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1 Introduction

Cochrane (1994) finds strong evidence that substantial amounts of variation in GDP growth

and stock returns are attributed to transitory shocks. He defines the transitory shock to the

consumption-GDP system as a shock to GDP holding consumption constant so that the shock does

not affect consumption contemporaneously. The facts that the consumption/GDP ratio does not

forecast consumption growth and that consumption is nearly a random walk drive this definition.

Similarly, he defines transitory shocks to the dividend-price system as shocks to stock prices

holding dividends constant so that the shock does not affect dividends contemporaneously. The

facts that the dividend/price ratio may not forecast dividend growth and that dividend is nearly a

random walk can justify this definition.

In this paper we show that the transitory shocks defined by Cochrane do not have any long

run effect, if one of the variables is weakly exogenous with respect to the cointegration vector.

However, if the assumption of weak exogeneity does not hold, shocks should be defined differently

from Cochrane (1994). We define a permanent shock as a shock to the stochastic trend of a

cointegrated system and a transitory shock as a shock orthogonal to the permanent shock. See

Stock and Watson (1988) and King, Plosser, Stock, and Watson (KPSW hereafter, 1991). With

this definition we ensure that in any cointegrated system the permanent shocks will have a long-run

effect and the transitory shocks will not.

In general, if one of the error correction adjustment coefficients in a bivariate cointegrated

system is zero, the conventional VAR method (CVAR hereafter) used by Cochrane and the KPSW

method will produce the same type of shocks.

Cochrane (1994) studies situations where one of error correction coefficients is insignificant.

This may be implied by some economic theories such as the permanent income theory. However, if

all of the error correction adjustment coefficients are significant, it would be interesting to compare

the results from these two approaches (namely, CVAR and KPSW).

In this paper we found both error correction adjustment coefficients are significant in the con-

sumption and GDP system and also in the dividend and stock price system. Accordingly, we found

that the permanent components of GDP and stock prices are much larger than those estimates of

Cochrane (1994), although substantial (but much smaller than in Cochrane (1994)) variations in

GDP growth and stock returns are attributed to transitory shocks.

The plan of the paper is as follows. In Section 2, we discuss the identification of permanent
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and transitory components in a bivariate cointegrated system, the impulse response function and

variance decompositions associated with the shocks of each component. Section 3 deals with the

identification when one of the variables is weakly exogenous with respect to the cointegrating vector.

The empirical results are presented in Section 4. Section 5 concludes.

2 Cointegrated Vector Autoregression Model

In this section we discuss the decomposition of a pair of cointegrated variables into permanent and

transitory components. We compute the impulse response function and variance decompositions

associated with the shocks of each component.

Let Xt = (xt yt)
0. If Xt are cointegrated, it is well known that they admit the following common

factor representation

Xt = X0 + μt+ γft + X̃t, (1)

where X0 = (x0 y0)0, γ = (γ1 1)
0, ft is a scalar integrated (denoted as I(1)) common permanent

component, and X̃t = (x̃t ỹt)
0 is a vector of mean zero stationary (denoted as I(0)) transitory

components. Cointegration implies that there exists a 2×1 vector β such that β0γ = 0. Therefore,

the cointegration error zt = β0Xt is I(0).

As the permanent component is unobserved, we need some identification assumptions. Follow-

ing KPSW, ft will be assumed to be a random walk. The innovation process of the permanent

component, η1t = ft − ft−1 = ∆ft, will be called the permanent shock of the system Xt. The

response of Xt to the permanent shock η1,t−h for h = 0, 1, 2, . . . is denoted as ∂Xt/∂η1,t−h. The

impact multiplier at h = 0 is ∂Xt/∂η1t, and the long-run multiplier at h→∞ is

lim
h→∞

∂Xt/∂η1,t−h = γ. (2)

From the Granger’s representation theorem, the pair of variables Xt admits a vector error

correction model (VECM) of infinite order, which can be approximated by

∆Xt = μ+ΠXt−1 +A1∆Xt−1 + · · ·+Ak−1∆Xt−k+1 + εt, (3)

where k is finite and εt is a 2× 1 vector white noise process with covariance matrix

Σε =

µ
σ21 σ12
σ12 σ22

¶
. (4)

As there exists only one common factor ft, the cointegrating rank r is equal to one, and thus the

matrix Π may be written as Π = αβ0, with both vectors α = (α1 α2)0 and β = (β1 β2)
0 being 2×1
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vectors. The vector α measures the speed of adjustment of the variables to the error correction

term, and β is the cointegrating vector. Since β0γ = 0, then γ1 = −β2 if β1 is normalized at unity.

Thus the long-run multiplier of Xt to the permanent shock η1t is γ = (−β2 1)0.

In Cochrane (1994), the consumption-GDP ratio and the dividend-stock price ratio are used,

which implies the normalized cointegration vector is assumed to be (1 − 1)0 (i.e., β2 = −1). This

may be a relatively strong assumption. For instance, Barsky and De Long (1993) and Bansal and

Lundblad (2002) show that cointegration vector of dividend and stock price is not (1 − 1)0. In this

paper we do not impose known cointegration parameters and instead we estimate them. The null

hypothesis that β2 = −1 is strongly rejected in our empirical section. See Table 5b.

We estimate the VECM in Equation (3), and then transform it into a vector moving average

model (VMA) for ∆Xt :

∆Xt = μ+ C(B)εt, (5)

where C(B) =
P∞

i=0CiB
i is a 2× 2 matrix polynomial in the backshift operator B, with C(0) = I.

As C(1) is of rank 1, there exists a 2× 1 vector δ such that C(1) = γδ0. Notice that the vector δ

is orthogonal to the adjustment coefficients α, that is δ0α = 0, since C(1)α = 0 and γ 6= 0. See

Engle and Granger (1987, p. 256).

In order to identify the permanent and transitory shocks, we need to impose some identifying

restrictions. Rewrite Equation (5) as

∆Xt = μ+ Γ(B)ηt, (6)

where

Γ(B) = C(B)Γ0, (7)

with Γ0 being a full rank matrix. The error term ηt = (η1t η2t)
0 is a 2× 1 vector white noise that

satisfies

ηt = Γ
−1
0 εt, (8)

and

Ση = E
¡
ηtη

0
t

¢
=

µ
ση1 0
0 ση2

¶
. (9)

We do not impose any restriction on the scale of Ση. From (7) and the assumption that η1t is a

permanent shock while η2t is a transitory shock, the long-run multiplier matrix becomes

Γ(1) = C(1)Γ0 = γδ0Γ0 = (γ 0). (10)
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Then,

lim
h→∞

∂Xt/∂ηt−h = lim
h→∞

µ
∂xt/∂η1,t−h ∂xt/∂η2,t−h
∂yt/∂η1,t−h ∂yt/∂η2,t−h

¶
= Γ(1) =

µ
−β2 0
1 0

¶
. (11)

Using the expansion Γ(B) = Γ(1) + ∆Γ∗(B) in Equation (6), we have the common trend

representation of Equation (1):

Xt −X0 − μt = ∆−1Γ(B)ηt = γ∆−1η1t + Γ
∗(B)ηt = γft + X̃t, (12)

with ft = ∆
−1η1t and X̃t ≡ Γ∗(B)ηt.

From the identifying restrictions (8), (9), and (10), the permanent (η1t) and transitory (η2t)

shocks are easily obtained from the reduced form shocks of the estimated VECM in Equation (3).

From (10)

Γ0 =

Ã
θ
δ1

δ2
1−θ
δ2

−δ1

!
, (13)

and

Γ−10 =

µ
δ1 δ2
1−θ
δ2

−θ
δ1

¶
. (14)

Therefore,

η1t = δ1ε1t + δ2ε2t, (15)

and

η2t =
1− θ

δ2
ε1t −

θ

δ1
ε2t, (16)

where θ is chosen such that E(η1tη2t) = 0, i.e.,

θ =
δ21σ

2
1 + δ1δ2σ12

δ21σ
2
1 + 2δ1δ2σ12 + δ22σ

2
2

. (17)

Let the impulse responses of xt and yt to the permanent shock η1,t−h, that occurred at h periods

ago, be denoted as ∂xt/∂η1,t−h and ∂yt/∂η1,t−h, respectively. These are given by the accumulated

sum of the first column of Γi’s that are obtained from the matrix lag polynomial Γ(B) =
P∞

i=0 ΓiB
i.

As the VECM can also be used for forecasting, we can compute the fractions of forecast error

variances of ∆Xt+h due to the permanent innovation η1t, and they will yield interesting information

about the relative importance of the permanent shock η1t versus the temporary shock η2t. They

can be computed as follows. Let Vk(h) be the fraction of h-step forecast error variance of ∆xk,t+h,

k = 1, 2, where xkt is the k-th variable in Xt = (x1t x2t)
0, attributed to the innovation η1t in the

permanent stochastic trend. Then

Vk(h) =
h−1X
i=1

γ2i,k1σ
2
η1
/MSEk(h), (18)
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where γi,k1 is the (k, 1) element of Γi and theMSEk(h) is the k-th diagonal element ofMSE(h) =Ph−1
i=0 ΓiΣηΓ

0
i =

Ph−1
i=0 CiΣεC

0
i. MSE(h) is the mean square error of h step forecast for ∆Xt+h.

Notice that even if only the first columns of Γi’s are identified, MSE(h) may be computed from

Ci’s. Following this notation, Vk(1) denotes the fraction of the one-step forecast error variance for

variable k attributed to the permanent shock.

3 When xt Is Weakly Exogenous

In this section, we examine the assumption made in Cochrane (1994). The variable xt is weakly

exogenous with respect to the cointegrating vector β if α1 = 0. In this case δ2 is also zero, since

α2 6= 0 and δ0α = δ2α2 = 0. From (10), (11) and (12), the permanent and transitory shocks are

η1t = δ1ε1t and η2t = (1/δ1)
¡
ε2t − (σ12/σ21)ε1t

¢
, respectively.

Cochrane (1994) uses the identification restrictions of the conventional VAR analysis. The

orthogonalized and standardized shocks are νt = (ν1t ν2t)0 = Σ
−1/2
ε εt, where

Σ
1/2
ε =

µ
σ1 0

σ12/σ1 φ

¶
is the Choleski square root of the covariance matrix Σε and φ ≡

¡
σ22 − σ212/σ

2
1

¢1/2
. It is straight-

forward to see that

ν1t = (1/σ1)ε1t, (19)

and

ν2t =
1

φ

µ
ε2t −

σ12
σ21

ε1t

¶
. (20)

For the KPSW approach, from γδ0Γ0 = (γ 0) or δ0Γ0 = (1 0) with δ2 = 0, we have

Γ0 =

µ 1
δ1

0

a b

¶
(21)

for any real numbers a and b. If b 6= 0, then Γ−10 exists and

Γ−10 =

µ
δ1 0
−a

b δ1
1
b

¶
. (22)

Therefore,

η1t = δ1ε1t, (23)

and

η2t = −
a

b
δ1ε1t +

1

b
ε2t, (24)
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where a is chosen such that E(η1tη2t) = 0 for any b 6= 0, i.e.,

a =
σ12
δ1σ21

. (25)

Hence, when xt is weakly exogenous, the KPSW approach has the permanent shock

η1t = δ1ε1t (26)

and the transitory shock

η2t =
1

b

µ
ε2t −

σ12
σ21

ε1t

¶
. (27)

To compare the KPSW approach and the CVAR approach under weak exogeneity, we observe

from (19), (26) that ν1t is proportional to η1t (as δ1σ1ν1t = η1t), and from (20), (27) that ν2t is

proportional to η2t (as φν2t = bη2t). Hence, under the weak exogeneity assumption that α1 = 0,

the KPSW approach and the CVAR approach produce the same permanent and transitory shocks

up to a constant multiplication.

The long-run multiplier of νt is

lim
h→∞

∂Xt/∂νt−h = lim
h→∞

µ
∂xt/∂ν1,t−h ∂xt/∂ν2,t−h
∂yt/∂ν1,t−h ∂yt/∂ν2,t−h

¶
= C(1)Σ

1/2
ε =

µ
−β2 0
1 0

¶
(δ1σ1).

(28)

Comparing this with Equation (11) shows that the long-run multipliers of ηt and νt are also the

same up to a constant multiplication. Hence, the shocks ν1t and ν2t can be interpreted as a

permanent and a transitory shock, respectively.

Therefore we have shown that, if α1 = 0, the KPSW approach and the conventional VAR

approach with the weak exogeneity assumption produce the same permanent and transitory shocks

up to a constant multiplication. However, if none of the variables are weakly exogenous (α1 6= 0 and

α2 6= 0) the conventional VAR approach does not lead to the above interpretation. ν1t will no longer

be a constant multiple of the permanent shock η1t, and ν2t will no longer be a transitory shock. The

next section presents the various samples of the consumption-GDP system and the dividend-stock

price system, for which there is generally no weak exogeneity and α1 6= 0 and α2 6= 0.

Remark 1. In order for CVAR and KPSW to produce the same type of shocks the variable

that is weakly exogenous has to be ordered first in the VAR model. Ribba (1997) obtains the

same type of result for CVAR and Blanchard-Quah (1989) orthogonalizations. For more than two

variables see a very recent paper by Fisher and Huh (2007) where the results of Gonzalo and Ng

(2001) about permanent and transitory shocks are particularized to the weak exogeneity case.
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Remark 2. In general common trends are only identified when there is only one permanent

shock. If there is more than one and we want them to be orthogonal, we will always have to face

the classical problem of the existence of multiple square roots of a covariance matrix. What it is

always identified, independent of the identification scheme, is the long-run impact of the permanent

shocks (γ).

Remark 3. Weak exogeneity is neither necessary nor sufficient for common trend identification.

In the bivariate case as Crowder and Wohar (1998) show weak exogeneity would constitute an

overidentifying condition and therefore testable as we do in the empirical part of this paper.

Remark 4. The identification problem of common trends can be overcome by identifying

instead permanent components, for example following Gonzalo and Granger (1995).

4 Empirical Results

The data and the sample period used in this paper are summarized as follows. They are comparable

to those of Cochrane (1994). As it is not possible to obtain exactly the same data set used by

Cochrane (1994), we have tried to get data that are as close as possible to his data. In this section,

the following two systems are analyzed.

System I, Xt = (ct yt)
0 : Quarterly U.S. consumption and GDP from 1947:Q1 to 2002:Q4

(sample size n = 228) are obtained from Federal Reserve Economic Data (FRED) of St. Louis

FRB. We use natural logarithms of real GDP, denoted as yt, and real consumption on nondurable

goods and services, denoted as ct, in 2000 dollars. In order to compare with the results of Cochrane

(1994), we also use the data from FRED with the same sample period as in his paper, i.e., Quarterly

U.S. consumption and GDP from 1947:Q1 to 1989:Q3 (n = 171). The latter data set is denoted

as Sample (A) and the former with the sample period (1947:Q1 to 2002:Q4) is denoted as Sample

(B). See Table 1.

System II, Xt = (dt pt)
0 : The natural logarithms of annual real dividends (denoted as dt) and

real stock prices (denoted as pt) are used. The data was downloaded from the website of Robert

Shiller at Yale. In order to compare with the results of Cochrane (1994), Sample (C) is the data

with the same sample period as in Cochrane (1994), i.e., from 1927 to 1988 (n = 62). The two

expanded data sets, Sample (D) from 1871 to 1988 (n = 118) and Sample (E) from 1871 to 2002

(n = 132), are also studied. See also Table 1.
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4.1 Empirical Results for the Consumption-GDP System

First, we examine the cointegration in System I. The unit root tests in Table 2 and the cointegration

tests in Table 3 indicate that System I is cointegrated for both Sample (A) and Sample (B). The

lag length k of the VECM in Equation (3) has been chosen by the Schwarz information criteria

(SIC), that is, k = 2 for System I.

We estimate the VECM by Johansen (1991) method. In Table 4, estimated α̂, β̂ and δ̂ are

reported. β1 is normalized at unity and α is re-scaled accordingly. According to the results in

Table 4 and Table 5a, the null hypothesis that β2 = −1 is soundly rejected for both Sample (A)

and Sample (B). Therefore we estimate β2 instead of assuming β2 = −1.

We then test for weak exogeneity by testing for α1 = 0 or for α2 = 0. The asymptotic tests in

Table 5a strongly indicate that both α1 and α2 are significantly different from zero. The bootstrap

tests that can be computed from the results in Table 4 (where the stationary bootstrap of Politis and

Romano (1994) is use to simulate 1000 bootstrap resamples) also indicate that α1 is significantly

different from zero and α2 is marginally significantly different from zero. This is true for both

Samples (A) and (B). Hence the weak exogeneity assumption of α1 = 0 (as imposed in Cochrane

(1994)) is invalidated for System I.

The impulse responses of Xt to the permanent shock are reported in Table 6. We use the VMA

model in Equation (5) of order 24. We also used the VMA models of orders 20, 36, and 40, but the

results were almost the same. The estimated responses ∂Xt/∂η1,t−h get closer to γ as h increases.

Both series in each system complete the adjustment at the steady state suggested by the estimated

cointegrating vector reported in the last row of Table 6. As expected from the common stochastic

trend representation in Equation (8), the long-run multiplier of the permanent shock is γ; i.e.,

limh→∞ ∂xt/∂η1,t−h = −β2 and limh→∞ ∂yt/∂η1,t−h = 1 by normalization. In order to find the

standard error for the impulse-response estimates, we also use the stationary bootstrap.

The estimated fractions of the forecast error variances of ∆Xt+h attributed to η1t are presented

in Table 7 (h is the forecast horizon in this case). The results shows that the fraction of forecast

error variance of GDP due to permanent shocks is a slightly higher than that of consumption. In

order to find the standard errors for the fraction estimates, we also use the stationary bootstrap.

In Table 8, the results of the variance decompositions of one-step forecast error using the CVAR

method with α1 = 0 imposed (Panel B) and the results from Table 7 for h = 1 using the KPSW

method (Panel A) are presented. Because as mentioned earlier, it was not possible to get exactly
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the same data set used by Cochrane (1994), we also copied Cochrane’s (1994) results in Panel C of

Table 8. For Sample (A), the CVAR method with the α1 = 0 restriction, 31% of the one-step ahead

forecast error variance in quarterly GDP growth is due to permanent shocks. If the KPSW method

is used the number is much bigger, 88%. In Sample (B), with the CVAR method with imposing

α1 = 0, it is 30%, while the KPSW method yields 91% of the one-step forecast error variance in the

GDP growth due to the permanent shock. One-sided test based on stationary bootstrap is used

to test whether the difference of these estimates in these two models is significant or not. Denote

V KPSW
y (1) as the fraction estimate for one step forecast error variance of GDP due to permanent

shocks by the KPSW method, and V CV AR
y (1) as that for the CVAR model with α1 = 0 is imposed.

The null hypothesis of the test is H0 : V
KPSW
y (1) − V CV AR

y (1) ≤ 0. The p-values of the test are

obtained by using bootstrap resampling with 1000 repetition times. For each resampled data, the

two estimates are calculated and the bootstrap distribution of the test statistic is obtained. The

test results for the two samples in Table 9 show that the permanent component of the GDP is

significantly larger than those estimates of the CVAR or Cochrane (1994).1

The above result verifies our analysis in Section 3. If both adjustment coefficients are signifi-

cant, permanent shocks in the KPSW model are different from that in the CVAR model. In the

consumption and GDP system, both adjustment coefficients are significant, therefore, the results

of the VECM and CVAR are different. The empirical results show that the CVAR approach under-

estimates the permanent shocks and overestimates the transitory shocks when the weak exogeneity

assumption does not hold.

As we find α1 6= 0, the consumption is not a pure random walk. The result is in accordance with

Jaeger (1992) who finds that consumption is not a pure random work. The variation in consumption

can be affected by transitory shocks if α1 and δ2 are not zero. Our results from the KPSW method

show that substantial amount of the forecast error variance for quarterly consumption growth is

due to transitory shocks — 35% for Sample (A) and 40% for Sample (B). These numbers would be

zero if the CVAR method with α1 = 0 were used.
1The results in Panel B and Panel C are quite similar, indicating we in fact nearly reproducing Cochrane’s (1994)

results using our data sets. The small difference is partly due to the estimation of β2 in Panel B instead of using
β2 = −1 in Panel C and also partly due to the slightly different data we use from the FRED data for GDP series
than the private GNP data of Cochrane (1994).
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4.2 Empirical Results for the Dividend-Stock Price System

For System II with dividend and stock price, Table 2 reports the unit root tests and Table 3 reports

the cointegration tests. The lag length k = 1 of the VECM in Equation (3) is selected by the SIC.

In the three samples used, only Sample (D) demonstrates strong cointegration relationship. The

cointegration relation is insignificant or marginal for Samples (C) and (E). However, we proceed

to estimate the VECM with the cointegrating rank r = 1 for all the three samples. In Table

4, estimated α̂, β̂ and δ̂ are reported. β1 is normalized at unity and α is re-scaled accordingly.

According to the results in Table 4 (using the bootstrap tests) and Table 5a (using the asymptotic

tests), the null hypothesis that β2 = −1 is soundly rejected for all three samples and thus we

estimate β2 instead of assuming β2 = −1.

We then test for weak exogeneity by testing for α1 = 0 or for α2 = 0. The asymptotic tests in

Table 5a for System II strongly indicate that α1 6= 0 while α2 may be insignificantly different from

zero. The bootstrap tests that can be computed from the results in Table 4 also clearly indicate that

α1 is significantly different from zero for all three samples, and that α2 is marginally significantly

different from zero for Samples (C) and (D). Hence the weak exogeneity assumption of α1 = 0 (as

imposed in Cochrane (1994)) is invalidated for System II (as well as for System I).

The impulse responses of Xt to the permanent shock are reported in Table 6. We use the VMA

model in Equation (5) of order 24. The estimated responses ∂Xt/∂η1,t−h also get closer to γ as

h increases. The impulse responses complete the adjustment at the steady state suggested by the

estimated cointegrating vector. The standard error for the impulse-response estimates are also

obtained by stationary bootstrap.

The estimated fractions of the forecast error variances of ∆Xt+h attributed to the permanent

shock η1t presented in Table 7 show that they are slightly higher for stock price than for dividend.

In Table 8, the results of the variance decompositions of one-step forecast error using the CVAR

method with α1 = 0 imposed (Panel B) and the results from Table 7 for h = 1 using the KPSW

method (Panel A) are presented. Because as mentioned earlier, it was not possible to get exactly

the same data set used by Cochrane (1994), we also copied Cochrane’s (1994) results in Panel C of

Table 8. For Sample (C), the CVAR method with the α1 = 0 restriction, 41% of the one-step ahead

forecast error variance in quarterly GDP growth is due to permanent shocks. If the KPSW method

is used the number is much bigger, 85%. In Sample (D), with the CVAR method with imposing

α1 = 0, it is 31%, while the KPSW method yields 95% of the one-step forecast error variance in
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stock price due to the permanent shock. In Sample (E), with the CVAR method with imposing

α1 = 0, it is 26%, while the KPSW method yields 99% of the one-step forecast error variance

in the stock price due to the permanent shock. One-sided test based on stationary bootstrap is

used to test whether the difference of these estimates in these two models is significant or not.

Denote V KPSW
p (1) as the fraction estimate for one step forecast error variance of stock price due

to permanent shocks by the KPSW method, and V CV AR
p (1) as that for the CVAR model with

α1 = 0 is imposed. The null hypothesis of the test is H0 : V
KPSW
p (1) − V CV AR

p (1) ≤ 0. The

p-values of the test are obtained by using bootstrap resampling with 1000 repetition times. For

each resampled data, the two estimates are calculated and the bootstrap distribution of the test

statistic is obtained. The test results in Table 9 show that the null hypothesis should be rejected at

1% level for Sample (D) and Sample (E) and at 10% level for Sample (C), that is, the permanent

component of the stock price is significantly larger than those estimates using the CVAR with

α1 = 0 or from Cochrane (1994).

The above result verifies our analysis in Section 3. If both adjustment coefficients are significant,

permanent shocks in the KPSW model are different from that in the CVAR model with assuming

α1 = 0. In System II, α1 6= 0, therefore, the results of the KPSW approach and the CVAR approach

with α1 = 0 should be different. The empirical results show that the CVAR approach with α1 = 0

underestimates the permanent shocks in stock price and overestimates the transitory shocks when

the weak exogeneity assumption of the dividend for the cointegrating vector that α1 = 0 does not

hold.

As we find α1 6= 0, the dividend is not a pure random walk. The variation in dividend can

be affected by transitory shocks if α1 and δ2 are not zero. Our results from the KPSW method

show that substantial amount of the forecast error variance for quarterly dividend changes is due

to transitory shocks — 21% for Sample (C), 46% for Sample (D), and 63% for Sample (B). These

numbers would be zero if the CVAR method with α1 = 0 were used.

5 Conclusions

In this paper we use the KPSW method that does not require the assumptions of weak exogeneity

used by Cochrane (1994) in order to identify the shocks as permanent and transitory. We show that

if one of error correction coefficients in a bivariate cointegrated system is zero, the CVAR method

produce the same type of shocks as the KPSW method. If not, the CVAR method is not a proper

method to examine permanent and transitory components of a cointegrated system. The empirical

11



analysis of the consumption and GDP system and dividend and stock prices system verifies our

theoretical finding.

With both adjustment coefficients significant in the VECM estimate for the consumption and

GDP system and for the dividend-stock price system, the permanent shocks for the KPSW method

is greater than the CVAR with weak exogeneity assumption. The empirical study shows that for

the consumption and GDP system and for the dividend-stock price system, the contribution of the

permanent shocks to the forecast error variance of GDP or stock prices may be underestimated if

we use the CVAR approach when the weak exogeneity does not hold.

In the CVAR approach with the weak exogeneity assumption, only the consumption shocks

or the dividend shocks are permanent shocks for the two systems respectively. GDP shocks and

price shocks are regarded as transitory if there is no consumption or dividend changes. However,

sometime, even with the consumption unchanged, some shocks to GDP may also have permanent

effects on GDP. Under such circumstances, the weak exogeneity assumption does not hold. Those

shocks are regraded as transitory shocks in the CVAR model, however, in the KPSW approach,

they are treated as permanent shocks, resulting in the difference in the results.
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Table 1. Data

System I: Consumption-GDP System (Quarterly)
Sample (A) Sample (B)

1947:Q1 - 1989:Q3 1947:Q1 - 2002:Q4
n = 171 n = 228

System II: Dividend-Stock Price System (Yearly)
Sample (C) Sample (D) Sample (E)
1927 - 1988 1871 - 1988 1871 - 2002
n = 62 n = 118 n = 132
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Table 2. Tests for Unit Root

System I: Consumption-GDP System
Sample (A) Sample (B)

Test ct yt ct yt
PP1 -3.15 -1.52 -0.14 -0.75
PP2 -1.41 -1.28 -1.28 -0.61
ADF1 -2.25 (2) -1.19 (1) -0.03 (3) -0.75 (1)
ADF2 -1.92 (2) -1.41 (1) -1.61 (3) -0.77 (1)

System II: Dividend-Stock Price System
Sample (C) Sample (D) Sample (E)

Test dt pt dt pt dt pt
PP1 -1.96 -1.70 -1.79 -1.79 -1.71 -0.71
PP2 -2.86 -2.20 -3.78* -2.95 -3.99∗ -2.37
ADF1 -1.90 (0) -1.65 (0) -1.98 (0) -1.84 (0) -1.93 (1) -0.74 (0)
ADF2 -3.34(1) -2.21 (0) -4.21∗∗ (1) -2.85 (0) -4.47∗∗ (1) -2.25 (0)

Notes: ADF and PP denote Augmented Dickey-Fuller test and Phillips-Perron test statistics, re-
spectively. ADF1, PP1 are computed with a constant term, and ADF2, PP2 are with a constant
and a linear trend. The numbers in parentheses for ADF are the number of lag-augmentation,
chosen using the SIC. The results do not change when the AIC is used. We report PPs with six
non-zero autocovariances. The critical values for both statistics, which are asymptotically equiva-
lent, may be obtained from Fuller (1976, p. 373). The critical values of ADF1 are −3.45 and −2.87
at the 1% and 5% level, respectively. The critical values of ADF2 are −3.99 and −3.43 at the 1%
and 5% level, respectively. The critical values of PP1 are −3.45 and −2.87 at the 1% and 5% level,
respectively. The critical values of PP2 are −4.00 and −3.43 at the 1% and 5% level, respectively.
** and * denote the significance at 1% and 5% levels, respectively.
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Table 3. Tests for Cointegration

System I: Consumption-GDP System
Sample (A) Sample (B)

Trace λmax Trace λmax
H0 : r = 0 40.85∗∗ 38.51∗∗ 47.46∗∗ 47.11∗∗

H0 : r ≤ 1 2.34 2.34 0.35 0.35

System II: Dividend-Stock Price System
Sample (C) Sample (D) Sample (E)
Trace λmax Trace λmax Trace λmax

H0 : r = 0 12.37 10.78 25.28∗∗ 22.53∗∗ 14.04 13.59
H0 : r ≤ 1 1.59 1.59 2.74 2.74 0.17 0.17

Notes: r denotes the rank of cointegration. The critical values for Johansen’s trace statistic (Trace)
and maximum eigenvalue statistic (λmax) are obtained from Osterwald-Lenum (1992). The critical
values of trace statistics are 20.04 and 15.41 at the 1% and 5% level, respectively. For λmax, they are
18.63 and 14.07, respectively. ** and * denote the significance at 1% and 5% levels. The lag value
is chosen by using the SIC. Two lags for System I and one lag for System II are used throughout
the paper.
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Table 4. Some Parameter Estimates

System I: Consumption-GDP System
α̂1 α̂2 β̂1 β̂2 δ̂1 δ̂2

Sample (A) -0.075 (0.034) 0.065 (0.042) 1 -1.036 (0.012) 1.250 (0.226) 1.362 (0.236)
Sample (B) -0.079 (0.025) 0.056 (0.030) 1 -1.035 (0.003) 1.200 (0.168) 1.577 (0.175)

System II: Dividend-Stock Price System
α̂1 α̂2 β̂1 β̂2 δ̂1 δ̂2

Sample (C) -0.184 (0.082) 0.262 (0.139) 1 -0.593 (0.137) 0.773 (0.826) 0.542 (0.481)
Sample (D) -0.248 (0.056) 0.124 (0.064) 1 -0.692 (0.065) 0.372 (0.353) 0.743 (0.248)
Sample (E) -0.182 (0.047) 0.038 (0.055) 1 -0.540 (0.069) 0.190 (0.429) 0.898 (0.228)

Notes: All parameters are estimated from the vector error correction model (VECM) using Johansen
(1991) method. α = (α1 α2)

0 is the speed of the error corrections and β = (β1 β2)
0 is the

cointegrating vector. β̂1 is normalized at unity. δ = (δ1 δ2)
0 is defined in η1t = δ0εt = δ1ε1t + δ2ε2t

so that δ is the weight vector to load the reduced form errors εt on the permanent shock η1t.
Bootstrap standard errors, shown in parentheses, are computed by the stationary bootstrap using
1000 replications.
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Table 5a. Johansen Test for the Significance of Parameters

System I: Consumption-GDP System
α̂1 α̂2 β̂1 β̂2

Sample (A) -0.075 [0.00] 0.065 [0.02] 1 -1.036 [0.00]
Sample (B) -0.079 [0.00] 0.056 [0.02] 1 -1.035 [0.00]

System II: Dividend-Stock Price System
α̂1 α̂2 β̂1 β̂2

Sample (C) -0.184 [0.17] 0.262 [0.19] 1 -0.593 [0.00]
Sample (D) -0.248 [0.00] 0.124 [0.31] 1 -0.692 [0.00]
Sample (E) -0.182 [0.00] 0.038 [0.72] 1 -0.540 [0.00]

Notes: All parameters are estimated from the VECM using Johansen (1991) method. The as-
ymptotic p-value of Johansen test for the null hypothesis that each parameter is zero is shown in
bracket.

Table 5b. Johansen Test for H0 : β2 = −1

System I: Consumption-GDP System
Sample (A) Sample (B)
31.82 [0.000] 46.04 [0.000]

System II: Dividend-Stock Price System
Sample (C) Sample (D) Sample (E)
5.125 [0.023] 10.390 [0.001] 11.93 [0.001]

Notes: Johansen statistics for H0 : β2 = −1 are reported together with their asymptotic p-values
in brackets.
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Table 6. Impulse Responses of Xt to η1,t−h

System I: Consumption-GDP System
Sample (A) Sample (B)

h ∂ct/∂η1,t−h ∂yt/∂η1,t−h ∂ct/∂η1,t−h ∂yt/∂η1,t−h
0 0.266 (0.416) 0.490 (0.298) 0.235 (0.366) 0.456 (0.251)
1 0.399 (0.110) 0.773 (0.334) 0.362 (0.098) 0.712 (0.182)
2 0.491 (0.329) 0.905 (0.250) 0.453 (0.288) 0.840 (0.203)
3 0.559 (0.135) 0.970 (0.269) 0.520 (0.122) 0.907 (0.142)
4 0.613 (0.266) 1.000 (0.206) 0.575 (0.232) 0.943 (0.165)
8 0.764 (0.182) 1.029 (0.143) 0.732 (0.158) 0.993 (0.113)
12 0.862 (0.102) 1.032 (0.107) 0.838 (0.113) 1.011 (0.081)
24 1.004 (0.056) 1.033 (0.058) 1.000 (0.047) 1.036 (0.048)
∞ 1.036 (0.012) 1.000 1.035 (0.012) 1.000

System II: Dividend-Stock Price System
Sample (C) Sample (D) Sample (E)

h ∂dt/∂η1,t−h ∂pt/∂η1,t−h ∂dt/∂η1,t−h ∂pt/∂η1,t−h ∂dt/∂η1,t−h ∂pt/∂η1,t−h
0 0.583 (0.167) 1.014 (0.241) 0.544 (0.130) 1.074 (0.089) 0.408 (0.138) 1.028 (0.074)
1 0.586 (0.151) 1.009 (0.206) 0.593 (0.110) 1.049 (0.074) 0.435 (0.124) 1.022 (0.065)
2 0.588 (0.139) 1.006 (0.177) 0.626 (0.095) 1.033 (0.062) 0.457 (0.112) 1.017 (0.058)
3 0.590 (0.129) 1.004 (0.153) 0.648 (0.083) 1.021 (0.053) 0.473 (0.103) 1.014 (0.052)
4 0.591 (0.122) 1.002 (0.134) 0.663 (0.073) 1.014 (0.046) 0.486 (0.095) 1.011 (0.047)
8 0.592 (0.104) 1.000 (0.087) 0.686 (0.052) 1.002 (0.032) 0.518 (0.074) 1.004 (0.034)
12 0.593 (0.097) 1.000 (0.067) 0.691 (0.046) 1.001 (0.029) 0.531 (0.063) 1.002 (0.029)
24 0.593 (0.092) 1.000 (0.055) 0.692 (0.042) 1.000 (0.029) 0.539 (0.053) 1.000 (0.029)
∞ 0.593 (0.137) 1.000 0.692 (0.065) 1.000 0.540 (0.069) 1.000

Notes: For each system there are two columns. Each column reports the impulse responses of the
level series xt to the permanent shock η1,t−h that occurred h-periods ago. The estimated long-run
multipliers of Xt to the permanent shock are (−β̂2 1)0. These are the impulse responses of Xt

as h → ∞, and are obtained from the estimated cointegrating vector (1 β̂2)
0 reported in Table 4.

Bootstrap standard errors, shown in parentheses, are computed by the stationary bootstrap using
1000 replications.
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Table 7. Fractions of Forecast Error Variances Attributed to η1

System I: Consumption-GDP System
Sample (A) Sample (B)

h V̂c(h) V̂y(h) V̂c(h) V̂y(h)

1 .649 (.226) .882 (.202) .601 (.179) .907 (.072)
2 .696 (.225) .881 (.127) .660 (.177) .900 (.042)
3 .714 (.214) .884 (.095) .684 (.169) .903 (.043)
4 .723 (.216) .885 (.089) .696 (.171) .903 (.052)
8 .735 (.212) .885 (.083) .711 (.169) .904 (.063)
12 .738 (.212) .885 (.083) .717 (.168) .904 (.066)
24 .741 (.212) .885 (.083) .721 (.168) .904 (.067)

System II: Dividend-Stock Price System
Sample (C) Sample (D) Sample (E)

h V̂d(h) V̂p(h) V̂d(h) V̂p(h) V̂d(h) V̂p(h)

1 .788 (.260) .846 (.286) .539 (.199) .948 (.158) .365 (.211) .987 (.109)
2 .769 (.259) .832 (.286) .515 (.198) .942 (.160) .356 (.210) .987 (.110)
3 .761 (.258) .825 (.286) .505 (.198) .940 (.161) .352 (.209) .987 (.111)
4 .757 (.257) .823 (.286) .500 (.198) .939 (.162) .349 (.208) .986 (.112)
8 .755 (.256) .821 (.286) .498 (.198) .938 (.163) .344 (.207) .986 (.113)
12 .755 (.256) .821 (.286) .497 (.197) .938 (.164) .343 (.207) .987 (.113)
24 .755 (.255) .821 (.285) .497 (.197) .938 (.164) .343 (.206) .987 (.113)

Notes: For each system there are two columns. V̂x(h) denotes the estimated fractions of forecast
error variance of ∆xt+h attributed to η1t. Bootstrap standard errors, shown in parentheses, are
computed by the stationary bootstrap using 1000 replications.
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Table 8. Decompositions of One-Step Forecast Error Variances V̂ (1): Comparisons

System I: Consumption-GDP System
Sample (A) Sample (B)
∆ct+1 ∆yt+1 ∆ct+1 ∆yt+1

Panel A. KPSW
Due to permanent shock .65 .88 .60 .91
Due to temporary shock .35 .12 .40 .09

Panel B. CVAR imposing weak exogeneity
Due to permanent shock 1.00 .30 1.00 .30
Due to temporary shock .00 .70 .00 .70

Panel C. Cochrane’s CVAR results imposing weak exog.
Due to permanent shock 1.00 .15
Due to temporary shock .00 .85

System II: Dividend-Stock Price System
Sample (C) Sample (D) Sample (E)
∆dt+1 ∆pt+1 ∆dt+1 ∆pt+1 ∆dt+1 ∆pt+1

Panel A. KPSW
Due to permanent shock .79 .85 .54 .95 .37 .99
Due to temporary shock .21 .15 .46 .05 .63 .01

Panel B. CVAR imposing weak exogeneity
Due to permanent shock 1.00 .41 1.00 .31 1.00 .26
Due to temporary shock .00 .59 .00 .69 .00 .74

Panel C. Cochrane’s CVAR results imposing weak exogeneity
Due to permanent shock 1.00 .45
Due to temporary shock .00 55

Notes: This table shows the results comparable to those in Cochrane (1994, Table I and Table
II). His results are also copied in Panel C. As he reports only for h = 1, we report only for that
in Panels A and B. Cochrane (footnote 5) also reports for private GNP for which the fraction of
one-step forecast error variance due to the temporary shock is 0.89. The results in Panel A are
obtained from Table 7 for h = 1. The column under the heading ∆xt+1 reports the fraction of
forecast error variance, Var(∆xt+1 −Et∆xt+1) that is attributed to each shock.
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Table 9. Tests for Comparing One-Step Forecast Error Variances Decompositions

System I: Consumption-GDP System
H0 : V

KPSW
y (1) ≤ V CV AR

y (1)

Sample (A) Sample (B)
0.57 [0.042] 0.61 [0.014]

System II: Dividend-Stock Price System
H0 : V

KPSW
p (1) ≤ V CV AR

p (1)

Sample (C) Sample (D) Sample (E)
0.44 [0.098] 0.64 [0.001] 0.73 [0.003]

Notes: This table shows the difference in one-step forecast error variance for KPSW and CVAR
models. For System I, V KPSW

y (1) denotes the fraction estimate for one step forecast error variance
of GDP due to permanent shocks by the KPSW method, and V CV AR

y (1) denotes that for the
CVAR model imposing α1 = 0. For System II, V KPSW

p (1) denotes the fraction estimate for one
step forecast error variance of stock price due to permanent shocks by the KPSW method, and
V CV AR
p (1) denotes that for the CVAR model imposing α1 = 0. The bootstrap p-values in brackets
are obtained by using the stationary bootstrap with 1000 replications.

22


