 1, to be unrestricted in the model induces similarity in the test procedure (i.e., the critical values
do not depend on the parameter values, so can be tabulated). This is because when there are linear
trends in the data, i.e.E[∆xt] 6= 0, they can enter the model through the constant term,γ 6= 0 in (26)
or through the cointegration relations,ρ 6= 0 in (25). Hence, given linear trends in the data, case 2 is
the most general case. When the rank has been determined, it is always possible to test the hypothesis
ρ = 0, as a linear restriction on the cointegrating relations.

If, on the other hand,E[∆xt] = 0, so there are no linear trends in the data, then the baseline model
has the constant term restricted to the cointegration space, which is case 4 above. Therefore, based on
the similarity argument, the rank should be based on either case 4 (trends in the data) or case 2 (no
trends in the data). Nevertheless, if there is strong prior information that there are trends in the data, but
they do not appear in the cointegration relations, then case 3 is the appropriate choice.

9 Empirical model specification

The rank test is defined for a correctly specified model. Prior to the determination of the cointegration
rank we should make sure that the empirical model is well-behaved. In Section 9.1, we choose the
trend and constant in the baseline model, and account for the extraordinary events in the sample period;
whereas in Section 9.2, we discuss the difficult choice of cointegration rank.

9.1 Model specification

For the gasoline example, we found in Table 1 thatE[∆xt] = 0 cannot be rejected. Hence, there is
little evidence of linear deterministic trends in the data, at least not over the sample period, so we should
determine the rank based on a case-4 model. But before testing the rank of theΠ matrix, we need to
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Table 2 The estimates of the short-run effects .
Φ̂ The Kuwait war effects Ω̂ε

∆p1,t−1 ∆p2,t−1 ∆Ds90.31t ∆Ds90.31t−1 ε1,t ε2,t

∆p1,t 0.52
(11.3)

0.14
(2.3)

0.18
(7.8)

−0.09
(4.0)

ε1,t 1.0

∆p2,t 0.05
(1.3)

0.53
(12.0)

0.11
(5.8)

−0.02
(1.2)

ε2,t 0.66 1.0

The estimates of the extraordinary price changes (|ε̂i,t| > 3.3)
Di89.13 Di89.39 Di89.51 Di90.49 Di9103 Di93.43 Dti98.11

∆p1,t 0.08
(3.6)

−0.08
(3.9)

0.09
(4.1)

−0.08
(3.5)

−0.09
(3.9)

−0.05
(2.5)

−0.08
(4.7)

∆p2,t 0.07
(3.7)

−0.04
(2.0)

0.05
(2.9)

−0.07
(3.6)

−0.08
(4.2)

−0.08
(4.6)

−0.03
(2.5)

account for the effect of the Kuwait war on gasoline prices as discussed in Section 3.2, plus possibly
some of the extraordinary price changes in this period that violate the normality assumption.

The question is now which kind of intervention dummies should be used to describe these ex-
traordinary events. Juselius (2000) shows that a shift in the level of the variables corresponds to a
permanent impulse blip in the differences, and an impulse effect in the levels corresponds to a transitory
blip in the differences. The Kuwait war could have caused either a permanent or a transitory shift in the
level of gasoline prices. In the latter case, we would see an initial rise in the gasoline prices in 1990:31
followed later on by a return to the previous price level. Based on the graphs in Figure 1, the differences
show a large positive spike followed by another more moderately sized negative spike a few weeks later.
This suggests that the initial increase in prices was partly permanent, partly transitory. To account for
this extraordinary event on the price levels, the model includes a step dummy,Ds90.31t being zero up
to t = 1990:31 and unity after that,restrictedto lie in the cointegration space (if significant, then the
permanent price increase in crude oil as a result of the war had a different effect on gasoline prices in
the two locations). To account for the effect on the price changes, we also need to include current and
lagged values of the impulse dummyDi90.31t, defined below, asunrestrictedin the model. Table 2
shows that the estimated direct price effect at the outbreak of the Kuwait war was an increase of 18% in
location 1 and 11% in location 2, followed by a drop in the price by 9% in location 1 and 2% in location
2. Hence, the permanent effect of the war seemed to be approximately 9% in both locations. Altogether,
the immediate price reaction in location 1 seemed to be stronger than in location 2.

Based on the criterion|ε̂i,t| > 3.3, we detected seven additional ‘outlier’ observations, accounted
for by dummy variables defined as follows: the impulse dummyDixx.yyt is unity for t = 19xx:yy,
and zero otherwise; the transitory impulse dummyDtixx.yyt is unity for t = 19xx:yy, −1 for t =
19xx:yy+ 1, and zero otherwise. Table2 reports the estimates of these very large price changes. Again,
we note that the price reactions in location 1 seem stronger than in location 2: except for 1993:43,
gasoline prices in location 1 change more dramatically than in location 2.

The estimates of theΦ matrix in Table2 demonstrate quite strong autoregressive price behavior: a
price change one week tends to be followed by a similar change but only half the size, next week. It
also appears that a price change byp2,t is followed by a lagged change inp1,t, but not the other way
around. The estimates of the residual covariance matrixΩε show a large positive correlation between
price shocks to the two gasoline prices, which suggests that there may be current, as well as lagged,
price effects. This will be further discussed in Section 11.

After having accounted for these extraordinary events, the distributions of the residuals became
much closer to a normal distribution than in the first tentatively estimated model. However, the em-
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pirical model still showed some evidence of excess kurtosis and ARCH (autoregressive conditional
heteroscedasticity, so the squared residuals are serially correlated: see Engle, 1982), as appears from
Table 3, but neither of these usually causes serious problems for the properties of the estimates ( see
Gonzalo, 1994). A plausible explanation for these problems is that the residual variance of the process
changes in the middle of the sample, at around 1992:40. We have analyzed the data separately for the
split sample, and the ARCH and excess kurtosis disappear. However, the basic results remained un-
changed in the two sub-samples and there is, therefore, no obvious need to report the results separately.
We conclude that the empirical model is reasonably well specified, and turn to the determination of the
cointegration rank.

9.2 Rank determination

As already mentioned, a correct choice of the cointegration rank is crucial for the analysis, but in prac-
tice, is far from easy. In many economic applications, the size of the sample is often quite small, and the
tabulated asymptotic distributions can be rather poor approximations as has been demonstrated in many
papers. See, for instance, Johansen (2000) for analytical results, and Jørgensen (2000) for Monte Carlo
results. Another reason for concern is that when using correct small-sample distributions for the trace
test, the size of the test is correct, but the power can be low, sometimes even of the same magnitude as
the size. In such cases, a 5% test procedure will reject a unit root incorrectly 5% of the time, but accept
a unit root incorrectly 95% of the time!

Thus, unless a unit root is given a structural interpretation (and hence, should be tested rigorously),
it is important to make the decision based on as much information as possible, including prior economic
information, and sensitivity analyses of doubtful cases to find out if important information is lost by
leaving out therth + 1 cointegration vector, or if anything is gained by including it.

The following information is often useful when deciding on the choice of cointegration rank:

(1) the trace test for cointegration rank;
(2) the characteristic roots of the model: if therth + 1 cointegration vector is non-stationary and is

wrongly included in the model, then the largest characteristic root will be close to the unit circle;
(3) thet-values of theα-coefficients for therth + 1 cointegration vector; if these are all small, say

less than 3.0, then one would not gain greatly by including that vector as a cointegrating relation
in the model;

(4) the recursive graphs of the trace statistic forr̃ = 1, 2, . . . , p: since the variableTj ln(1 − λi), for
j = T1, . . . , T, grows linearly over time whenλi 6= 0, the recursively-calculated components
of the trace statistic should increase linearly for the firstr components, but stay constant for the
remainder;

(5) the graphs of the cointegrating relations: if the graphs reveal distinctly non-stationary behavior of
a cointegration relation, which is supposedly stationary, one should reconsider the choice ofr, or
find out if the model specification is in fact incorrect, for example, if the data areI(2) instead of
I(1);

(6) the economic interpretability of the results.

We will consider all the above pieces of information in turn:
The trace test (item 1) in the bivariate gasoline price case, should be able to discriminate between

the following alternatives: no unit roots, one unit root, or two unit roots. The first case corresponds to
prices being stationary, the second to them beingI(1) with one stationary cointegration relation, and the
last case to them beingI(1) but with no cointegrating relation between them. The two trace test statistics
in Table 3 are larger than their 95% quantiles, so that bothλ1 andλ2 have to be considered different
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Table 3 Rank and specification tests .

Rank determination The two largest roots Misspecification tests
λi Trace Q95 (r = 2) (r = 1) ARCH Norm. R2

0.13 91.1 20.0 0.93 1.00 ∆p1 9.8 17.8 0.54
0.02 14.4 9.1 0.72 0.72 ∆p2 8.3 20.3 0.48

The unrestricted cointegration vectors and their weights

p1 p2 Ds90.31 constant β̂
′
1xt β̂

′
2xt

β̂
′
1 1.0 −0.97 −0.02 0.02 ∆p1 : α̂1. −0.15

(7.5)
−0.02
(2.1)

β̂
′
2 −0.25 1.0 0.03 0.41 ∆p2 : α̂2. −0.02

(1.2)
−0.03
(3.8)

from zero, suggesting that both price series are stationary. As mentioned aboveλi can be interpreted as
a squared canonical correlation coefficient. It appears from the table that bothλ1 andλ2 are small in
absolute value, indicating a fairly low correlation with the stationary part, and thatλ1 is much larger than
λ2, suggesting that the adjustment to the first cointegration relation is much stronger than to the second.
The graphs of the cointegration vectors (item 5) in Figure 5 indicate that both are mean-reverting, but
the second one much more strongly so. The two largest characteristic roots (item 2) show thatr = 2
implies a fairly large root, 0.93, in the model. The recursive graphs (item 4) ofTj ln(1 − λ1j ) and
Tj ln(1 − λ2j ) in Figure 6 show that the second component remains almost constant, whereas the first
grows linearly over time. All this suggests that the first cointegrating relation is stationary and that the
second is near integrated, but with significant mean reversion. A similar result was found in Hendry and
Juselius (2000).

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

-.1

0

.1

ecm1

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

-.2

0

.2

ecm2

Figure 5 Graphs of the unrestricted cointegration relationsβ′1xt andβ′2xt.

Why does the trace test find that the small value ofλ2 = 0.02 is still significantly different from
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The Trace tests

95 96 97 98
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 is the 10% significance level

β ’X(t)

Figure 6 Recursively calculated trace tests.

zero? The simple explanation is that the sample size is very large here, 576 observations. Because the
trace test is calculated asT ln(1−λ), even a small deviation from zero can be found to be significant
whenT is large enough. However, inference is much closer to the so called Dicky–Fuller distributions
than to standardt-, F-, andχ2-distributions when there is a near unit root in the model. Hence, to make
inference more robust, it is often a good idea to approximate a near unit root by a unit root even when it
is found to be statistically different from one.

Before finally deciding about the rank, we first check the economic interpretability of the second
cointegration relation to see if it contains valuable information for the analysis. It appears from Table
3 that the adjustment coefficients to the second relationα21 andα22 (item 3) are very small,α21 is
hardly significant in the first gasoline price equation, whereasα22 is more significant in the second
price equation. Nevertheless, the coefficients ofβ̂

′
2xt (item 6) indicate that it is essentially a unit vector

describing price 2. This is confirmed by the graphs of the cointegration vectors (item 5) in Figure 5,
where the second graph closely resemblesp2,t in Figure 2. Therefore, acceptingr = 2 is equivalent
to saying that the gasoline prices are stationary, albeit subject to substantial persistence. As already
discussed in Hendry and Juselius (2000), this might be the case, but choosingr = 2 would leave a near
unit root in the model, and conventional (t-, F-, χ2) inference is likely to be misleading. Moreover,
asserting a constant long-run mean for nominal gasoline prices does not seem plausible. Finally, since
β′

2xt will not add much valuable information about the co-movements of the two gasoline prices, we
conclude that the empirical analysis will not benefit from choosingr = 2. We therefore continue the
empirical analysis assumingr = 1.

10 Identification and hypothesis testing

Given the choice of the number of cointegrating relations,r, the Johansen procedure gives the maximum
likelihood estimates of the unrestricted cointegrating relationsβ′xt. Although the unrestrictedβ is
uniquely determined based on the chosen normalization, the latter is not necessarily meaningful from
an economic point of view. Therefore, an important part of a long-run cointegration analysis is to impose
(over-) identifying restrictions onβ to achieve economic interpretability. In section 10.1, we discuss a
typology of restrictions onβ and note the problem of calculating the degrees of freedom in the case of
over-identifying restrictions. Section 10.2 provides some examples of how to specify hypotheses in a
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testable form.

10.1 Restrictions onβ

As an example of just-identifying restrictions, consider the following design matrixQ = (β1) whereβa

is a (r×r) non-singular matrix defined byβ′ = (βa,βb). In this case,αβ′ = α(βaβ
−1′
a β′) = α(Ir, β̃)

whereIr is the (r × r) unit matrix, andβ̃ = β−1′
a βb is an(r × (p− r)) full-rank matrix. These just-

identifying restrictions have transformedβ to the long-run ‘reduced form’. Because just-identifying
restrictions do not change the likelihood function, no tests are involved. In general, just identification
can be achieved by imposing one appropriate normalization and(r− 1) restrictions on eachβi. Care is
required to ensure that the coefficient which is normalized is non-zero.

The calculation of the degrees of freedom when testing structural hypotheses on the cointegration
relations is often quite difficult. It is useful from the outset to distinguish between:

(1) pseudo ‘restrictions’ that can be obtained by linear manipulations, because it is always possible
to imposer − 1 restrictions and one normalization without changing the value of the likelihood
function – no testing is involved for such ‘restrictions’;

(2) additional testable restrictions on the parameters, which change the value of the likelihood func-
tion;
in the latter group there are two kinds of testable restrictions:

(a) restrictions that are not identifying, for example: (i) the same restrictions on all cointegrating
vectors, (ii) one vector assumed known and the remaining vectors unrestricted.

(b) genuine over-identifying restrictions.

The first step is to examine whether the restrictions satisfy the rank and order condition for identification:
luckily, many available software packages do the checking, and will usually inform the user when
identification is violated. Also, note that when normalizing aβi vector by diving through by a non-zero
elementβij , the correspondingαi vector will by multiplied by the same element, so normalization does
not changeΠ = αβ′.

10.2 Hypotheses testing

Hypotheses on the cointegration vectors can be formulated in two alternative ways: either by specifying
thesi free parameters in eachβ vector, or by specifying themi restrictions on each vector. We consider
each in turn. First:

β = (H1κ1, ...,Hrκr),

whereβ is (p1 × r), κi are(si × 1) coefficient matrices, andHi are(p1 × si) design matrices where
p1 is the dimension ofx∗

t−1 in (25). In this case, we use the design matrices to determine thesi free
parameters in each cointegration vector.

The other way of formulating restrictions is:

R′
1β1 = 0, ...,R′

rβr = 0

whereRi is ap×mi restrictions matrix. Note thatRi = H⊥,i, i.e.,R′
iHi = 0.

In some cases, we may want to test restrictions which are not identifying. Such restrictions could
be the same restriction on all cointegration relations, for example long-run price homogeneity on all
vectors. In this case, theHi (or Ri) are all identical, and we can formulate the hypothesis asβ = Hκ,

whereκ is now ans × r matrix of free parameters. Another possibility is to test a hypothesis on just
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one of the cointegration vectors. In this case, we formulate the hypothesis asβ = {H1κ1,κ2, ...,κr},
whereH1 is a(p×s1) matrix,κ1 is (s1×1), and the other vectors are unrestricted. All these hypotheses
can be tested by a likelihood-ratio procedure described in detail in Johansen and Juselius (1990, 1992,
1994).

Our simple empirical example consists of only two gasoline prices, so the number of interesting
hypotheses to test is limited. Here, we will only test one hypothesis as an illustration and refer the
interested reader to the many published papers containing a wide variety of testable hypotheses, for
example Juselius (1995a, 1995b, 1998). Table 3 showed that the unrestricted coefficients of the first
cointegration vector were almost equal with opposite signs, indicating long-run price homogeneity.
This hypothesis can be formulated either asβ = (Hκ) or, equivalently, asR′β = 0, where:

H′ =

 1 −1 0 0
0 0 1 0
0 0 0 1

 , κ =

 κ1

κ2

κ3

 , andR′ =
(

1 1 0 0
)
.

The first alternative specifies the hypothesis in terms of thes1 = 3 remaining free parameters; the
second in terms of them1 = 1 imposed restriction. The hypothesis is tested by the LR test procedure
described in Johansen and Juselius (1992). The test statistic value was 0.55, distributed asχ2(1), and
hence accepted with ap-value of 0.46. The restricted cointegration relation became:

p1 − p2 − 0.02
(1.8)

Ds94.34−0.010
(0.6)

α11 =−0.14
(7.3)

, α12 =−0.01
(0.8)

The constant term is not significantly different from zero, but for reasons discussed above in Section
6, we prefer to keep it in the cointegration relation. Similarly, the step dummy is only borderline
significant (cf. the discussion in Section 9.1), and suggests that the permanent increase in gasoline
prices at location 1 might (possibly) have been slightly higher than at location 2. The estimates of the
adjustment coefficientsα1i show significant adjustment in the first price, but not in the second. This
suggests that a price shock leading to an increase in the price differential between the two locations will
initiate an adjustment in the first price, but not in the second: in this sense, the second location is a
price leader, i.e., is ‘driving’ the gasoline prices in this market. This takes us to the next issue, which is
exogeneity and partial systems.

11 Partial systems and exogeneity

The hypothesis that a variable is influencing the long-run development of the other variables of the
system, but is not influenced by them, is called the hypothesis of ‘no levels feedback’, or long-run weak
exogeneity (when the parameters of interest areβ). We test the following hypothesis onα:

Hα(r) : α = Aα̃ (29)

whereα is p × r, A is a p × s matrix, α̃ is ans × r matrix of nonzeroα-coefficients ands ≥ r.

(Compare this formulation with the hypothesis of the same restriction on allβ, i.e. β = (Hβ̃).) As
with tests onβ, we can express the restriction (29) in the equivalent form:

Hα(r) : Bα = 0 (30)

whereB = A⊥.
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The conditions ≥ r implies that the number of non-zero rows inα must not be greater thanr. This
is because a variable that has a zero row inα is not adjusting to the long-run relations and, hence, can
be considered as a driving trend in the system, i.e., as a common stochastic trend. Since there can at
most be(p− r) common trends, the number of zero-row restrictions can at most be equal to(p− r) .

The hypothesis (29) can be expressed as:(
αa

αb

)
=

(
α̃

0

)
.

UnderH0:
∆xt = Φ1∆xt−1 + α̃β′xt−1 + π + Ψdt + εt. (31)

The weak exogeneity hypothesis can be tested with a LR test procedure described in Johansen and
Juselius (1992). It is asymptotically distributed asχ2 with the degrees of freedomυ = s× r, i.e., equal
to the number of zero restrictions on theα-coefficients.

If the zero-row restriction onα is accepted, we can partition thep variables into(p− s) variables
which exhibit levels feedback, ands variables with no levels feedback. We say that thes variables are
weakly exogenous when the parameters of interest areβ. Because thes weakly-exogenous variables
do not contain information about the long-run parameters, we can obtain fully-efficient estimates ofβ

from the(p− s) adjustment equations, conditional on the marginal models of thes weakly-exogenous
variables (see Engle, Hendry and Richard, 1983, Johansen, 1992b, and Hendry, 1995b). This gives the
condition for when partial models can be used to estimateβ without losing information. More formally,
this can be stated as: let{xt} = {xa,t,xb,t} wherexb,t is weakly exogenous whenβ is the parameter
of interest; then a fully efficient estimate ofβ can be obtained from the partial model:

∆xa,t = A0∆xb,t + Φ11∆xt−1 + α1β
′xt−1 + π1 + Ψ1dt + v1,t. (32)

In our simple bivariate model of the two gasoline prices, weak exogeneity can be tested as a hypo-
thesis on oneα coefficient. Becausep = 2 andr = 1, there can at most be one weakly exogenous
variable. It appeared from Table 3 thatα̂11 is statistically significant, whereaŝα21 is not. Hence, in
this casep2,t is weakly exogenous based on at-test. In the bivariate system, thet-test and theχ2-test
are asymptotically equivalent. In a larger system with several cointegrating relations, the hypothesis
that a variable is long-run weakly exogenous is that a row ofα-coefficients is zero, i.e.,R′α = 0. In
our simple example,R = (0, 1). The test statistic value, distributed asχ2(1), was 0.48 and, hence, is
accepted.

Long-run weak exogeneity does not imply short-run weak-exogeneity. Hence, it does not exclude
the possibility thatp1,t is reacting in the short run to changes inp2,t. But in many cases, the economic
interest is in the long-run effects, and establishing long-run weak exogeneity for a variable is often used
as a justification for continuing the model analysis conditional on the weakly exogenous variable(s).
Although a full system analysis is usually needed to test for weak exogeneity (see Harbo, Johansen,
Nielsen and Rahbek, 1998, for a test procedure based on a partial system), there can be some advantages
to continuing the analysis in a partial system. For example, if the weakly-exogenous variable has been
subject to many interventions (large shocks) and current changes in this variable have significantly
affected the other variables in system, soA0 6= 0 in (32), then conditioning on the weakly-exogenous
variable is likely to reduce the need for intervention dummies in the model, and possibly lead to more
constant parameter estimates. For example, if the model had additionally included the price of crude oil
and it had been found to be weakly exogenous, conditioning on the current change of the price of crude
oil would probably have taken care of many of the large changes in gasoline prices that in the present
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model had to be accounted for by dummy variables. Moreover, the residual variance in the conditional
model is often much reduced relative to the marginal model, hence improving the precision of statistical
inference.

In our simple bivariate model,p2,t was found to be weakly exogenous and we present the estimation
results when conditioning on it in (33). Note that this model is the equivalent of the dynamic, single-
equation EqCM in Hendry and Juselius (2000):

∆p1,t = 0.48
(14.8)

∆p1,t−1 0.86
(25.1)

∆p2,t − 0.33
(7.2)

∆p2,t−1 −0.12
(8.7)

ecmt−1 + · · ·
σ̂ε = 0.016, R2 = 0.77

(33)

As discussed above, the need for dummy variables changed in this model version: five of the seven
dummy variables became insignificant after conditioning on∆p2,t. But, because the residual standard
error dropped from 0.023 to 0.016, some of the larger price changes no longer passed the outlier criterion
|ε̂i,t| > 3.3, so in the final model we needed the same number of outlier dummies as before, albeit at
different dates.

12 Forecasting in cointegrated processes

The existence of cointegration between series importantly affects forecasts of them, since some linear
combinations remain ‘linked’, whereas others drift apart. It seems less important whether or not such
cointegration links are imposed in estimation: the additional ‘errors’ from not doing so areO(1/T ).
The topic is treated at length in Clements and Hendry (1998, 1999); here we consider the simplest case,
where there are no unmodeled structural changes in the data generation process.

Consider anh-period ahead forecast based on a dynamic system for the vector ofp variablesxt,
using the simplest EqCM:

xt = π + Πxt−1 + εt where εt ∼ INn [0,Ωε] . (34)

Then,h-periods ahead, from an end-of-sample pointT (the forecast origin), the outcome is:

xT+h = ΠhxT +
h−1∑
i=0

Πi (π + εT+h−i) . (35)

The VAR forecast is:

x̂T+h = Π̂hxT +
h−1∑
i=0

Π̂iπ̂,

which can be rather uncertain due to powering upΠ̂ (which contains estimated unit roots), and not
partitioning the components of̂π between equilibrium means and growth rates.

When there is cointegration, we can write (34) as the EqCM:

∆xt = γ + α
(
β′xt−1 − µ

)
+ εt. (36)

It can be shown that when forecasting increasingly further ahead, forecasts of cointegrating combina-
tions converge on their equilibrium means, as is appropriate for stationary combinations:β̂

′
x̂T+h → µ.

Consequently, forecasts of changes converge onγ, so any EqCM effect on∆xt dies out:∆̂xT+h → γ.
However, for levels (̂xT+h), the EqCM coefficient increases: thus, a small feedback coefficientα may
nevertheless entail a large long-run effect from the disequilibrium.
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Imposing valid cointegration restrictions can improve forecast accuracy somewhat (see Clements
and Hendry, 1995), but for short-horizon forecasts, any potential benefit can be overwhelmed by changes
in the parametersγ andµ (surprisingly, changes to the other parameters are less pernicious: see Hendry,
2000). Imagine an unmodeled change inµ to µ∗ (say): the model treats the discrepancy

(
β′xT − µ∗)

as a disequilibrium, so forecasts of changes go in theoppositedirection to the data – if growth actually
increases, the model will forecast a fall. For example, if the price differential between the two gasoline
prices changed permanently at the outbreak of the Kuwait war (i.e., relative gasoline prices moved to a
new equilibrium position), without us modeling it explicitly, then the model will interpret the increased
price differential as a disequilibrium, so (wrongly) forecast a reduction back to the old equilibrium. This
is why it is important to view the model as ‘equilibrium correcting’: it always adjusts to the imposed
equilibrium (whether that is correct or not), and certainly does not ‘error correct’ after a shift to a new
equilibrium position. However, Clements and Hendry (1999) consider a variety of solutions to this
problem.

13 Parameter constancy and policy

Constancy of the parameters of models is a fundamental attribute for inference, theory, forecasting and
policy, and is no less relevant in cointegrated systems. Many tests exist for that hypothesis (see e.g.,
Hendry, 1995a, and Doornik and Hendry, 1999), and it has been established that the conventional distri-
butions of diagnostic test statistics remain valid in integrated-cointegrated systems (see e.g., Wooldridge,
1999), so the usual tests remain applicable.

We remarked in the previous section on the crucial role of changes in deterministic terms in inducing
forecast failure, and the consequential ease of detection, as against the difficulty of detecting changes in
(say)α. Unfortunately, some procedures for analyzing policy in cointegrated VARs, such as impulse-
response analyses, are heavily dependent on the absence of changes in the parameters of the dynamics –
the very feature that is difficult to detect. Thus, their implications must remain tentative pending better
tests for mean-zero parameter changes (for additional critiques, see Ericsson, Hendry and Mizon, 1998,
and Hendry and Mizon, 1998: Banerjee, Hendry and Mizon, 1996, provide an overview).

We also remarked on the potential advantages of ‘open’ or partial systems which validly conditioned
on weakly-exogenous variables. At first sight, it would seem unlikely that policy variables could be
weakly exogenous, since the disequilibria in an economy are a major determinant of policy actions, and
cointegration deviations comprise an important class of disequilibria. However, provided the cointegra-
tion analysis is appropriately undertaken in the full (closed) system, and only then are the cointegration
vectors computed, weak exogeneity (necessary for efficient conditional inference) need not be invoked.
Once theβ′xt are estimated, they become variables, the presence of which in several equations, in-
cluding those equations determining conditional policy variables, is inconsequential. Thus, conditional
policy models can be constructed. This is invaluable, since most practical policy involves changes in
variables with non-zero means, and hence unmodeled changes would be easily detected. Thus, one can
learn of any mistakes quickly, and rapidly adapt to them, rather than persist with an incorrect policy.

14 Conclusions

The recognition that economic time series are non-stationary has profoundly altered the technology of
econometrics, introducing the concepts and tools associated with integrated-cointegrated data that have
been the focus of our two-part exposition. In part, ‘plus c¸a change, plus c’est la meme chose’ rules:
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many inferences can be conducted as in a stationary world, since unit roots can be removed by the linear
transformations of cointegration and differencing. But, additional sources of non-stationarity still re-
main problematic, especially structural change; changes in the covariances of the data violate one of the
underlying assumptions of the VAR model. Nevertheless, we can understand, and resolve other aspects
of unit-root data such as ‘nonsense regressions’ (dating back to the century before last), how to avoid
them (as well as deliberately create them, as in Hendry, 1980). In part I, we formalized an appropriate
canonical model, the equilibrium-correction model, relevant for non-stationarity (unit-root) economic
data, which resolves the ’nonsense regression’ problem. Here we have analyzed the properties of this
model in further detail, demonstrated the changes needed to validate inference procedures, and illus-
trated the powerful new modeling procedures with gasoline price series relevant for energy economics.

Application of cointegration analysis requires careful thought about model specification and inter-
pretation, and an increased emphasis on the appropriate treatment of deterministic terms. How they
enter a model, and whether the same terms also enter the DGP both affects parameter inference and the
behavior of the model for such purposes as policy and forecasting. Recent developments in the theory
of forecasting, summarized in the two volumes Clements and Hendry (1998, 1999), have highlighted
the key role in forecast failure of shifts in the deterministic terms, so more attention should be paid to
the theory and practice of modeling deterministic terms.

The reader who has followed both parts of our overview in their entirety has traveled a long route.
We have explained the many concepts, and the associated language of the ‘unit-root’ revolution in
econometrics, which admittedly has been a slow revolution! Regrettably we suspect that the worry ex-
pressed in Working (1934) that ‘Economic theory has fallen far short of recognizing the full implications
of the resemblance of many economic time series to random-difference series’ still remains. Modeling
cointegrated series is difficult because of the need to model systems of equations in which one has to
simultaneously specify the deterministic terms and how they enter, determine the lag length, and ensure
a congruent representation. Nevertheless, powerful software facilitates the task for those wishing to un-
dertake their own analyses, including the programsPcGiveand CATS in RATS that we have utilized.
We also hope that publications on the topic will be more comprehensible in the future.

To those who found the material hard going, we also draw on an old quote, by a discussant of Yule
(1926), who complained about the mathematical difficulty of that paper – yet school mathematics today
easily suffices to understand it. There is no going back....
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