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Abstract

We study the impact of the system dimension on commonly used model selection criteria
(AIC,BIC, HQ) and LR based general to speci�c testing strategies for lag length estimation in
VAR's. We show that AIC's well known overparameterization feature becomes quickly irrele-
vant as we move away from univariate models, with the criterion leading to consistent estimates
under suÆciently large system dimensions. Unless the sample size is unrealistically small, all
model selection criteria will tend to point towards low orders as the system dimension increases,
with the AIC remaining by far the best performing criterion. This latter point is also illustrated
via the use of an analytical power function for model selection criteria. The comparison between
the model selection and general to speci�c testing strategy is discussed within the context of a
new penalty term leading to the same choice of lag length under both approaches.
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1 Introduction

The speci�cation of a proper dynamic structure is a crucial preliminary step in univariate or mul-

tivariate ARMA type time series models. Although the determination of a proper lag structure

is seldom of individual interest or the �nal objective of an empirical investigation, it has a great

impact on subsequent inferences whether they are about causality, cointegration, impulse response

analysis or forecasting. Typically the most common way of selecting an appropriate lag structure

for a VAR involves �rst assuming that the true but unknown lag length is bounded by some �nite

constant and subsequently using information theoretic criteria such as the AIC (Akaike (1974)),

BIC (Schwarz (1978)) or HQ (Hannan & Quinn (1979), Quinn (1980)) to determine an optimal

lag length. This is clearly the most frequently used approach in the time series literature which

abunds in studies that evaluated the asymptotic and �nite sample properties of the above men-

tioned methods. On the theoretical side it has been shown that criteria such as the BIC and HQ

lead to consistent estimates in both stationary and nonstationary systems (Hannan (1980), Quinn

(1980), Tsay (1984), Paulsen (1984), P�otscher (1987) among others) while the AIC is characterized

by a positive limiting probability of over�tting.

Focusing on the �nite sample properties of lag length selection methods, L�utkepohl (1985) con-

ducted an extensive Monte-Carlo study analyzing the properties of a large number of methods in

bivariate and trivariate stationary VAR's. The overall conclusion of the study supported the view

that the BIC and the HQ lead to the most accurate results. In the context of a cointegrated system,

Cheung & Lai (1993) found that both the AIC and BIC perform well in �nite samples provided that

the true error structure has a �nite and parsimonious autoregressive representation. If the system

contains moving average components however, then both criteria displayed poor performance. In

this latter case, the AIC led to lag length estimates as distorted as the ones obtained by the BIC

in the sense of generating truncation lags that are too short for the �nite autoregressive approxi-

mation to be reliable. This con�rms a recent point by Ng and Perron (1995) who showed in the

context of a univariate framework that despite its well known over�tting feature the AIC abandons

information at long lag lengths and is therefore also unreliable under moving average components.

Their analysis further suggests that a sequential testing strategy could be preferable under mov-

ing average errors, leading to a better size-power trade o� in the subsequent inferences about the
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presence of unit roots. Overall however, our reading of the literature is that the AIC and BIC,

still remain the favorite tools for specifying the lag structure in both univariate and multivariate

models. More recently Ho and Sorensen (1996) analyzed the impact of the system dimension on

the performance of LR based cointegration tests, and as a byproduct of their study concluded that

the BIC is more reliable than the AIC in such a setting. The fact that the negative consequences

of an underparameterized model are much more serious than in an overparameterized case (wrong

inferences versus loss of eÆciency for instance) however often led practitioners to argue in favor of

the AIC criterion. These mixed and often contradictory conclusions, clearly highlight the point that

it is diÆcult to come up with a universally accepted typology of methods ranked in terms of their

performance. Indeed the number of factors in
uencing the behavior of these procedures is such that

conclusions can only be DGP speci�c, with di�erent parameterizations possibly leading to contra-

dictory features for the same criterion. It is however possible to explain why most studies reached

con
icting results by focusing mainly on the system dimension and available sample size together

with the rates of convergence of the various model selection criteria . This can then allow us to

better classify the circumstances under which a speci�c method will perform better than the others.

In this paper our objectives are twofold. First, we focus on a series of factors (system dimension,

sample size, preset upper bound etc.) that in
uence the performance of alternative lag length

selection methods in both small and large samples with the aim of explaining and clarifying the

often con
icting results obtained in the literature. Our second objective is then to provide a set of

practical guidelines for the choice of the lag order determination method. The plan of the paper is

as follows. Section 2 will present the competing information theoretic methods and evaluate their

theoretical features in relation to the dimensionality aspect. Section 3 focuses on the general to

speci�c testing strategy and its connection with the model selection approach. Section 4 concludes.

All proofs are relegated to the appendix.

2 Features of Commonly Used Lag Length Selection Criteria

In this section, we focus on some theoretical features of the penalized likelihood based methods for

selecting the lag order in the following vector autoregression

Xt = �1Xt�1 + : : :+�p0Xt�p0 + �t;(1)
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where Xt is a K � 1 vector, p0 denotes the unknown true lag length and

Assumptions: (A1) f�tg is a gaussian i.i.d. vector sequence with mean zero and E(�t�
0
t) = 
� > 0

8t, (A2) The determinant of the autoregressive polynomial j�(z)j = jIK � �1z � : : : � �p0z
p0 j has

all its roots outside the unit circle or at most K roots at z = 1 and the lag length p0 is such that

p0 � pmax with pmax denoting a known �nite constant.

Using Engle and Granger's (1987) terminology the above assumptions allow the vector autore-

gressive process in (1) to be purely stationary (I(0)), purely non-stationary (I(1)) or cointegrated

(CI(1; 1)). Given the above speci�cation the primary objective of any investigation involving VAR

models is the selection of an optimal value for p the unknown lag length. The general expression

of the objective function of penalty based methods is given by

IC(p) = log j
̂(p)j+ cT
T
mp(2)

where 
̂(p) denotes the estimated residual covariance matrix when p lags have been �tted to (1),

mp the number of freely estimated parameters (mp = K2p) and cT a deterministic penalty term.

When cT = 2 we have the well known AIC criterion, cT = log T corresponds to the BIC and

cT = 2 log log T is commonly referred to as the HQ. The optimal lag length, say p̂ is then selected

as follows

p̂ = arg min
0�p�pmax

IC(p):(3)

Regarding the asymptotic properties of p̂ obtained from (3), Tsay (1984) and Paulsen (1984) showed

that provided that cT ! 1 and cT =T ! 0 as T ! 1, p̂ is consistent in both stationary and I(1)

systems. Clearly the AIC criterion violates the �rst of the above two conditions leading to a non

zero limiting probability of over�tting. It is worth pointing out however that even for the AIC the

probability of underestimation vanishes asymptotically. These limiting results however, provide

little guidance for the choice of a reliable criterion in �nite samples.

2.1 Over�tting in Large Samples

The impact of the system dimension on the probability of over�tting of criteria such as the AIC can

be analyzed by focusing on P [IC(p0+h) < IC(p0)] which represents the probability of overparam-
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eterizing the model with h � 1 extra variates. Numerous studies have shown that this probability

does not vanish asymptotically for constant penalty criteria such as the AIC since the requirement

that cT ! 1 is violated. This has often been used as a strong argument against the practice of

model selection via the AIC. However, an important point established in Paulsen and Tjostheim

(1985) in the context of a purely stationary VAR is that the AIC's nonzero asymptotic probability

of over�tting is also a decreasing function of the system dimension. This feature of the AIC criterion

seems to have often been overlooked in applied work. The following proposition will allow us to

formally quantify the behaviour of the over�tting probability across di�erent system dimensions for

purely stationary, nonstationary and cointegrated systems and will illustrate the fact that even for

a criterion such as the AIC the probability becomes rapidly negligible as we move from a univariate

to a larger dimensional system.

Proposition 2.1 Under assumptions (A1)-(A2) and letting p̂ denote the lag length estimate ob-

tained via the model selection approach using a constant penalty cT = c, the probability of �tting h

spurious variates beyond p0 converges to P [�2(K2 h) > K2 h c] as T ! 1 and 8p0 2 [1; pmax] if

the polynomial in (A2) has at least one root on the unit circle and 8p0 2 [0; pmax] if it has all its

roots outside the unit circle.

The requirement that p0 � 1 under the presence of I(1) components ensures that lag length

restrictions on the VAR in levels can be reformulated as restrictions on coeÆcient matrices of

stationary regressors only, thus validating the use of standard asymptotics. Di�erently put when the

polynomial in (A2) has at least one root on the unit circle, the quantity T (log j
̂(p)j� log j
̂(p+h)j)
will be asymptotically distributed as �2(K2h) only if p � 1. The above result highlights the crucial

importance that the system dimension will have on the performance of model selection criteria and

illustrates the fact that the probability of over�tting is an exponentially decreasing function of K

in both stationary and nonstationary systems. For the AIC criterion for instance it is clear that

one does not need an extremely large system dimension for the above probability to be close to zero

and for practical purposes it can be considered as negligible even in the trivariate case. Indeed,

under K = 3 for instance the limiting probabilities of selecting h extra variates beyond p0 are given

by 3.52%, 0.71% and 0.15% for h = 1; 2 and 3 respectively while when K=1 (i.e. univariate model)

the corresponding �gures increase to 17.73%, 13.43% and 11.16%. Thus even in moderately large

systems the risk of overparameterization is negligible and therefore the AIC criterion may also lead
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to consistent like estimates since limT!1 P [AIC(p0 + 1) < AIC(p0)] = O(e�K
2
). For the BIC

and HQ criteria, the probability of over�tting converges to zero as T ! 1 since for both criteria

cT ! 1, implying that limT!1 P [IC(p0 + h) < IC(p0)] = 0. It is worth pointing out however

the in
uence that the system dimension K will have on this latter probability. Speci�cally for the

probability of �tting one spurious variate under the BIC we have

P [BIC(p0 + 1) < BIC(p0)] = P [T log
j
̂(p0)j

j
̂(p0 + 1)j > K2 log T ]

� P [�2(K2) > K2 log T ]

� O

0
@(log T )K

2

2
�1

T
K2

2

1
A

with the last approximation following from the asymptotic expansion of the incomplete gamma

function. Proceeding similarly for the HQ type penalty, we obtain P [HQ(p0 + 1) < HQ(p0)] �
O((log log T )

K2

2
�1(log T )�

K2

2 ). Thus although the BIC's convergence rate may appear as very

desirable it also casts serious doubts on its ability to move away from the lowest possible lag length

when the system dimension is large.

2.2 Over�tting in Finite Samples

So far the validity of our arguments has been conditional upon the availability of a suÆciently large

sample size so as to ensure that the distribution of T (log j
̂(p0)j � log j
̂(p0 + h)j) is accurately
approximated by a �2(K2 h) random variable. Typically in �nite samples, the degrees of freedom

limitations will introduce severe upward biases in the estimated covariance matrices resulting in

a rightward shift of the empirical distribution relative to that of the theoretical �2. Thus despite

the evidence from the above large sample based results, even in large dimensional systems the AIC

criterion might still end up pointing to very high lag orders if the in
ated �2(K2 h) dominates the

deterministic term 2K2 h. This e�ect could be particularly strong if a large system dimension is

combined with a large value of the upper bound pmax. When this happens it would be innacurate

to attribute the causes of the resulting overparameterization to AIC's \over�tting nature" since it

arises solely from the degrees of freedom restrictions. The chances of this occurring for the BIC are

negligible however since K2 h log T will be extremely large (at least twice as large as 2K2 h) even

for a relatively small T.
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To gain further insight into this latter point we simulated data from a ten dimensional V AR(p0 = 1)

using samples of size T=90, 150, 250 and 1000 and with a V AR(p = 2) as the �tted model. The

empirically obtained 95% critical values of the LR statistic for testing �2 = 0 were 184.08, 158.22,

143.15 and 129.88 respectively, compared with the theoretical �295%(100) counterpart of 124.35.

Since for the AIC criterion we have K2 h cT = 100� 1� 2 = 200 it is clear that under moderately

small samples over�tting might occur frequently. For the BIC on the other hand even under T=90

we have K2 h cT ' 500 suggesting that over�tting is unlikely to occur no matter how in
ated the

�nite sample distribution of LR is. Note that the above empirical percentiles were highly robust

to the stationarity properties and parameter values of the DGP, having experimented across var-

ious stationary, purely nonstationary and cointegrated speci�cations. In �nite samples and large

dimensional systems AIC's over�tting feature will arise only if T is small relative to the system

dimension K and the chosen upper bound pmax.

It is possible to be more explicit about this claim by using existing results on �nite sample correc-

tions. Indeed the important discrepancies between the �nite sample and asymptotic distributions

are a well documented issue in the multivariate analysis literature. Since Bartlett (1947), numerous

authors introduced correction factors to various expressions of the likelihood ratio statistic in order

to make the moments of the �nite sample distributions match those of the asymptotic distribution,

up to a certain order of magnitude. At this stage and for the clarity of the exposition it is useful to

reformulate the IC based lag length selection problem by focusing on a slightly modi�ed objective

function we denote by IC(p) = IC(p)� IC(pmax) with IC(p) de�ned as in (2). Note that the se-

lection of an optimal p by minimizing IC(p) is a program identical to the one in (3). The modi�ed

criterion can be written as

IC(p) = T log
j
̂(p)j

j
̂(pmax)j
�K2cT (pmax � p)(4)

where we can recognize the expression of the LR statistic, asymptotically distributed as �2(K2(pmax�
p)), in its �rst right hand side component (note that in this modi�ed framework we have IC(pmax) =

0 by construction).

By appealing to existing results on �nite sample corrections it is now possible to gain further insight

on the e�ects that a limited sample size might have on the choice of p. In the context of VAR
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models, Sims (1980) for instance proposed a �nite sample correction to the LR statistic based on

replacing the normalizing factor T by T �Æ with Æ denoting the number of parameters estimated in
each equation of the model. Within the above framework therefore, the small sample adjusted LR

statistic is given by LRc = (T �Kpmax) log(j
̂(p)j=j
̂(pmax)j). Interestingly, this correction is also

equivalent to the theoretically derived adjustment obtained by Fujikoshi (1977) in the context of

static canonical correlation analysis. To our knowledge an explicit and theoretically derived small

sample adjustment for the LR statistic does not exist in the VAR literature, however numerous

simulation studies (Reinsel and Ahn (1992), Cheung and Lai (1993), Gonzalo and Pitarakis (1995,

1998, 1999) among others) have shown that the above correction improves signi�cantly upon the

raw LR statistic in both stationary or cointegrated VAR's and is commonly used in the time series

literature. It is also important to point out that this simple small sample adjustment has often been

criticized on the grounds that it does not always provide a good approximation of the tail areas,

allowing solely a good match of the �rst moment of LRc with that of a �2(K2(pmax � p)) random

variable. This is potentially a serious problem when the adjusted statistic is used for hypothesis

testing, here however our focus being on expected values rather than tail areas it should serve our

purpose quite accurately. Indeed, our motivation here is to obtain a quantitative indication of the

average ability of the IC approach not to over�t. Consider for instance the quantity E[IC(pmax)�
IC(p0)] and let us focus on the loose requirement that on average the model selection procedure

selects p0 over pmax. Using the expression of IC(p) in (4) the requirement that E[IC(p0)] < 0 can

be written as

K2cT (pmax � p0) > E

"
T log

j
̂(p0)j
j
̂(pmax)j

#
:

Next, assuming that the distribution of LRc is accurately approximated by the asymptotic �2(K2(pmax�
p0)) even for moderately small magnitudes of T and rewriting the above expression as

K2cT (pmax � p0) >
T

T �Kpmax

E

"
(T �Kpmax) log

j
̂(p0)j
j
̂(pmax)j

#

and making use of the fact that E[�2(K2(pmax � p0)] = K2(pmax � p0) leads to the requirement

that

T >
KcT pmax

cT � 1
(5)

for E[IC(p0)] < 0 to hold. As an illustration, consider the case of the AIC criterion with K = 10,

pmax = 7 and p0 = 1. In order to ensure that \on average" p0 is chosen over pmax we would
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need T > 140. Regardless of the DGP's parameter structure if the above condition is not satis�ed

the AIC will often point to lag lengths greater than p0. This simple scenario has occurred quite

frequently in applied work but its reasons have been attributed solely to AIC's natural tendency to

over�t. In Ho & Sorensen (1996) for instance, the authors estimated a seven dimensional VAR with

pmax = 4 and found that the AIC was systematically selecting p̂ = 4. Our previous results provide a

clear explanation for this �nding and highlight the dangers of using the AIC under these conditions.

In the case of the HQ criterion the requirement drops to T > 104 and for the BIC we would need

T > 90. Thus although when K is large the AIC does not over�t asymptotically, in small samples

(small compared to pmax and K) it might repeatedly select the preset upper bound if the latter is

not chosen carefully. In summary, with moderate or large sample sizes none of the model selection

criteria will over�t. This is also true for the AIC in large dimensional systems with T suÆciently

large relative to pmax and K. If T is small relative to pmax and K (ie. T < KcT pmax=(cT � 1) for

instance) then the AIC criterion and to a lesser extent HQ might frequently point to lag lengths

close to the upper bound. In those instances our analysis suggests that it might be bene�cial to

adjust the LR component of IC(p) in a way similar to the Bartlett type small sample adjustment

applied to the LR statistic.

2.3 Under�tting

Regarding the probability of under�tting, it is well known that for all criteria it vanishes asymp-

totically regardless of the location of the roots of j�(z)j = 0. Indeed, if we consider the probability

of selecting p0 over p0 � 1 for instance, we have

P [IC(p0) < IC(p0 � 1)] = P [log j
̂(p0 � 1)j � log j
̂(p0)j > cTK
2

T
];(6)

and since j
̂(p0)j < j
̂(i)j 8i = 1; : : : ; p0 � 1, the probability in (6) will converge to one provided

that cT =T tends to zero. Most �nite sample simulation studies however found that criteria such

as the BIC might often lead to an overly parsimonious model. The AIC on the other hand has

been rarely found to under�t. Here we argue that if the sample size is moderate (greater than

KcT pmax=(cT � 1) for instance) and the system dimension large, all criteria including the AIC

might lead to lag lengths arti�cially clustered at very low levels. The problem will arise from the

K2 term adjacent to cT =T in (6) which even for T moderately large may leave the factor K2cT =T

too high. This suggests that in �nite samples an increased system dimension may adversely a�ect
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the probability of under�tting by increasing the possibility of selecting underspeci�ed models. This

phenomenon can be illustrated by focusing on a set of simple generic models which will also allow

us to isolate the impact of the stationarity properties of the system. We initially consider the

following K dimensional VAR driven by VAR(1) errors

�Xt = ut ut = Rut�1 + �t

with R = diag(�1; : : : ; �K), j�ij < 1 for i = 1; : : : ;K, and �t denoting a gaussian vector white noise

process with E(�t�
0
t) = 
� > 0. The above model can be rewritten as �Xt = �Xt�1+R�Xt�1+ �t

with � = 0. Equivalently it can also be viewed as a V AR(p0 = 2) in levels. Suppose that instead of

the true model we �t �Xt = 	Xt�1 + �t thus omitting the relevant lagged dependent variable. It

is well known that in this under�tted model we will continue to have 	̂ols
p! 0 due to the I(1)'ness

of the components of Xt. Letting 
̂1 denote the residual covariance matrix obtained from the

under�tted model, it is then straightforward to show that 
̂1 = diag( 1
1��21

; : : : ; 1
1��2

K

)
� + op(1).

On the other hand, if we were �tting the correct model we would have 
̂2 = 
� + op(1) with 
̂2

denoting the residual covariance from the correctly speci�ed model. Recalling the general expression

of the model selection criteria given in (2) and putting 
� = IK we have

IC(p = 2)� IC(p = 1) = K2 cT
T

+
KX
i=1

log(1� �2i ) + op(1)(7)

and since p0 = 2, we need

K2 cT
T

+
KX
i=1

log(1� �2i ) + op(1) < 0;(8)

so as not to under�t. Although (8) will always hold asymptotically, if K is large it is very likely

that even a criterion such as the AIC might under�t since the \negativity" of
PK

i=1 log(1� �2i ) will
be masked by a large value of K2 cT

T
. This also highlights the reason why a criterion such as the

BIC for which K2cT =T is likely to be very large relative to the second negative component in (8)

might persistently point to lag lengths below p0. The above results also illustrate the importance

of the magnitudes of the chosen values for the parameters driving the error process. It is clear that

one needs to be cautious when properties of model selection criteria are established under speci�c

DGP's. In fact virtually any property can be obtained by a proper manipulation of the parameters

of the DGP.
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The above example can also be used to assess the in
uence of the stationarity properties of the

data on the probability of under�tting. Indeed instead of focusing on a system of I(1) variables,

we can consider the following V AR(p0 = 2) speci�cation

Xt = AXt�1 + ut

ut = Rut�1 + �t

where for simplicity we let A = diag(�1; : : : ; �K), and R and 
� de�ned as above. In a purely

stationary system j�ij < 1 8i = 1; : : : ;K. In this context it is straightforward to show that

log j
̂(p = 1)j p! �PK
i=1 log(1� �2i�

2
i ) and log j
̂(p = 2)j p! 0. We can therefore write

IC(p = 2)� IC(p = 1) = K2 cT
T

+
KX
i=1

log(1� �2i�
2
i ) + op(1)(9)

which can be compared with (8) in the purely nonstationary case. It is clear that when �i = 1 8i,
the possibility that IC(p = 2) < IC(p = 1) will be much greater than when j�ij < 1, suggesting

that in �nite samples the presence of unit roots will help push the inequality in the desired direction.

Finally for the cointegrated case we consider the speci�cation given by Xit = �iXit�1 + uit with

j�ij < 1 for i = 1; : : : ; r and �Xit = uit for i = r + 1; : : : ;K and the u0its speci�ed as above. Thus

the true model is now a V AR(p0 = 2) with cointegrating rank r. Proceeding as above we obtain

IC(p = 2)� IC(p = 1) = K2 cT
T

+
rX

i=1

log(1� �i�2i ) +

KX
i=r+1

log(1� �2i ) + op(1)(10)

thus illustrating the fact that in relation to the e�ects of K on the probability of under�tting in

�nite samples, the cointegrated case will correspond to an intermediate scenario between the purely

I(1) and purely I(0) cases.

2.4 Local Poperties

In this section we investigate the behaviour of the various model selection criteria when the entries

of the coeÆcient matrix �p0 in Model (1) are allowed to shrink towards zero as the sample size

increases. In other words while the true model has lag length p0, the latter will be approaching

p0�1 as T !1. Intuitively, the smaller the entries of �p0 the more diÆcult it will be to distinguish

between p0 and p0 � 1 thus raising the risk of under�tting. Although all model selection criteria
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whose penalty terms satisfy cT =T ! 0 do not under�t asymptotically, for moderate samples and

large system dimensions in particular the probability of underestimating p0 might be very high.

This way of proceeding will also allow us to formally isolate the factors that in
uence the ability

of the model selection criteria to correctly detect the true lag length and is very similar in spirit

to the local power analysis conducted in the context of standard hypotheses tests. For simplicity,

we focus on a V AR(p0 = 2) model with I(0) variables and restrict ourselves to a binary decision

problem by imposing pmax = 2 and operating under p0 � 1. We have

Xt = �1Xt�1 +�2Xt�2 + �t(11)

where �2 = �=
p
T with � a K � K constant coeÆcient matrix. We also de�ne �0 = (�1;�2),

Z 0t = (X 0t�1;X
0
t�2) and �2K2�1 = vec(�). Letting �K2�1 = vec(�) we introduce a K2 � 2K2

restriction matrix G conformable with � such that G� = 0K2�1 corresponds to a VAR(1) model

(i.e. �2 = 0) and G� = �=
p
T corresponds to a VAR(2) local to a VAR(1). The following

proposition summarizes the ability of the IC based model selection procedure to detect the true lag

length p0 = 2.

Proposition 2.2 Under DGP (11) the probability of correct decision P [IC(2) < IC(1)] is such

that limT!1 P [IC(2) < IC(1)] = P [�2(K2;  2) > K2 cT ], where �
2(K2;  2) is a noncentral chi-

square random variable with K2 degrees of freedom and noncentrality parameter  2 = �0[G(
 

E(ZtZ

0
t)
�1)G0]�1�.

The above result can be used to assess analytically the \power" properties of the model selection

approach. The components of the noncentrality parameter  2 include the elements that will a�ect

the probability of correct decision of the model selection criteria. From Kendall and Stuart (1961)

the noncentral �2 distribution can be approximated by a centered one as follows

�2(K2;  2) � h�2(m)(12)

where h = (K2 + 2 2)=(K2 +  2) and m = (K2 + 2)2=(K2 +2 2). By focusing on simple DGP's

that could allow the calculation of the noncentrality parameter to be done analytically, we can

establish the main factors a�ecting the probability of correct decision as well as the degree of their

importance. Consider the VAR(2) in (11) with �1 = diag(�1; : : : ; �K), �2 = diag( �p
T
; : : : ; �p

T
)

and 
� = IK for instance. It is straightforward to establish that the noncentrality parameter is
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given by

 2 =
K�2

1� �2

T

;(13)

illustrating the fact that the correct decision frequencies depend on the system dimension, the

sample size and the magnitude of the � parameter. Note that the magnitude of the parameters

appearing in �1 does not a�ect the correct decision frequencies. More general models allowing for

nonzero cross correlations and general covariances can also be handled using a symbolic algebra

package such as Mathematica or Maple. In order to evaluate the accuracy of the analytical power

we used the above DGP to compute both Monte-Carlo and analytical probabilities of correct

decisions. Although the empirical and analytical powers did not coincide, they were rarely more

than 10% apart, suggesting that the analytical asymptotic power is suÆciently accurate even in

�nite samples. Table 1 presents the analytical powers corresponding to (11) across a wide range of

system dimensions and parameters for all three types of model selection criteria. For the chosen

parameterization the magnitudes clearly illustrate the rapid deterioration of the BIC based results

as the system dimension is allowed to grow beyond K = 3.

Table 1 about here

Overall the results suggest that the AIC criterion is the best performer, especially in large dimen-

sional systems where criteria such as the BIC are totally unable to move away from the lowest

possible lag length even under very large sample sizes. Recalling that we operate under pmax = 2,

it is also important to observe that as K grows the incorrect decisions resulting from the AIC

criterion are clustered at p = 1, the under�tted speci�cation. This also supports our discussion

centered around (9) where we argued that even for a small penalty magnitude such as cT = 2, the

size of the system dimension might prevent the inequality in (9) to take the desired sign in �nite

samples.

2.5 Further Empirical Evidence

Our previous results aimed to establish and explain the diversity of outcomes that could arise when

evaluating the performance of alternative lag length selection methods. Given the large number of

individual factors and their joint interactions in
uencing the overall properties of each criteria, our

analysis allowed us to isolate features that would have required an impracticably large number of
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DGP parameterizations for them to be uncovered via direct simulations. Here our aim is to use

our previous analysis as a framework for designing a selective set of DGPs so as to provide further

insight on the sensitivity of each model selection criterion to factors such as the sample size, system

dimension, preset upper bound pmax and more importantly to highlight the fact that even slightly

altered DGP parameterizations may lead to contradictory features for the same criterion.

We initially considered a ten dimensional system of I(1) variables. The true lag length was set

to p0 = 1 and we experimented across various values of the upper bound pmax and sample size T

(pmax = f3; 5; 7g and T = f90; 100; 150; 200; 250g). The correct decision frequencies corresponding

to each criterion are displayed in Table 2a. Although we implemented the model selection approach

for 0 � p � pmax we only present the frequencies corresponding to choices of p � 1 since none of the

criteria pointed to p = 0 throughout all replications. Due to the I(1)'ness of our DGPs this latter

point should not be interpreted as a strong ability of the model selection criteria not to under�t

however. Indeed for the model selection criteria to point to p = 0 we need P [IC(0) < IC(1)]

which can also be rewritten as P [log j
̂(0)j � log j
̂(1)j < K2cT =T ]. Since 
̂ =
P

tXtX
0
t=T and

given that Xt is an I(1) vector process it follows that 
̂(0) = Op(T ) which makes the probability

P [IC(0) < IC(1)] converge to zero extremely fast. From the results in Table 2a the consistency

of the AIC based lag length estimate is striking. For values of T � 150, the AIC selected p = 1,

100% of the times, behaving exactly as the BIC and HQ. The frequencies corresponding to T=100

clearly highlight the importance of the selected upper bound pmax. Indeed, although for pmax = 3

the correct decision frequency corresponding to the AIC is approximately 99% under both T=90

and T=100, as we increase pmax to 5 and 7 we can observe that the AIC is systematically pointing

to the upper bound, con�rming our previous discussion and result in (5).

Table 2a about here

When we conducted the same experiments across smaller system dimensions while maintaining the

restriction that pmax should be such that the lower bound in (5) is kept identical to the K = 10

scenario (e.g. fK; pmaxg = f5; 14g under cT = 2 requires T > 140 as does fK; pmaxg = f10; 7g) we
found the correct decision frequency patterns to be both quantitatively and qualitatively similar to

the ones presented in Table 2a. The magnitude and patterns of the above frequencies also remained

unchanged when we introduced I(0) components into the system, con�rming the irrelevance of the
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stationarity properties of the data for the probability of over�tting. The fact that the BIC points

to p0 = 1 8pmax and 8T also casts some doubt on its genuine ability to move away from the lowest

possible lag length. Indeed this might be due to the strength of its penalty which combined with

the dimensionality factor makes it spuriously select p = 1.

In order to explore alternative scenarios under which under�tting is likely to occur in �nite samples

we next focus on a class of V AR(p0 = 2) models, concentrating on the individual and joint in
uence

of factors isolated in our analysis in (8)-(10) and (13). We consider two types of V AR(p0 = 2)

speci�cations, having large and small parameter magnitudes (ie. �0is in (7)) respectively. The chosen

parameterization for the �rst DGP leads to
PK

i=1 log(1��2i ) = �2:74 while the second one leads toPK
i=1 log(1��2i ) = �0:42. Our result in (8) suggests that for moderately small samples the BIC will

point to p=1 most of the time even in the \strong parameter value" case. This is indeed con�rmed

by the empirical results presented in Table 2b which suggest that the BIC requires samples much

greater than T=200 to achieve acceptable correct decision frequencies. The AIC based estimates

on the other hand are converging to p0 = 2 quite rapidly with the AIC selecting the true lag length

close to 100% of the times for T � 150 and any magnitude of pmax.

Tables 2b-2c about here

It is also important to observe that the AIC does not over�t unless T is extremely small relative

to pmax and K. When we reconsidered the same experiment with smaller magnitudes of the �0is

the correct decision frequencies (see Table 2c) were reduced by half for the AIC which continued

however to remain by far the best performing criterion since the BIC and HQ were totally unable

to select any lag length other than the lower bound p = 1 close to 100% of the times. Another

feature also worth emphasizing is that even for the AIC criterion all wrong decisions are clustered

at p < p0, the under�tted model, con�rming our analysis in (8) and our results in Table 1. Thus

our overall �ndings strongly suggest that in large dimensional systems and for moderately large

sample sizes under�tting is the main problem practitioners should concentrate on even when using

the AIC criterion. Regarding the relative performance of the criteria considered in this study, the

AIC is clearly the best performer in large dimensional systems. In a related study Koreisha &

Pukkila (1993) also investigated the in
uence of the system dimension on the behavior of standard

information theoretic criteria via an extensive set of Monte-Carlo experiments based on purely sta-
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tionary VAR(1) and VAR(2) models. In addition to providing further theoretical support and an

analysis of the causes of some of their �ndings, our results suggest that the sample sizes considered

in their study forced an overemphasis on the over�tting aspect. Indeed our �ndings suggest that

under�tting might be a more serious and common problem in large dimensional systems.

So far our framework has assumed the order of the VAR to be �nite and bounded by pmax. It is

also important to evaluate the properties of the lag length estimation techniques when the error

process of the VAR contains (invertible) moving average components, with the latter implying

the the true DGP has a V AR(1) representation. Within this framework it is still possible to

approximate the V AR(1) by a truncated V AR(p) version and obtain consistent estimates of the

parameter matrices provided that the truncation lag p is allowed to grow at an appropriate rate

with the sample size (see Berk (1974), Lewis & Reinsel (1985), Ng & Perron (1995)). The key issue

that arises in this context is the quality of the di�erent methods for the selection of an appropriate

truncation lag. In the context of a univariate autoregression Ng and Perron (1995) showed that

under the presence of moving average errors with large MA parameter magnitudes, model selection

criteria such as the BIC or AIC are unable to select large values of p unless an impracticably large

sample size becomes available. Here we initially explore the same issue in a K dimensional VAR

context by considering a simple stationary VAR(1) model driven by VMA(1) errors and written as

Xt = �t ���t�1. Assuming � = diag(�1; : : : ; �K) for simplicity and putting 
� = IK then we can

write

IC(p+ 1)� IC(p) � cTK
2

T
+

KX
i=1

log

"
(1� �

2(p+3)
i )(1� �

2(p+1)
i )

(1� �
2(p+2)
i )2

#
(14)

provided that T is suÆciently large so that j
̂(p)j � QK
i=1(1� �

2(p+2)
i )(1 � �

2(p+1)
i )�1. Ideally (11)

should continue to remain negative for suÆciently large values of p but the presence of the K2

factor clearly highlights the fact that even an AIC type penalty may not allow the IC approach

to select large lag lengths even when the j�ij0s are large, unless an extremely large sample size is

available. As a numerical illustration, letting K = 5, T = 1000 and �i = �0:4 8i = 1; : : : ;K we

have IC(2)� IC(1) < 0 while IC(3)� IC(2) > 0.

In this V AR(1) context it is obviously diÆcult to analyze the properties of alternative lag length

selection techniques without having a benchmark to evaluate the costs of an inappropriate trunca-
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tion (e.g. validity of the subsequent distribution theory of cointegration tests, accuracy of forecasts,

validity of the resulting impulse response functions, granger-causality tests). Although the true

lag length is in�nite, the parameters of the AR representation are declining geometrically, thus

if the parameters of the MA process are not too large in absolute value, a small truncation lag

co uld possibly lead to approximately white noise residuals. Although it is beyond the scope of

this paper to extend the univariate results presented in Hall (1994) and Ng and Perron (1995) to

this VAR framework, here we adopt the view that an LM test for residual autocorrelation could

be used to evaluate the quality of the selected truncation lag. For this purpose we simulated

a ten-dimensional VAR(1) model driven by VMA(1) errors given by �Xt = �t � ��t�1, setting

� = diag(0:8; 0:7; 0:6; 0:4; 0:2; 0:65; 0; 0; 0; 0) and letting pmax = f3; 5; 7g. Across all sample sizes,

we found that both the BIC and HQ were unable to move away from p = 1. The AIC on the other

hand pointed to p = 2 most of the time (approximately 83% of the times for T � 250 and any

magnitude of pmax, with the remaining frquencies concentrated at p = 1). When we performed an

LM test of residual autocorrelation across all the replications using the lag length chosen by the

AIC and T=250 ,the test could not reject the white noise hypothesis approximately 85% of the

times at a 5% level (compared with 3% for the BIC based estimated lag length) thus suggesting

that p = 2 might be a reasonable truncation lag for our chosen DGP.

3 General to Speci�c LR based Testing

Instead of using an information theoretic approach for choosing an appropriate lag length, it is

also possible to use a sequential testing strategy that focuses on the signi�cance of the coeÆcient

matrices in the VAR. A scheme commonly used in applied work involves testing Hi
0 : �pmax�i+1 = 0

versus Hi
1 : �pmax�i+1 6= 0j�pmax = : : : = �pmax�i+2 = 0 for i = 1; : : : ; pmax using the �2(K2)

distributed LR = T (log j
̂(pmax � i)j � log j
̂(pmax � i + 1)j) test statistic. The procedure stops

when a null hypothesis is rejected for the �rst time, leading to p̂ = pmax � i + 1 (see L�utkepohl

(1992), Ch.2). Although alternative testing schemes such as a speci�c to general approach have

also been proposed in the literature, numerous studies that focused on univariate time series mod-

els documented the overall superiority of the GS approach (Hall (1994), Ng and Perron (1995))

relative to alternative testing schemes and accordingly in what follows we concentrate solely on

the testing strategy outlined above. This general to speci�c approach has been criticized on the

grounds that it does not lead to a consistent estimator of p0 since the probability of over�tting
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does not vanish asymptotically. Also, the buildup of Type I errors could become considerable when

the test involves long sequences, as it is the case when the chosen maximum lag length pmax is large.

The literature on model selection criteria has often argued that selecting the lag length via an

information theoretic criterion is similar to performing a likelihood ratio based test with the critical

values determined \internally" by the chosen penalty term rather than by the �2 distribution's

speci�c cuto� points. This statement is not entirely correct however. In what follows we de�ne

p̂
(j)
IC = argminj�p�pmax IC(p) for j = f0; 1g and let p̂GS denote the corresponding lag order obtained
via the GS testing approach. We also let c� denote the cut-o� point from the �2(K2) distribution

used in the GS testing approach (i.e. c� is such that P [�2(K2) > c�] = �). The following

proposition summarizes our main result

Proposition 3.1 Under assumptions (A1)-(A2) and if cT = c�=K
2 8T we have p̂

(0)
IC = p̂GS when-

ever p̂GS 2 [0; pmax � 1] if the polynomial in (A2) has all its roots outside the unit circle and

p̂
(1)
IC = p̂GS whenever p̂GS 2 [1; pmax � 1] if the polynomial in (A2) has at least one root on the unit

circle.

The above proposition can allow us to make interesting parallels between the IC and GS testing

approaches. This is particularly useful in this context since the overall signi�cance level of the

GS testing approach is diÆcult to determine. It is however important to emphasize the fact that

cT = c�=K
2 will not be able to force the IC approach to choose the same lag length as the GS testing

approach when the latter leads to p = pmax. It is only when two nested models with pmax = 2 are

being compared that one can obtain a unique penalty (c�=K
2) which guarantees the same choice

of p across the two methods 8p. An important implication of the above proposition is that as the

system dimension increases, the use of the GS testing approach will lead to greater and greater lag

lengths since as K increases it becomes less and less costly to over�t. It is also clear that the lag

length selected by the GS approach will always be greater than the one obtained using the usual

model selection criteria, since the probability of over�tting is a decreasing function of the penalty

term.

We next evaluated the empirical performance of the GS approach by considering the same DGPs as
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in our earlier experiments. Within this �nite order autoregressive and large dimensional framework

our results unanimously con�rmed the excessive tendency of the GS approach to point to lag orders

close to pmax even under the most favourable parameter con�gurations and sample sizes. Under

T = 250 for instance and considering the same DGP as in Table 2a, the GS testing strategy pointed

to the true order p0 = 1 close to 60%, 16% and 1% of the times under pmax = 3, pmax = 5 and

7 respectively, with most of the wrong frequencies clustered around p = pmax. More importantly

across all previous experiments presented in Tables 2a-2c there was no single scenario under which

the AIC criterion underperformed the GS approach. In order to also evaluate the behaviour of the

GS approach under moving average errors and compare its decision frequency patterns with the

model selection criteria we reconsidered the previously introduced VARMA(1,1) speci�cation given

by �Xt = �t ���t�1. Recall that under this scenario the largest lag length selected by the model

selection criteria was p = 2. Within this testing framework the GS approach on the other hand led

to lag lengths concentrated around pmax most of the times, pointing to pmax = 5 approximately

55% of the times under T=250 and to pmax = 7 approximately 85% of the times. Interestingly these

latter frequencies are also similar to the ones obtained under a �nite VAR(2) DGP, thus raising

doubts about the ability of the GS approach to select lag lengths other than or close to pmax.

4 Conclusions & Implications for Applied Research

In applied work, the frequent interest in dynamic interrelationships among economic variables

across di�erent countries, sectors or regions makes large dimensional VAR's a common framework

of analysis. Although the speci�cation of their dynamic structure is not of direct interest, its

accuracy is crucial for subsequent inferences. In this paper we have shown that the commonly used

model selection criteria for choosing an optimal lag length can be extremely sensitive to factors

such as the system dimension and the preset upper bound. Contrary to the common belief that

the AIC criterion has a tendency to over�t we found that in large dimensional systems the opposite

is more likely to happen under moderate sample sizes. Furthermore, AIC's well known non zero

asymptotic probability of over�tting is negligible in medium sized systems and zero in larger ones.

We also derived a lower bound for the sample size under which the AIC will repeatedly point to

the preset upper bound thus explaining various anomalies in the literature. From a practical point

of view our results strongly point in favor of an AIC based approach for selecting lag lengths in

large dimensional systems.
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APPENDIX

Proof of Proposition 2.1 From (2) the requirement that IC(p0 + h) < IC(p0) can be formulated as log j
̂(p0)j �
log j
̂(p0+h)j > K2h cT

T
implying that limT!1 P [IC(p0+h) < IC(p0)] = limT!1 P (T (log j
̂(p0)j�log j
̂(p0+h)j) >

K2hcT ] where T (log j
̂(p0)j�log j
̂(p0+h)j) is the likelihood ratio statistic for testing the null hypothesisH0 : G� = 0
in (1) with �K2�(p0+h) = vec(�), �0 = (�1; : : : ;�p0 ;�p0+1; : : : ;�p0+h) and G a known (K2h � K2(p0 + h)) re-

striction matrix of rank K2h. Under assumption (A1) and assuming also that all the roots of the polynomial

in (A2) lie outside the unit circle we have (see L�utkepohl (1991, Ch. 3))
p
T (�̂ � �)

d! N(0;
 
 Q�1) where
�̂ denote the MLE of �, z0t = (x0t�1; : : : ; x

0
t�(p0+h)) and Q = E(ztz

0
t). Thus under H0 : G� = 0 we can writep

TG�̂
d! N(0; G(

Q�1)G0) also implying that the null limiting distribution of the Wald statistic, asymptotically

equivalent to the LR is given by T �̂G0[G(
 
 Q�1)G0]�1G�̂
d! �2(K2h). Since the law of large numbers ensures

that plim
P

t
ztz

0
t=T = Q and plim 
̂ = 
 as T ! 1, the quantity given by �̂G0[G(
̂ 
 (

P
ztz

0
t)
�1)G0]�1G�̂ will

also be distributed as �2(K2h) as required. Next, when Xt has I(1) components the original VAR can be reparam-
eterized in such a way that the restrictions implied by the above null hypothesis can be reformulated as restrictions
imposed on the parameter matrices corresponding to stationary regressors only. Indeed assuming p0 � 1 and letting
(IK � �1L � : : : � �p0+hL

p0+h) = (IK � �L)� (�1L + : : : + �p0+h�1L
p0+h�1)(1 � L) with � � �1 + : : : + �p0+h

and �s � �(�s+1 + : : : + �p0+h) for s = 1; 2; : : : ; p0 + h � 1 the V AR(p0 + h) can now be reparameterized as
Xt = �Xt�1+�1�Xt�1+ : : :+�p0+h�1�Xt�(p0+h�1)+ �t. Then the null hypothesis in the original model is equiv-
alent to H 00 : �p0 = : : : = �p0+h�1 = 0 in the reparameterized version. Since the restrictions implied by H 00 involve
coeÆcients on stationary regressors only, the likelihood ratio statistic will have the same asymptotic distribution as
in the I(0) case.

Proof of Proposition 2.2 Using the same notation as in the proof of Proposition 2.1, and noting that the restriction
G� = 1p

T
� implies

p
TG� = � we have

p
T (G�̂ � G�) ! N(�;G(
 
 Q�1)G0) instead of the central multivariate

normal limiting distribution that we had under G� = 0. Since the quadratic form of a non central normal random
vector with identity covariance is non central �2, the result follows.

Proof of Proposition 2.3 Letting !i = T log j
̂(i)j where 
̂i denotes the residual covariance matrix from a �tted
VAR(i) speci�cation and using (2)-(3) with 1 � p � pmax we have that the model selection approach will point to
lag length p 8p 2 [1; pmax] when

!i � !p > (p� i)K2cT 8 i = 1; : : : ; p� 1

!p � !i+1 < (i+ 1� p)K2cT 8 i = p; : : : ; pmax � 1:

Similarly, for p obtained via the likelihood ratio based GS approach with 1 � p � pmax, the estimated p is such that

!p�1 � !p > c�

!i � !i+1 < c� 8i = p; : : : ; pmax � 1:

The result then follows by observing that when cT = c�=K
2, the conditions that lead to the choice of p =

1; 2; : : : ; (pmax � 1) under the GS approach are identical to the ones that make the IC approach point to the same
value of p. It is only when the GS strategy leads to p = pmax that the two approaches might lead to distinct lag
choices, since the above conditions do not overlap. When the roots of the polynomial in (A2) are known to lie strictly
outside the unit circle the result follows by proceeding in an identical manner as above, with 0 � p � pmax.
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TABLE 1 Analytical Correct Decision Frequencies (p0 = 2)

� = 3; T = 150 � = 3; T = 400

K AIC BIC HQ AIC BIC HQ

2 98% 59% 89% 98% 38% 81%

3 98% 24% 76% 97% 8% 62%

4 97% 4% 55% 96% 0% 34%

5 94% 0% 29% 93% 0% 12%

6 90% 0% 10% 88% 0% 2%

7 83% 0% 2% 79% 0% 0%

8 72% 0% 0% 67% 0% 0%

9 57% 0% 0% 52% 0% 0%

10 41% 0% 0% 36% 0% 0%
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TABLE 2a �Xit = �it for i = 1; : : : ; K (K = 10, p0 = 1))

pmax = 3 T=90 T=100 T=150 T=200 T=250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

1 98.8 100 100 99.4 100 100 100 100 100 100 100 100 100 100 100

2 0.5 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0

3 0.7 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0

pmax = 5 T=90 T=100 T=150 T=200 T=250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

1 40.1 100 100 91.8 100 100 100 100 100 100 100 100 100 100 100

2 0.1 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 59.7 0 0 8 0 0 0 0 0 0 0 0 0 0 0

pmax = 7 T=90 T=100 T=150 T=200 T=250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

1 0 99.9 0.4 0 100 99.2 100 100 100 100 100 100 100 100 100

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 100 0.1 99.6 100 0 0.8 0 0 0 0 0 0 0 0 0
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TABLE 2b �xit = uit, uit = �iuit�1 + �it for i = 1; : : : ; K
�1 = 0:3; �2 = 0:7; �3 = 0:5; �4 = 0:6; �5 = 0:8; �6 = 0:2; �7 = 0:5; �8 = 0:4; �9 = 0:0; �10 = 0:0

K = 10, p0 = 2,
P10

i=1
log(1� �2i ) = �2:74

pmax = 3 T=90 T=100 T=150 T=200 T=250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

1 0.3 100 69.8 0.3 100 54.5 0 95.5 1.5 0 32.4 0 0 0.5 0

2 75.8 0 30.2 89.6 0 45.5 100 4.5 98.5 100 67.6 100 100 99.5 100

3 23.9 0 0 10.1 0 0 0 0 0 0 0 0 0 0 0

pmax = 5 T=90 T=100 T=150 T=200 T=250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

1 0 100 69.8 0.1 100 54.5 0 95.5 1.5 0 32.4 0 0 0.5 0

2 0.8 0 30.2 25.6 0 45.5 99.8 4.5 98.5 100 67.6 100 100 99.5 100

3 0.1 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0.8 0 0 0.1 0 0 0 0 0 0 0 0

5 99.1 0 0 72.3 0 0 0.1 0 0 0 0 0 0 0 0

pmax = 7 T=90 T=100 T=150 T=200 T=250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

1 0 93.5 0 0 100 31.1 0 95.5 1.5 0 32.4 0 0 0.5 0

2 0 0 0 0 0 19.1 98.4 4.5 98.5 100 67.6 100 100 99.5 100

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0

7 100 6.5 100 100 0 49.8 1.3 0 0 0 0 0 0 0 0
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TABLE 2c �xit = uit, uit = �iuit�1 + �it for i = 1; : : : ; 10
�1 = 0:2; �2 = 0:3; �3 = 0:1; �4 = 0:4; �5 = 0:15; �6 = 0:25; �7 = 0:1; �8 = 0; �9 = 0; �10 = 0

K = 10, p0 = 2,
P10

i=1
log(1� �2i ) = �0:42

pmax = 3 T=90 T=100 T=150 T=200 T=250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

1 88.8 100 100 92 100 100 91.6 100 100 77.1 100 100 50.6 100 0

2 7.1 0 0 7.1 0 0 8.4 0 0 22.9 0 0 49.4 0 0

3 4.1 0 0 0.9 0 0 0 0 0 0 0 0 0 0 0

pmax = 5 T=90 T=100 T=150 T=200 T=250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

1 19.1 100 100 70.6 100 100 91.6 100 100 77.1 100 100 50.6 100 100

2 0.3 0 0 3.1 0 0 8.4 0 0 22.9 0 0 49.4 0 0

3 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0

4 0.1 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0

5 80.4 0 0 26 0 0 0 0 0 0 0 0 0 0 0

pmax = 7 T=90 T=100 T=150 T=200 T=250

p AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ AIC BIC HQ

1 0 99.4 0 0 100 97.4 91.5 100 100 77.1 100 100 50.6 100 100

2 0 0 0 0 0 0 8.4 0 0 22.9 0 0 49.4 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 100 0.6 100 100 0 2.6 0.1 0 0 0 0 0 0 0 0
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