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Abstract

This paper analyzes the robustness of the two most commonly used cointegration tests:
the single equation based test of Engle and Granger (EG) and the system based test of
Johansen. We show analytically and numerically several important situations where the
Johansen LR tests tend to find spurious cointegration with probability approaching one
asymptotically. The situations investigated are of two types. The first one corresponds to
variables that have long-memory properties and a trending behavior, but they are not
pure I(1) processes although they are difficult to tell from I(1) with standard unit root
tests. The second corresponds to I(1) variables whose VAR representation has a singular
or near-singular error covariance matrix. In most of the situations investigated in this
paper, EG test is more robust than Johansen LR tests. This paper shows that a proper use
of the LR test in applied cointegration analysis requires a deeper data analysis than the
standard unit root test. We conclude by recommending to use both tests (EG and
Johansen) to test for cointegration in order to avoid or to discover a pitfall. ( 1998
Elsevier Science S.A. All rights reserved.
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1. Introduction

During the past decade a considerable amount of research has focused on
the issue of stochastic trends in economic variables and subsequently on the
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eventual presence of cointegrating relationships among these variables. Many
papers have analyzed the properties of different methods to study cointegration.
A very complete list of the literature can be found in a survey by Watson (1995).
To the best of our knowledge, none of the papers investigate the consequences
that misspecification of the trend components can have on the cointegration
testing results. They do not either emphasize enough the fact that different
methods are designed to accomplish different objectives. This paper analyzes the
robustness of the cointegration test against those types of misspecifications and
shows that the main reason why different misspecifications hurt some methods
more than others is because they have different loss functions.

In cointegration analysis, and in general in econometrics and statistics, most
methods are based on the minimization of certain variances or the maximization
of certain correlations. For instance, single equation methods, like the one
suggested by Engle and Granger (1987), look for the linear combination of
(y

t
x
t
)@ with minimum variance and therefore belong to the first category. On the

contrary, reduced rank system based methods, like the approaches suggested by
Johansen (1995) or Ahn and Reinsel (1990) belong to the second category,
because they look for the linear combination of (y

t
x
t
)@ with maximum correla-

tion with a linear combination of (Dy
t
Dx

t
)@, where D"1!B and B is the

backshift operator.
This paper investigates the robustness of the two most commonly used

cointegration tests: the single equation based test of Engle and Granger (EG
hereafter) and the system based tests of Johansen. The situations under inves-
tigation are of two types. The first one corresponds to variables that have
long-memory properties and a trend behavior, but they are not pure I(1)
processes although they can not be distinguished from I(1) with standard unit
root tests. The second corresponds to I(1) variables whose VAR representation
has a singular or near-singular error covariance matrix. The effects that these
two types of misspecifications have on testing for cointegration are analyzed in
relation with the different loss functions the EG and Johansen methods have.
The paper will focus more on the first type because it is more relevant for
empirical research. We show analytically and numerically that Johansen LR
tests tend to find spurious cointegration with probability approaching one
asymptotically. We define this fact (size going to one asymptotically) as a pitfall.
Note that a pitfall is more serious than either a simple finite sample problem or
a size distortion issue. We find that EG is more robust than the LR tests in most
of the situations investigated in the paper; mainly because misspecifications of
the long-memory components of the variables affect their correlation structure
more than their variances. Nevertheless, we learn from using both tests. It is well
known that in other dimensions the Johansen procedure is superior to the EG
method. The paper recommends that when both tests give different outcomes,
instead of simply attributing it to finite sample problems, the existence of
a pitfall should be considered (similar to Hausman’s (1978) idea on specification
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testing) and therefore a deeper pre-cointegration analysis than a simple unit root
testing should be conducted, especially testing for models that imply a different
trend and long memory behavior than the one implied by a pure I(1) model.

To place our results in the context of the literature on consequences in
estimation and inference of model misspecification, note that in this paper we
only show the consequences on testing for cointegration and not on estimation.
The misspecifications we analyze are the following: (i) random versus constant
unit root coefficient models -(Section 4.2); (ii) different order of integration than
one (Sections 4.3 and 4.5); (iii) omission of some deterministic components
(Section 4.4); (iv) singularity of the error covariance matrix (Section 5) and (v)
dynamic misspecification jointly with some of the previous misspecifications
(Sections 4.3, 4.5 and 5.2). To the best of our knowledge, only some cases of (iii)
and (v) have been treated in the literature (see Perron and Campbell, 1994; Toda,
1995) but for different reasons than they are here. In a more global sense, this
paper can be seen as an extension of the research done in spurious regression
(see Granger and Newbold, 1974) where the misspecification is also in the long
memory component. The consequences of our misspecifications are even more
serious than the ones of standard spurious regression, because in the latter case
any cointegration test will detect the spurious regression by rejecting cointegra-
tion. This does not occur with the misspecifications investigated in this paper.

The paper is organized as follows. Section 2 of this paper reviews EG and the
Johansen ML approaches. Section 3 defines the concept of pitfalls and classifies
them in two major types. Sections 4 and 5 present, theoretically and with a
Monte Carlo experiment, these two types of pitfalls where the LR tests tend to
find spurious cointegration with probability approaching one asymptotically.
Section 6 concludes. All proofs are gathered in the appendix.

2. Testing for cointegration

The components of an n]1 vector X
t

are said to be cointegrated if all
components of X

t
are I(d) and there exists a vector a (O0) such that a@X

t
is

I(d!b), b'0. For the sake of brevity in presentation only bivariate systems
(X

t
"(y

t
x
t
)@) will be considered in this paper, but our results are valid for n'2.

EG test for cointegration is based on the augmented Dickey—Fuller (DF)
statistic (see Dickey and Fuller, 1979) of order k, ADF(k), the t-value for oL in the
OLS regression

Dz
t
"oz

t~1
#o

1
Dz

t~1
#2#Dz

t~k
#error, (1)

where z
t

are the residuals from the OLS cointegration regression
y
t
"aL

0
#aL

1
x
t
#z

t
.

Reduced rank regression methods, like the Johansen approach, exploit the
fact that I(1) and I(0) variables are asymptotically uncorrelated and look for
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a vector a that maximizes the correlation between a@X
t
and a linear combination

of DX
t
. More formally, what Johansen method does is to test for the rank of the

long run impact matrix P in the following VECM:

DX
t
"k#PX

t~1
#C

1
DX

t~1
#2#C

k
DX

t~k
#e

t
, (2)

where

e
t
"A

e
1t

e
2t
B&NCA

0

0B, X,A
p2
1

hp
1
p
2

hp
1
p
2

p2
2

BD. (3)

Throughout the paper it will be assumed that p
1
"p

2
"1 to simulate the series,

and h"0 in Section 4. If X
t
is cointegrated, P can be written as

P"ca@, (4)

where a and c are 2]1 matrices. Testing for cointegration is therefore equivalent
to testing the rank of P equals to one. The Johansen LR statistics for testing the
null hypothesis of no cointegration H

0
: r"0 are

Q
1
"!¹ ln[(1!jK

1
)(1!jK

2
)], (5)

Q
2
"!¹ ln(1!jK

1
), (6)

where jK
1
*jK

2
are the eigenvalues of S~1

11
S
10

S~1
00

S
01

, and

S
ij
"¹~1

T
+
t/1

R
it
R@

jt
(i, j"0,1) (7)

are the product moment matrices of the residuals, R
0t

and R
1t
, from the regres-

sions of DX
t
and X

t~1
on the lagged differences, respectively. The ML estimator

of the cointegrating vector is the eigenvector of S~1
11

S
10

S~1
00

S
01

corresponding to
jK
1
. The next proposition shows an easy way of obtaining the eigenvalues, jK

1
and

jK
2
, by estimating by OLS the VECM (2) equation by equation.

Proposition 1. ¹he eigenvalues jK
1
*jK

2
of S~1

11
S
10

S~1
00

S
01

are the same as those
of MK "I!S~1

00
XK , where XK is the covariance matrix of the residuals of the

»ECM, calculated under no rank constraint.

According to this proposition it is clear that the behavior of Johansen method
depends only on the behavior of the matrices S

00
and XK . Next section character-

izes the pitfalls of the cointegration tests on the basis of the behavior of these two
matrices.

3. Pitfalls

We define a pitfall of a test for cointegration in the following way.

Definition 1. a. A pitfall exists if the size of a test for the null hypothesis of no
cointegration approaches one asymptotically.
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b. A pitfall exists if the power of a test for the null hypothesis of no
cointegration tends to zero under the alternative of cointegration.

A pitfall of the Johansen LR tests occurs if Q
1

or Q
2

diverges when there is
cointegration (size pitfall), or if Q

1
or Q

2
converges to zero when there is no

cointegration (power pitfall). In this paper we will mainly focus on size pitfalls.
The size pitfall may be called spurious cointegration instead of spurious regres-
sion, because the latter defined in Granger and Newbold (1974) and Yule (1926)
can be detected by any cointegration test. In this paper, however, we show that
some cointegration tests can reject the null hypothesis of no cointegration when
in fact there is no cointegration. We emphasize that the issues are asymptotic,
and that the problems are more serious as ¹PR, unlike some finite sample
characteristics of the unit root tests such as their low power and their size
distortions (so well documented in the unit root literature). There are many
situations that can produce pitfalls in the LR tests. Before examining some of
them in more detail, we characterize and classify them in two types.

Proposition 2. A pitfall of Q
1

or Q
2

exists if jK
1

does not converge to zero in

probability or if jK
1

1
P 0 at a rate slower than ¹ as ¹PR, when there is no

cointegration. Sufficient conditions for jK
1

not to converge to zero in probability
are

a. det(S
00

)"O
1
(¹d),d'0, while det(XK ) is bounded in probability, or

b. det(XK ) 1
P 0 as ¹PR, while det(S

00
) does not converge to zero in probabil-

ity.

Definition 2. a. A Type-A pitfall is a pitfall with det(S
00

)"O
1
(¹d), d'0.

b. A Type-B pitfall is a pitfall with det(XK ) 1
P 0 as ¹PR.

4. Type-A pitfalls

In this section we consider several alternative trending and long-memory
processes. These processes are different from an I(1) process but the null
hypothesis of a unit root is very unlikely to be rejected by a standard DF test.
The processes investigated are characterized by a diverging S

00
. This makes

Q
1

and Q
2

diverge too as ¹PR and therefore the null hypothesis of no
cointegration is wrongly rejected.

4.1. Processes with AR roots close to unity

This section examines the robustness of cointegration tests when the largest
autoregressive root of at least one of the variables in the system X

t
"(y

t
x
t
)@ is
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larger than one. In related papers, Cavanagh et al. (1995) and Elliott (1995) study
the near unit root cases (for values below unity) focusing on how this affects the
inference on the cointegrating vector. This section could be seen as an extension
in one direction of these papers in the sense that we show how important it is to
know the right order of integration in order to test for cointegration. Elliott
(1995) also examines the Johansen tests when the roots are greater than one, but
he analyzes the size of the tests for r"1 versus r"2 in a cointegrated system. In
our case, we concern about testing the existence of cointegration itself (r"0
versus r"1). Consider the following simple DGP (data generating process):

y
t
"ay

t~1
#e

1t
, (8)

x
t
"x

t~1
#e

2t
. (9)

What are the values of a most likely in real economic data? Stock (1991)
provides asymptotic confidence intervals for the autoregressive root of a time
series when the root is close to one. When applied to the Nelson and Plosser
(1982) data set, the main conclusion is that the confidence intervals are typically
wide, so that the conventional emphasis on unit root tests may fail to convey the
correct information. For example, the 90% confidence interval for bond yield in
the US with 71 annual observations is (1.033, 1.078). The 90% confidence
interval for nominal GNP with 62 annual observations is (0.847, 1.074).

To analyze the performance of the cointegration tests for model (8)—(9), we
write that DGP in a VECM form

DX
t
"PX

t~1
#e

t
, (10)

where

P"A
a!1 0

0 0B"A
a!1

0 BA1 0B. (11)

Note a@"(1 0), where a is defined from Eq. (4). If aO1, then we have j
1
O0

and j
2
"0, since r"1.

Proposition 3. ¸et X
t
be generated from model (10).

a. If DaD"1, then jK
1
"O

1
(¹~1).

b. If DaD)1, then jK
1

1
P (1!a)/[(a#1)h2!2] as ¹PR.

c. If DaD'1, then jK
1

1
P 1 as ¹PR.

Proposition 3 shows that if a'1, then jK
1
converges to one and Q

1
,Q

2
diverge

as ¹PR, rejecting with probability approaching one the null hypothesis of no
cointegration, when there is no cointegration at all. Table 1 presents the size of
the Johansen tests along with that of EG for a'1 and ¹"100. Q

1
and Q

2
find
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Table 1
A root close to unity. DGP: y

t
"ay

t~1
#e

1t
and x

t
"x

t~1
#e

2t

EG(y/x) EG(x/y) Q
1

Q
2

a"1.00 0.050 0.049 0.048 0.048
a"1.01 0.046 0.047 0.119 0.107
a"1.02 0.031 0.049 0.435 0.422
a"1.03 0.015 0.040 0.736 0.721
a"1.05 0.000 0.027 0.965 0.964

¹"100. The frequency of rejecting the null hypothesis in 1000 replications is reported at the 5%
level. The critical values are simulated from 90,000 replications using the DGP with a"1. EG
denotes the test of Engle and Granger (1987). y/x denotes the regression of the dependent variable
y on the explanatory variable x. Similarly for x/y. Q

1
and Q

2
are Johansen’s trace statistic and

maximum eigenvalue statistic, respectively.

too much cointegration incorrectly and have a pitfall when a'1. EG is clearly
more robust than the LR tests.

Note that in general it will not be possible to detect this pitfall by examining
the adjustment coefficient c (see Gonzalo and Lee, 1996a).

It is known that when a(1, the DF test diverges to !R as ¹PR and the
power of the test tends to one as ¹PR. It is also known that when a is close to
one the power of the DF test is very small in finite samples (see Gonzalo and
Lee, 1996b; Stock, 1995, among others). When a'1, it can be shown that the
DF test diverges to #R as ¹PR and therefore it has no power asymp-
totically. From this pitfall, it is learned that we should test for a unit root
hypothesis against the right tail of the DF distribution as well as against the left
tail of the distribution, especially when the unit root test is a pre-step for
a cointegration test.

It does not seem very plausible to think any economic variable could be
explosive forever. But it is not so unlikely to find variables that may behave like
explosives for certain periods, for instance, the number of connections to
internet in the last three years. It could be more likely to find variables that
sometimes are stationary and sometimes explosive. This is the case examined in
the next section.

4.2. Processes with stochastic AR roots

Granger and Swanson (GS henceforth, 1996) introduce a class of ‘near’ I(1)
processes, having an AR root that is not constant, but stochastic, and varying
around unity. In this way, the process can be stationary for some periods (a(1
in model (8)), and mildly explosive for others (a'1). These stochastic unit roots
(STUR) arise naturally in economics. If a consumer maximizes E

0
+=

t/0
btu(c

t
),

0(b(1, subject to a budget constraint, the Euler equation is u@(c
t
)"
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E
t
bR

t
u@(c

t`1
), where c

t
is consumption and R

t
is the real gross rate of return.

Assuming a quadratic utility, we have c
t
"(bR

t~1
)~1c

t~1
#e

t
, and thus the

process Mc
t
N has a stochastic AR root equal to (bR

t~1
)~1.

Consider a series y
t
generated by

y
t
"a

t
y
t~1

#e
1t
, (12)

where e
1t
&N(0,p2

1
) and a

t
follows a stochastic process. This is an example of

a doubly stochastic process as considered by Tjostheim (1986). GS consider the
exponential form

a
t
"exp(a

t
) (13)

with a
t

a Gaussian stationary series having mean m and variance p2a . In
particular, GS consider the following AR(1) process for a

t

a
t
"k#oa

t~1
#g

t
, DoD(1, (14)

where g
t
&N(0,p2g ) and is independent of e

1t
. Then m"k/(1!o) and

p2a"p2g /(1!o2). Unlike an exact unit root process, a stochastic unit root
process has an increasing variance even after first-differencing.

Proposition 4. Suppose (y
t
x
t
)@ are S¹ºR processes generated from Eqs. (12)—(14).

¹hen

a. var(Dx
t
) and var(Dy

t
) increase as t gets larger, and

b. jK
1

1
P 1 as ¹PR.

GS show that standard unit root tests, such as the DF test, can not easily
distinguish between exact unit roots and stochastic unit roots. Processes against
which unit root tests have little power are called ‘generic unit root’ processes in
Granger (1993). GS find that STUR models can often forecast better than
various other models including exact unit root models when considering a var-
iety of macroeconomic time series. GS also develop a test for STUR against
a unit root, but the new test for STUR indicates that it is difficult to tell between
these two types of processes. Therefore, it is possible that economic variables
may be generated with STUR but we think of them as exact unit root processes,
and have a pitfall when we use the LR tests.

In the Monte Carlo experiment, both variables are generated with the same a
t
.

In Table 2, we examine the performances of the cointegration tests under
various choices of k, o, and p2g . As the choice of the parameters in this
experiment is somehow arbitrary we use parameter values estimated in GS’s
Table 3 for which ten monthly US macroeconomic series are used. Since GS
show that standard tests can not easily distinguish between I(1) and STUR, we
also simulate the power of the DF test statistics for the processes used for
Table 2. According to the estimated DF statistics, most of the processes are
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generic unit root processes, except the processes generated using the RL, RS,
RM, and UR parameterizations for large ¹. Depending on the values of m and
p2a (or of k, o, and p2g ), the sample size ¹ may have to be very large to see a pitfall
in the LR tests. Note that Ea

t
"1 if m#p2a /2"0 since Ea

t
"exp(m#p2a/2).

The estimated values of (m#p2a/2) in GS’s Table 3 are 0.000151 (for FM2),
0.001693 (SPI), !0.000735 (RL), !0.004093 (RS), !0.003050 (RM), 0.000144
(IP), 0.002027 (NI), !0.000642 (UR), 0.000973 (CPI), and 0.000589 (PPI).
Table 2 shows that EG is more robust than the LR tests.

4.3. I(2) processes

There are some economic variables that can be considered to be I(2). For
instance, prices (p) are I(2) if inflation rate is I(1). At the same time, money supply
(m) could be I(2) if we consider real money balance (m!p) to be I(1). Recent
papers by Stock and Watson (1993), Haldrup (1994), Paruolo (1996), and
Johansen (1995), p. 137) consider that variables like money stock and prices
could be I(2). In many European and east Asian countries, many economic
series are in the border line between I(2) and an I(1) with drift, something almost
impossible to distinguish with econometric tools. The purpose of this section is
to show what happens when the true DGP is I(2), but we mistakenly assume it
as an I(1) with drift, and we estimate a VECM with a constant term to compute
the LR statistics.

The DGP in Table 3 is

D2y
t
"(1!bB)e

1t
, (15)

D2x
t
"(1!bB)e

2t
, (16)

with bO1, and its VECM representation is

A
Dy

t
Dx

t
B"A

0 0

0 0BA
y
t~1

x
t~1
B#A

1 0

0 1BA
Dy

t~1
Dx

t~1
B#A

(1!bB)e
1t

(1!bB)e
2t
B. (17)

Proposition 5. Suppose (y
t
x
t
)@ are I(2) processes generated from Eqs. (15) and

(16).
a. If k"0, jK

1
does not converge to zero in probability.

b. If k*1, ¹jK
1
"O

1
(1), i.e., jK

1
1

P 0 as ¹PR.

Proposition 5 shows that when the estimated VECM does not contain any
lags, the LR tests will have a pitfall if at least one of the variables is I(2). A way to
avoid that is to introduce more lags in the VECM. Doing that the Johansen LR
tests will only have a standard size distortion due to the use of the wrong critical
values.

It is well known in time series that it is very difficult to tell between a trend
stationary series and a difference stationary (I(1)) series, as well as between an
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I(2) series and an I(1) series with drift. In the latter case, the distinction becomes
even harder when we have an MA component in the VECM that cancels a part
of the second unit root. The purpose of this section is to show what happens
when the true DGP is I(2), but we mistakenly assume it is an I(1) with a drift,
and therefore we estimate a VECM with a constant term to compute the
Johansen statistics. If we know the variables X

t
are I(2) then we could use

Paruolo (1996) method or at least include an extra lag (k"1). However, when
there is an MA(1) error in the VECM (bO0), Table 3 shows that although the
pitfall theoretically does not exist with k"1, in finite samples we will have
a huge size problem even for k"1. Table 3 also shows that EG is not only more
robust to this kind of misspecification than the LR tests, but it suffers almost no
size problem at all. This is different from the standard MA size problem shown
in Schwert (1989) for the case when variables are I(1) with MA errors. It should
be noted that when the variables are I(1) with MA errors in the VECM, both EG
and LR tests suffer a huge size problem as is expected from Schwert (1989).

The case k"0 is very relevant in practice, because as shown by Gonzalo and
Pitarakis (1996), in large systems when the errors are MA(1), information criteria
such as the BIC very often chooses k"0.

This pitfall shows how important it is to know the exact degree of integration
of the variables in order to use Johansen LR tests properly. In a different
situation, a recent paper by Dolado and Marmol (1996) show that a mistake in
the order of integration affects seriously the estimation and inferences derived
from the FM-OLS method of Phillips and Hansen (1990). Thus, a unit root test
on the levels of the variables is not enough, in the sense that the null hypothesis
of a unit root will usually not be rejected.

4.4. I(1) processes with deterministic components

Perron and Campbell (1994) raised some issues that arise when Johansen’s
framework is used to analyze cointegrating relationships among variables with
deterministic linear trends. This section continues their idea but focusing on
non-cointegrated systems that contain deterministic trend components. The
DGP is

Dy
t
"a

1
#b

1
t#e

1t
, (18)

Dx
t
"a

2
#b

2
t#e

2t
. (19)

Proposition 6. Suppose (y
t
x
t
)@ are two I(1) processes with deterministic compo-

nents generated from Eqs. (18) and (19).
a. If b

1
O0 or b

2
O0, and if the »ECM does not include any deterministic

trends, then jK
1

does not converge to zero in probability.
b. If b

1
"b

2
"0, a

1
O0 or a

2
O0, and if the »ECM does not include any

deterministic components, then jK
1

does not converge to zero in probability.
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This proposition and Table 4 (Panels A and B) show that both cases (a)
and (b) constitute a pitfall for the LR tests. In order to properly use the
Johansen LR tests, the deterministic components have to be introduced in
the VECM correctly. This result matches the conclusion of Perron and Cam-
pbell (1994). Note that EG is not sensitive to the wrong modeling of the
deterministic trend components, producing an empirical size very close to the
nominal size.

Moreover, to make the case more realistic and interesting, we consider a
VECM with X

t~1
augmented with 1 and/or t as considered in Johansen (1995),

p. 80) by using X*
t~1

"(X{
t~1

1)@ or X*
t~1

"(X{
t~1

1 t)@. This model was de-
veloped to capture a cointegration relationship around a common deterministic
trend (i.e., stochastic cointegration as well as deterministic cointegration). It
shows that estimating the VECM with X*

t~1
when there is no (stochastic)

cointegration will produce a pitfall. This happens because Eqs. (18) and (19) can
be written as

DX
t
"A

0 0 a
1

b
1

0 0 a
2

b
2
B(X{

t~1
1 t)@#e

t
,P*X*

t~1
#e

t
,

where the rank of P* is not zero, and therefore we may mistakenly interpret the
result of the rank test as a rejection of the null hypothesis of no cointegration.

Table 4
I(1) with deterministic components. DGP: Dy

t
"a

1
#b

1
t#e

1t
and Dx

t
"a

2
#b

2
t#e

2t

EG Q
1

Q
2

Panel A. When a
1
"a

2
"0 and b

1
"b

2
"0.01:

SM
1
: DX

t
"P

1
X

t~1
#e

t
0.049 1.000 1.000

SM
2
: DX

t
"k#P

2
X

t~1
#e

t
0.067 0.622 0.582

SM
3
: DX

t
"k#/t#P

3
X

t~1
#e

t
0.051 0.018 0.040

SM
4
: DX

t
"P

4
(X@

t~1
1)@#e

t
1.000 1.000

SM
5
: DX

t
"P

5
(X@

t~1
1 t)@#e

t
1.000 1.000

Panel B. When a
1
"a

2
"1 and b

1
"b

2
"0:

SM
1
: DX

t
"P

1
X

t~1
#e

t
0.074 1.000 1.000

SM
2
: DX

t
"k#P

2
X

t~1
#e

t
0.082 0.020 0.044

SM
3
: DX

t
"k#/t#P

3
X

t~1
#e

t
0.068 0.062 0.063

SM
4
: DX

t
"P

4
(X@

t~1
1)@#e

t
1.000 1.000

SM
5
: DX

t
"P

5
(X@

t~1
1 t)@#e

t
1.000 1.000

¹"100. SM
i
(i"1,2,5) are the statistical models used for estimating the Johansen statistics,

Q
1
and Q

2
. k , / are 2]1; P

1
, P

2
, P

3
are 2]2; P

4
is 2]3; and P

5
is 2]4. EG is computed from the

cointegrating OLS regression without a constant (SM
1
), with a constant (SM

2
), and with both

a constant and a trend (SM
3
). The frequency of rejecting the null hypothesis in 1,000 replications is

reported at the 5% level. The critical values for each of three regression models are simulated from
90,000 replications using the DGP with a

1
"a

2
"0 and b

1
"b

2
"0.
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Therefore it is crucial to know whether the deterministic components should be
modelled inside or outside the cointegrating relationship.

This may be a pitfall apparently easy to be detected, and once detected, easy
to be eliminated. Nevertheless, we want to emphasize how sensitive the LR tests
are to a possible mistake in the way how deterministic components are treated.
The main point of this pitfall is double, first to show how important it is to deal
correctly with deterministic components, especially to know whether these
components should be modelled outside the long run equilibrium or inside, and
second to note that EG is more robust to this kind of misspecification than the
LR tests.

4.5. Processes with fractional unit roots

The literature on fractionally integrated processes has grown rapidly since the
early contributions of Granger and Joyeux (1980) and Hosking (1981). The
model has been used in applied econometric work where flexible characteriza-
tion of low frequency dynamics is important, and has yielded new empirical
regularities and insights into understanding behavior of many economic time
series. There is considerable evidence on long memory properties in macroeco-
nomic and financial time series data. Examples includes real output dynamics
(Sowell, 1992), disposable income (Diebold and Rudebusch, 1991), stock prices
(Lo, 1991), interest rates (Shea, 1991), exchange rates (Cheung, 1993), and the
purchasing power parity hypothesis (Cheung and Lai, 1993).

Suppose X
t
"(y

t
x
t
){ are generated from

(1!B)dy
t
"e

1t
, (20)

(1!B)dx
t
"e

2t
. (21)

When d is not an integer, the series is said to be fractionally integrated. An I(d)
process y

t
generated from Eq. (20) has the following properties: (a) If d(0.5, y

t
is covariance stationary. (b) If d'!0.5, y

t
has an invertible moving average

representation. (c) If d(1, y
t
is mean-reverting. (d) If d'0, y

t
has long memory,

the autocovariances of y
t
are not absolutely summable, and the power spectrum

of y
t
is unbounded for frequencies approaching zero. (e) If d'0.5, y

t
has an

infinite variance. (f) The DF-t statistic diverges to !R if d(1, and diverges to
#R if d'1 as ¹PR (Sowell, 1990).

The fractional difference operator (1!B)d defined by its Maclaurin series is

(1!B)d"
=
+
j/0

C(!d#j)

C(!d) C(j#1)
Bj"

=
+
j/0

d
j
Bj,

d
j
"

j!1!d

j
d
j~1

, d
0
"1, (22)
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where C( ) ) is the gamma function, and d
j
are squared summable if d'!0.5.

Since (1!B)d~1Dy
t
"e

1t
, Dy

t
can be written as

Dy
t
"

=
+
j/1

a
j
Dy

t~j
#e

1t
, (23)

where a
j
"!C( j!d#1)/[C( j#1)C(!d#1)]. The VECM is then

A
Dy

t
Dx

t
B"A

0 0

0 0BA
y
t~1

x
t~1
B

#

=
+
j/1
A
a
j

0

0 a
j
BA

Dy
t~j

Dx
t~j
B#A

e
1t

e
2t
B. (24)

For simplicity, in the following proposition, we consider only the case with
k"0 in the VECM to compute the LR statistics. Any finite k that is not
sufficiently large enough to make the error e

t
a vector white noise will lead to the

same results.

Proposition 7. Suppose (y
t
x
t
){ are I(d) processes generated from Eqs. (20) and

(21), and we estimate a »ECM with k"0.
a. If d*1.5, then jK

1
does not converge to zero in probability as ¹PR.

b. If 1(d(1.5, then ¹(3~2d)jK
1
"O

1
(1).

c. If d"1, then ¹jK
1
"O

1
(1).

d. If 0.5(d(1, then ¹(2d~1)jK
1
"O

1
(1).

If d"1, ¹jK
1
"O

1
(1). If dO1, ¹jK

1
1

P R as ¹PR. Although the case with
1(d(1.5 produces a pitfall, only the case when d*1.5 yields a pitfall of type
A. It is true that a sufficiently large k such that the residuals are white noise will
solve the pitfall. But there are many situations in macroeconomics where it is not
possible in practice to try a large k. For instance, in large systems like the
Summers and Heston (1991) data set it is often practically impossible to estimate
a system with k larger than one. As remarked already, Proposition 7 will hold
not only for k"0 but also for any k'0 not sufficiently large to make the error
a vector white noise.

In Table 5,the size of the cointegration tests is simulated for various values of
d in the DGP. To simulate the series it is assumed that d

j
"0 for j'1,000 and

the first 2,000 observations are discarded.
When d(1, the size is large for both EG and the Johansen tests. Although

Sowell (1990) shows that the DF t statistic diverges to !R if d(1 as ¹PR,
it is well known (see Gonzalo and Lee, 1996a) that the power of the DF test is
very small against fractional alternatives in finite samples. Therefore if the
variables are fractionally integrated with d(1, it is likely that we proceed

J. Gonzalo, ¹.-H. ¸ee /Journal of Econometrics 86 (1998) 129—154 143



T
ab

le
5

F
ra

ct
io

na
lly

in
te

gr
at

ed
p
ro

ce
ss

es
.
D

G
P

:
(1
!

B
)d
y t"

e 1t
an

d
(1
!

B
)d
x
t"

e 2t

k"
0

k"
3

k"
9

E
G

Q
1

Q
2

E
G

Q
1

Q
2

E
G

Q
1

Q
2

d"
0.

5
0.

98
6

1.
00

0
0.

99
7

0.
36

1
0.

65
1

0.
43

2
0.

08
3

0.
23

3
0.

17
1

d"
0.

6
0.

90
0

0.
99

1
0.

94
7

0.
22

3
0.

40
6

0.
26

2
0.

06
0

0.
18

0
0.

14
1

d"
0.

7
0.

63
6

0.
83

2
0.

65
2

0.
14

6
0.

22
4

0.
16

7
0.

04
3

0.
15

2
0.

13
2

d"
0.

8
0.

34
1

0.
44

7
0.

34
0

0.
09

4
0.

14
2

0.
10

5
0.

04
2

0.
12

9
0.

12
9

d"
0.

9
0.

14
3

0.
14

7
0.

13
2

0.
06

5
0.

08
7

0.
07

6
0.

03
8

0.
13

2
0.

12
2

d"
1.

0
0.

04
7

0.
04

8
0.

05
2

0.
04

8
0.

06
8

0.
07

2
0.

03
2

0.
13

3
0.

13
0

d"
1.

1
0.

01
6

0.
05

8
0.

06
9

0.
03

7
0.

07
7

0.
07

8
0.

03
4

0.
15

3
0.

14
9

d"
1.

2
0.

01
0

0.
15

2
0.

16
6

0.
02

8
0.

09
0

0.
08

5
0.

03
6

0.
16

3
0.

16
5

d"
1.

3
0.

03
1

0.
33

7
0.

35
1

0.
02

1
0.

10
5

0.
11

3
0.

03
0

0.
17

1
0.

17
1

d"
1.

4
0.

05
3

0.
56

3
0.

59
2

0.
02

4
0.

11
0

0.
12

8
0.

02
7

0.
18

8
0.

18
4

d"
1.

5
0.

07
6

0.
75

3
0.

77
4

0.
01

9
0.

13
5

0.
14

4
0.

03
2

0.
22

1
0.

20
6

d"
1.

6
0.

10
0

0.
86

0
0.

87
3

0.
01

6
0.

16
5

0.
18

5
0.

03
7

0.
23

6
0.

23
0

d"
1.

7
0.

11
1

0.
92

1
0.

93
1

0.
01

2
0.

18
5

0.
19

6
0.

04
8

0.
27

4
0.

26
7

d"
1.

8
0.

13
5

0.
95

2
0.

95
7

0.
01

6
0.

19
1

0.
21

3
0.

04
5

0.
31

2
0.

29
4

d"
1.

9
0.

15
0

0.
96

9
0.

97
3

0.
02

9
0.

23
1

0.
24

3
0.

05
3

0.
35

7
0.

33
6

d"
2.

0
0.

17
6

0.
98

2
0.

98
1

0.
03

9
0.

27
1

0.
25

4
0.

05
4

0.
40

0
0.

38
5

¹
"

10
0.

T
he

fr
eq

ue
nc

y
of

re
je

ct
in

g
th

e
nu

ll
hy

p
o
th

es
is

in
1,

00
0

re
p
lic

at
io

n
s

is
re

po
rt

ed
at

th
e

5%
le

ve
l.

T
h
e

cr
it
ic

al
va

lu
es

ar
e

si
m

ul
at

ed
fr
om

90
,0

00
re

p
lic

at
io

n
s

us
in

g
th

e
D

G
P

w
it
h

d"
1.

144 J. Gonzalo, ¹.-H. ¸ee /Journal of Econometrics 86 (1998) 129—154



assuming the series are I(1) and get the incorrect conclusion that the system has
a long-run relationship.

When d'1, EG is more robust than the LR tests. Sowell, 1990) shows that if
d'1, the DF test has zero power asymptotically to test for a unit root against
a stationary root. Thus if the variables are fractionally integrated with d'1, it is
likely that we proceed assuming they are I(1) (see Gonzalo and Lee, 1996a) and
have a pitfall.

Since the true number of lagged differences in the VECM (24) is infinity,
one may want to increase k with ¹, in the way similar to Berk (1974) for
stationary and ergodic processes. However, we are not aware of any result in the
literature on how to do this for nonstationary and non-ergodic processes. We
suspect the problem must be complicated because a fractionally integrated
process (d'0.5) is not ergodic. The sum of absolute correlations is not
bounded, therefore any finite k will produce inconsistent estimates. In any case,
what we have done in the Monte Carlo exercise is to increase k up to 9. We did
the same experiment as in Table 5 for ¹"1,000 (not reported but available
upon request), and it is found that we still keep getting a pitfall. Based on these
Monte Carlo experiments we have to agree with Brockwell and Davis (1991), (p.
520) when they say “While a long memory process can always be approximated
by an ARMA(p,q) the orders p and q required to achieve a reasonably good
approximation may be so large as to make parameter estimation extremely
difficult.”

How often do we have d'1 in practice? Examples of values of estimates of
d reported in the literature are: d"1.17 for annual disposable income (Diebold
and Rudebusch, 1991), d"1.29 for quarterly real GNP (Sowell, 1992), and d is
ranged from 1.04 to 1.36 for various nominal spot exchange rates (Cheung,
1993). Also d is estimated about 0.6 for money growth rates (Tieslau, 1991) and is
ranged from 0.40 to 0.57 for inflation rates in several developed countries
(Hassler and Wolters, 1995), indicating money stock and price series may have
d greater than 1.5.

Another important and related question is to see how precisely d can be
estimated with the sample sizes used in applied studies. Simulation evidence on
the finite sample performance of the standard estimators of d (Agiakloglou et al.,
1992; Cheung and Diebold, 1994; Chung and Baillie, 1993) shows severe biases
of these estimators. This difficulty of estimating d gives even more relevance of
a pitfall in the fractional difference case.

4.6. Summary

Section 4 analyzes five situations corresponding to variables with different
trending behavior than the one of I(1) processes. These variables are not
cointegrated but nevertheless the Johansen LR tests produce spurious co-
integration with probability approaching one if the VECM (2) is estimated.
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The main reason is that the matrices S
00

and XK do not converge to the
same limit in probability as they do when the variables are I(1) and not
cointegrated. At the same time the EG test shows a more robust behavior than
the LR tests.

Both tests behave very similar under the null of no pitfall but totally different
under the alternative of a pitfall. Therefore a pitfall could be tested with
a Hausman type test. Because this new test will have a new non-standard
distribution, we just recommend a simpler approach consisting of applying both
tests. If they give different outcomes, then the variables should be tested for
different trending processes and the VECM (2) should be modified accordingly if
possible.

In addition to these five situations investigated, a pitfall may occur to
variables with other trending behavior like variables with exponential trends,
higher order polynomial deterministic trends, or with structural breaks in mean
or/and trend, which make it difficult to tell from an I(1) process. These issues are
under current investigation.

5. Type-B pitfalls

This section investigates how cointegration tests are affected by the singu-
larity or near singularity of the covariance matrix of the VAR model. It shows
when any of the two analyzed tests have a size or a power pitfall.

5.1. Perfect and near singularity of X

A large number of econometric studies have focused on the estimation of
parameters in singular systems (Barten, 1969; Berndt and Savin, 1975; Anderson
and Blundell, 1982; Dhrymes, 1994; Adda and Ng, 1995). Systems with singular
covariance matrices arise in models explaining the allocation of consumer
expenditure amongst its components. They also arise in the context of derived
systems of equations from production functions, market share analysis, demand
for financial assets, and in many other models. In this literature the standard
way to avoid singularity is to eliminate one of the equations and estimate the
(n!1) (non-singular) system. According to Dhrymes (1994) the results are
invariant to the equation deleted only when all the explanatory variables appear
in every equation, and when there are no autoregressive dynamics and no-cross
equation restrictions. These are conditions that do not hold in a cointegrated
system like (2).

In general there does not exist satisfactory solution to the problem of singu-
larity in the literature. In this paper, in order to test for the number of
cointegration vectors in a singular system, we propose generalized versions
of Johansen LR tests. There are other alternatives like the use of a ridge-type
adjustment for singularity but we have not investigated them.
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Definition 3. The generalized versions of the Johansen LR (GLR) tests for the
null hypothesis H

0
: r"0 are

Q*
1
"!¹ ln(1!jK *

1
)(1!jK *

2
), (25)

Q*
2
"!¹ ln(1!jK *

1
), (26)

where jK *
1
*jK *

2
are the eigenvalues of S`

00
S
01

S`
11

S
10

with S`
ii

being the
Moore—Penrose generalized inverse of S

ii
, i"0,1.

Note that the distributions of Q*
1

and Q*
2

will be different than those of Q
1
and

Q
2

but it will not be shown here because it is not relevant for our analysis. The
generalized eigenvalues jK *

1
and jK *

2
are easily obtained by estimating by OLS the

system (2) equation by equation as the next proposition shows.

Proposition 8. ¸et MK *"S`
00

S
01

S`
11

S
10

. ¹hen MK *"S`
00

S
00
!S`

00
XK *, where

XK *"S
00
!S

01
S`
11

S
10

.

The singularity of the covariance matrix implies the existence of a linear
combination of X

t
that is completely predictable from past values of X

t
. We

name that exact cointegration.

Definition 4. A set of I(1) variables X
t
is exactly cointegrated when the

covariance matrix of the error terms of the MA representation of Dx
t
is singular.

In this section we focus on the performance of the cointegration tests when
there is no standard cointegration, because it can be shown that in a cointeg-
rated system (y

t
x
t
){, the singularity of X does not change the cointegrating

structure unless c{
M
X"0 where c@

M
c"0 and c is defined in Eq. (4).

Let X
t
"(y

t
x
t
)@ be generated from Dy

t
"e

1t
and Dx

t
"e

2t
. Suppose

h"corr(e
1t
,e
2t
)"1. Then e

1t
"e

2t
, y

t
"x

t
, det(X)"0, and (y

t
x
t
)@ are exact-

cointegrated. However, in this case, the GLR tests are not able to capture this
kind of cointegration. This happens because S

00
!XK * 1

P 0 as ¹PR. There-

fore MK * 1
P 0 and both jK *

1
, jK *

2
1

P 0. The GLR test can not reject the null of no
cointegration, and has a power pitfall. Singularity in a bivariate system may be
a trivial case. But in some applied research, singularity is likely to happen in
large systems, and it could be difficult to detect it.

When hO1, both tests have a correct size as it is shown in Table 6 and this is
due to the invariant property that both tests have to the covariance parameters.
This will change if we introduce some noise like in the next section.

5.2. Near singular X with misspecified dynamics

Near singularity affects dramatically the outcome of the cointegration tests
when it goes together with some dynamic misspecification. To show that, we
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analyze the following DGP:

A
Dy

t
Dx

t
B"A

0 0

0 0BA
y
t~1

x
t~1
B#A

0 0

0 /BA
Dy

t~1
Dx

t~1
B#A

e
1t

e
2t
B, (27)

where D/D(1 and e
1t
"he

2t
#J1!h2v

t
. Then

y
t
!h(1!/)x

t
"J1!h2D~1v

t
#

h/

1 ! /B
e
2t

(28)

and therefore (y
t
x
t
)@ is cointegrated only if h"1.

In Table 6 when /"0, we find that the size of tests does not change with h at
all, and the empirical size is close to the nominal size no matter how close h is to
one if not one. Now, let us examine what happens if /O0 but we mistakenly
specify the VECM (27) with k"0. In Table 7, we report the empirical size from

Table 6
Near singularity

EG Q
1

Q
2

h"0 0.053 0.046 0.053
h"0.9 0.053 0.046 0.053
h"0.99 0.053 0.046 0.053
h"0.999 0.053 0.046 0.053
h"0.99999 0.053 0.046 0.053
h"1.0 1.000 0.000 0.000

¹"100. The frequency of rejecting the null hypothesis in 1,000 replications is reported at the 5%
level. The critical values are simulated from 90,000 replications using the DGP with h"0.

Table 7
Near singularity with dynamic misspecification. DGP:

A
Dy

t

Dx
t
B"A

0 0

0 0BA
y
t~1

x
t~1
B#A

0 0

0 /BA
Dy

t~1

Dx
t~1
B#A

e
1t

e
2t
B

k"0 k"1

EG Q
1

Q
2

EG Q
1

Q
2

h"0 0.077 0.071 0.070 0.047 0.046 0.044
h"0.9 0.153 0.179 0.188 0.049 0.047 0.046
h"0.99 0.598 0.700 0.702 0.197 0.047 0.046
h"0.999 0.979 0.990 0.990 0.808 0.048 0.050
h"1.0 1.000 1.000 1.000 1.000 0.000 0.000

/"!0.2. ¹"100. The frequency of rejecting the null hypothesis in 1,000 replications is reported
at the 5% level. The critical values are simulated from 90,000 replications using the DGP with /"0.
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simulations with /"!0.2. When k"0 (dynamic misspecification) both tests
show very serious size distortions. These distortions get worse as h gets larger.
When k"1 (no dynamic misspecification) the behavior of Johansen tests is
similar to the one in Table 6 (power pitfall but no size distortions). However, EG
does not have the correct size. This is because EG is based on the unit root test
on the residual from the static cointegrating regression and the residual has far
longer memory than one lag (k"1) as it can be seen from Eq. (28).

The main point of this subsection is to show that near singularity makes the
testing results extremely sensitive to the number of lags of the VECM. When this
happens in real practice we suggest to analyze the eigenvalues of the covariance
matrix of the residuals, something that it is not normally done in empirical
research.

6. Conclusions

Standard cointegration analysis consists mainly of two econometric steps:
first, univariate unit root tests and second, an LR test for cointegration. These
two steps are done almost automatically by many of the menu driven statistical
packages available these days. This paper studies the robustness of cointegra-
tion tests to departures from I(1), and shows that pre-testing for individual unit
roots is not enough. We have to be sure that the variables do not have any other
trending or long-memory behavior different from that of a unit root process. We
also need to be sure that the only singularity in the VAR comes from the
long-run impact matrix and not from the error covariance matrix. When any of
the these two conditions are not satisfied, the paper shows that Johansen LR
tests for cointegration have a pitfall tending to give spurious cointegration with
probability approaching one asymptotically. On the contrary, in most of the
cases investigated in this paper, the EG test is more robust.

The paper concludes recommending the use of both tests, Johansen LR test
and EG test, in order to detect the possibility of a pitfall and therefore increasing
the chance of avoiding it by modeling the VECM (2) in a different way if it is
possible.
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Appendix A.

Proof of Proposition 1. The eigenvalues of S~1
11

S
10

S~1
00

S
01

are the same as those
of S~1

00
S
01

S~1
11

S
10

. The result follows from MK "S~1
00

S
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S~1
11

S
10

and
XK "S

00
!S
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S
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. h

Proof of Proposition 2. If jK
1

does not converge to zero, then ¹jK
1

diverges. Since
¹jK

1
)Q

2
)Q

1
,Q

1
and Q

2
diverge. From Proposition 1, det(I!MK )"

det(XK )/det(S
00

). Under each condition, det(I!MK ) 1
P 0. Then MK does not con-

verge to 0. h

Proof of Proposition 3. a. S
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1
(¹), S
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1
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1
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b. M,I!R~1
00

X, where X is defined in (3).
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1
(¹d),d'0. Us-

ing the results of Anderson (1959), it can be shown that XK 1
P X. From Proposi-

tion 1, det(I!MK )"det(XK )/det(S
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), and the result follows. h

Proof of Proposition 4. Eq. (12) can be solved as
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for any integer k, 0)k)t, where n
t,j
,exp(S

t
( j)), S

t
( j ),+j~1

i/0
a
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, and
S
t
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As S
t
(j) follows a log normal distribution, E(n
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)Kexp(ku), for large k, where
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The last expression increases with t because exp(S
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00
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(¹d), d'0. The second part

follows from noticing that XK is bounded and det(I!MK )"det(XK )/det(S
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). h

Proof of Proposition 5. a. Following Gourieroux et al. (1989), Johansen (1995),
and Haldrup (1994), when k"0, S
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(¹2). Therefore MK "S~1

00
S
01

S~1
11

S
10
"O

1
(1), and since M is not degenerate,

the result follows from noting that jK
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is a continuous function of MK .
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(¹~1) and the result follows. h

Proof of Proposition 6. For simplicity let us assume that in both cases the ECM
does not include any deterministic element. The next results follow from
a simple application of +T

t/1
tr"O(¹r`1), r"0,1,2,2 (see Anderson, 1971,

p. 83).
a. It can be shown that ¹~4S
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to constant matrices. Therefore MK "S~1
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converges to a non-zero
constant matrix too, and the result follows.

J. Gonzalo, ¹.-H. ¸ee /Journal of Econometrics 86 (1998) 129—154 151



b. It can be shown that ¹~2S
11

, S
00

, and ¹~1S
10

converge in probability to
constant matrices. Therefore MK converges to a non-zero constant matrix too,
and the result follows. h

Proof of Proposition 7. a. Following Gourieroux et al. (1989), for d*1.5,
S
11
"O

1
(¹2d~1), S

00
"O

1
(¹2d~3), and S

10
"O

1
(¹2d~2). Therefore MK "O

1
(1)

and the result follows.
b. For 1(d(1.5, S

11
"O

1
(¹2d~1), S

00
"O

1
(1), and S

10
"O

1
(¹2d~2).

Therefore MK "O
1
(¹2d~3) and the result follows.

c. For d"1, S
11
"O

1
(¹), S

00
"O

1
(1), and S

10
"O

1
(1). Therefore

MK "O
1
(¹~1) and the result follows.

d. For 0.5(d(1, S
11
"O

1
(¹2d~1),S

00
"O

1
(1), and S

10
"O

1
(1). Therefore

MK "O
1
(¹1~2d) and the result follows. h

Proof of Proposition 8. Similar to Proof of Proposition 1. h
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