
Threshold Effects in Cointegrating
Relationships*
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Abstract

In this paper, we introduce threshold-type nonlinearities within a single-
equation cointegrating regression model and propose a testing procedure
for testing the null hypothesis of linear cointegration vs. cointegration with
threshold effects. Our framework allows the modelling of long-run equilib-
rium relationships that may change according to the magnitude of a threshold
variable assumed to be stationary and ergodic, and thus constitutes an attempt
to deal econometrically with the potential presence of multiple equilibria. The
framework is flexible enough to accommodate regressor endogeneity and
serial correlation.

I. Introduction

Economic theory often predicts that some economic variables must be linked
through long-run equilibrium relationships. From an applied viewpoint, a
methodology for empirically assessing the existence of such relationships,
when linear, is given by the concept of cointegration. Indeed, two or more
economic variables that are expected to be in equilibrium must be
cointegrated. Examples include linkages between wealth and consumption
recently investigated in Lettau and Ludvigson (2004), variables which theory
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suggests are tied via present value relationships such as prices and dividends
(Campbell and Shiller, 1987), amongst numerous others (see Ogaki, Jang and
Lim, 2005, for a comprehensive overview). This statistical notion of an
equilibrium relationship or long-run attractor linking two or more variables,
together with Granger’s representation theorem ensuring the existence of an
error correction representation, provided researchers with valuable tools for
jointly modelling and conducting inferences on the long-run equilibrium
characterizing two or more variables, together with the short-run adjustment
process towards such an equilibrium.

Although economic relationships are often nonlinear, characterized for
instance by the presence of regime-specific behaviour such as the display of
different dynamics depending on the phases of the business cycle, the statistical
concept of cointegration as originally defined aimed to refer solely to linear
combinations of variables linked through a long-run equilibrium relationship.
In this paper our objective is to propose a test for assessing the presence of
regime-specific nonlinearities within cointegrating relationships. Although the
idea of extending the concept of cointegration to a nonlinear framework is not
new (see Granger and Terasvirta, 1993; Granger, 1995; Balke and Fomby,
1997; Hansen and Seo, 2002; Seo, 2004; Kapetanios, Shin and Snell, 2004),
nonlinearities in this context have been only understood to affect the adjustment
process to equilibrium while the equilibrium relationship itself has typically
been taken to be represented by a single and linear regression model.

The type of nonlinearity we propose to work with instead involves
introducing regime-specific behaviour within the long-run equilibrium
relationship itself. More specifically, we propose introducing threshold-type
effects to model the possibility that the relationship linking the nonstationary
variables undergoes regime switches. Such threshold effects lead to cointeg-
rating regressions that are piecewise linear, separated according to the
magnitude of a threshold variable which triggers the regime switches. Unlike
Markov-switching type of nonlinearities where an unobservable state governs
regime switches, our analysis exclusively focuses on nonlinearities induced by
observable factors, possibly dictated by economic theory and that are assumed
to be stationary throughout (e.g. growth rate in the economy, or the term
structure of interest rates). In addition to offering an intuitive way of capturing
economically meaningful nonlinearities, models with threshold effects are also
straightforward to estimate by simple least squares methods or their variants,
which is a considerable advantage in the present context. Although the
multitude of alternative nonlinear specifications designed to capture regime-
switching behaviour may suggest that the threshold family of models is only a
narrow subset, especially given the fact that economic theory is often silent
about the specific type of nonlinearity that may characterize the linkages
among economic variables, Petruccelli (1992) has also shown that threshold
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specifications may be viewed as an approximation to a more general class of
nonlinear models.

Having inference tools designed to assess the presence of nonlinearities
within a cointegrating regression is particularly important in applied work,
unlike the case where the nonlinearities are introduced solely within the
adjustment process to equilibrium. For instance, omitting the presence of
nonlinear components such as threshold effects in long-run equilibrium,
relationships themselves will lead to misleading interpretations of equilibrium
relationships because the cointegrating vector will no longer be consistently
estimated. Given the importance of threshold effects documented in the
economics literature (see, for instance, Kanbur, 2005, and references therein)
and the fact that cointegrating regressions can be viewed as a statistical
counterpart to the notion of a long-run equilibrium linking two or more
variables, we also conjecture that the econometric framework we focus on in
this paper may provide a useful statistical environment for modelling the
notion of switching or multiple long-run equilibria. The literature on animal
spirits, for instance (Howitt and McAffee, 1992) suggests instances where
some extraneous random variable such as a confidence indicator may cause
macroeconomic variables to switch across different paths.

Our analytical framework involves working within a triangular type of
representation of a set of variables known to be I(1). Our goal is then to
explore the properties of a test statistic for testing the null hypothesis of linear
cointegration vs. nonlinear threshold-type cointegration, maintaining the
presence of cointegration under both the null and alternative hypotheses.

In related work, Choi and Saikkonen (2004) have also explored the
properties of statistical tests for detecting the presence of nonlinearities within
cointegrating regressions. Unlike the present framework, however, they
concentrated on a smooth transition type of functional form whose argument
was taken to be one of the unit-root variables within the cointegrating
regression. The idea of introducing nonlinear dynamics directly within
cointegrating regressions has also been recently addressed in Park and Phillips
(1999, 2001) and Chang, Park and Phillips (2001), where the authors’ key
concern was parameter estimation rather than testing in the context of
regression models containing nonlinear transformations of I(1) variables.
Earlier research that explored the possibility of regime switches in cointegrat-
ing vectors can also be found in Hansen (1992) and Gregory and Hansen
(1996), where the motivation of the authors was to test for the presence of
structural break-type parameter instability within cointegrating relationships.

The plan of the paper is as follows. Section II introduces the formal
statistical model, our operating assumptions, together with the resulting
limiting distributions. Section III assesses the finite sample properties of the
test for threshold cointegration. Section IV concludes.
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II. Testing for threshold effects

2.1. The model and test statistic

We consider the following cointegrating regression with a threshold
nonlinearity

yt ¼ b0xt þ k0xtIðqt�d > cÞ þ ut ð1Þ

xt ¼ xt�1 þ vt ð2Þ

where ut and vt are scalar and p-vector-valued stationary disturbance terms,
qt)d with d � 1 is the stationary threshold variable and I(qt)d > c) is the
usual indicator function taking the value one when qt)d > c and zero
otherwise. The particular choice of d is not essential for our analysis and d will
be taken as known throughout. For simplicity of exposition, we temporarily
exclude the presence of deterministic components from equation (1) and
relegate their inclusion to the end of this section.

Note that cointegration in the context of the specification in equation (1) is
understood in the sense that although both yt and xt have variances that growwith
t, the threshold combination given by ut is stationary. Because of the lack of
a precise definition of concepts such as nonlinear or threshold cointegration
in the existing literature, it is not unusual to find the same terms referring to
fundamentally different concepts. Unlike our specification in equation (1), for
instance, the notion of threshold cointegration has often been used to refer to
cases where the cointegrating relationship linking two ormore variables is linear
while the adjustment process to the long-run equilibrium contains threshold
effects. Differently put, a cointegrating relationship that is linear has commonly
been referred to as ‘threshold cointegration’ because of the presence of threshold
effects in the adjustment mechanism.

An important source of difficultywhen attempting to define a concept such as
threshold cointegration comes from the fact that the concept of integratedness
commonly used to refer to series as I(1) or I(0) is a linear concept and not helpful
when trying to establish the stationarity properties of nonlinear processes. If xt is
an I(1) variable, the degree of integration of powers of xt is not obvious. Similar
problems occur when dealing with stochastic unit-root models or models
containing threshold effects with terms such as yt ¼ xtI(qt > c) where taking first
differences does not make the series I(0) (strictly speaking, they would be
I(1) processes). Because of these difficulties and before introducing a formal
definition of the concept of threshold cointegration, we propose using the
following alternative to the concept of I(�)’ness.
Definition 1. A time series yt is said to be summable of order d, symbolically
represented as Sy(d) if the sum
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Sy ¼
XT

t¼1
ðyt � E½yt�Þ

is such that
Sy

T
1
2þd
¼ Opð1Þ as T !1:

Note that in the context of the above definition, a process that is I(d) can be
referred to as Sy(d) and the threshold process introduced in (1) is clearly Sy(1).
Using this concept of summability of order d we can now provide a formal
definition of the concept of threshold cointegration as follows.

Definition (threshold cointegration). Let yt and xt be Sy(d1) and Sy(d2),
respectively. They are threshold cointegrated if there exists a threshold com-
bination (1, )(b1I(qt � c) + b2I(qt > c))) such that zt ¼ yt ) b1xtI(qt � c) )
b2xtI(qt > c) is Sy(d0) with d0 < min(d1, d2).

Given the formal definition of threshold cointegration presented above, and
its obvious extension to the multivariate case, it is now clear that within our
specification in equation (1), yt and xt are threshold cointegrated with d0 ¼ 0
and d1 ¼ d2 ¼ 1. The threshold variable qt)d allows the cointegrating vector
to switch between (1, )b0) and (1, )(b + k)0) depending on whether qt)d
crosses the unknown threshold level given by c. This is also what we denote as
two long-run equilibria.

We next turn to the properties of a test statistic for assessing the presence of
threshold cointegration. For this purpose, it is convenient to reformulate
equation (1) in matrix format as

y ¼ Xbþ Xckþ u ð3Þ

where X stacks xt while Xc stacks xtI(qt)d > c). For later use, we also introduce
the (p + 1)-dimensional random disturbance vector wt ¼ ðut; v0tÞ

0. In the
context of the model in equation (1) or (3), a natural test of the hypothesis of
linear cointegration vs. the alternative of threshold cointegration takes the form
of testing H0 : k ¼ 0 against H1 : k 6¼ 0 and here we propose exploring the
properties of an LM-type test statistic for testing this null hypothesis. Note that
under H0 the threshold parameter given by c remains unidentified. This is now
a well-known problem in the literature on testing for regime-switching type of
nonlinearities and is usually handled by viewing the test statistic as a random
function of the nuisance parameter and basing inferences on a particular
functional of the test statistic such as its supremum over c, for instance (see
Davies, 1977, 1987; Andrews and Ploberger, 1994; Hansen, 1996).

Letting LMT(c) denote the Lagrange multiplier-type test statistic obtained
for each c, we will base our inferences on the quantity given by
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supLM ¼ supc2CLMT(c). At this stage, it is also important to recall that given
c 2 C the model in equation (3) is linear in its parameters and can therefore be
easily estimated as it would have been the case in a purely linear framework.
Letting M ¼ I)X(X0X))1X0, the standard form of the LMT(c) statistic can be
formulated as

LMT ðcÞ ¼
1

~r2
0

y0MXcðX0cMXcÞ�1X0cMy ð4Þ

where ~r2
0 denotes the residual variance estimated from equation (3) under

the null hypothesis of linear cointegration. As, under the null hypothesis,
we have y0M ¼ u0M, the test statistic in equation (4) can also be written
as

LMT ðcÞ ¼
1

~r2
0

u0MXcðX0cMXcÞ�1X0cMu: ð5Þ

2.2. Assumptions and limiting distributions

Throughout this paper, we will be operating under the following set of
assumptions:

(A1) The sequence {ut, vt, qt} is strictly stationary and ergodic and strong
mixing with mixing coefficients an satisfying

X1
n¼1

a
1
2�1

r
n <1 for some r > 2;

the threshold variable qt has a distribution function F(�) that is con-
tinuous and strictly increasing.

(A2)

1ffiffiffiffi
T
p

X½Tr�
t¼1

wt ) BðrÞ ¼ ðBuðrÞ;BvðrÞ0Þ0

where B(r) is a (p + 1)-dimensional Brownian motion with a long-run
covariance matrix given by

X ¼ r2
u Xuv

Xvu Xvv

� �
> 0;

where

r2
u ¼ E½u2

t �; Xuv ¼ Ruv þ Kuv þ K0vu; Xvu ¼ Rvu þ Kvu þ K0uv

and Xvv ¼ Rvv þ Kvv þ K0vv;
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where

Ruv ¼ E½utv
0
t�; Rvv ¼ E½vtv

0
t�; Kuv ¼

X1
k¼1

E½ut�kvt�;

Kvu ¼
X1
k¼1

E½vt�kut� and Kvv ¼
X1
k¼1

E½vtv
0
t�k�:

(A3) E(ut) ¼ 0, E|ut|
4 ¼ j < 1 and ut is independent of F qu

t� 1 where
F qu

t ¼ rðqt�j; ut�j; j � 0Þ.
(A4) The threshold parameter c is such that c 2 C ¼ [cL, cU] a closed and

bounded subset of the sample space of the threshold variable.
(A5) The p-dimensional I(1) vector xt is not cointegrated.

Assumptions (A1) and (A3) above are needed for establishing a limit theory
for an empirical process such as

PT
t¼1 utIðqt�1 � cÞ=

ffiffiffiffi
T
p

and are similar to
the assumptions in Caner and Hansen (2001). Assumption (A2) is a
multivariate invariance principle for the partial sum process constructed from
wt and is standard in the literature. Note, for instance, that (A2) is implied
by (A1) provided that some moment requirements are imposed on ut
and vt. More specifically, under E(ut) ¼ 0, E(vt) ¼ 0 and the requirement
that E|ut|

2+q < 1, E|vit|
2+q < 1 and E|utvit|

2+q < 1 for some q > 0 and
i ¼ 1, . . . , p, the multivariate invariance principle follows directly from (A1).
Although the finite fourth moment assumption we are making in (A3) is not
strictly necessary for the invariance principle, it is needed here for
establishing the tightness properties of the above-mentioned empirical
process. It is important to note at this stage that the particular structure
of the long-run covariance matrix X restricts the nature of the temporal
dependence displayed by ut. Although it allows for the endogeneity of xt
and serial correlation in vt, it rules out the possibility of serial correlation in
ut. The treatment of serial correlation in ut or more generally the presence of
dependent errors in nonlinear models with I(1) variables is a new and
technically challenging area for which few results are available in the
literature (see De Jong, 2002). We relegate the treatment of this case to the
end of this section, where we present a new set of results covering a range
of relevant scenarios allowing ut to be a serially correlated process. It is also
important to note at this stage that even under the more restrictive
framework described by (A2), the properties of tests on the parameters
underlying equation (1) turn out to be substantially different from what is
commonly documented in the linear cointegration literature. An assumption
similar to (A2)–(A3) above is also made in Chang et al. (2001), for instance,
where the author’s goal was to explore the asymptotic properties of
parameter estimators obtained from a nonlinear cointegrating regression.
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It is also important to highlight the fact that assumption (A1) requires
the variable triggering the regime switches to be stationary, while at the
same time allowing it to follow a very rich class of stochastic processes. It
rules out, however, the possibility of qt being I(1) itself. Assumption (A4)
is standard in the literature on threshold models (see, for instance, Hansen,
1996, 1999, 2000; Gonzalo and Pitarakis, 2002, 2006a, b). The threshold
variable sample space C is typically taken to be [cL, cU], with cL and cU
chosen such that P(qt)d � cL) ¼ h1 > 0 and P(qt)d � cU) ¼ 1 ) h1. The
choice of h1 is commonly taken to be 10% or 15%. Restricting the
parameter space of c in this fashion ensures that there are enough
observations in each regime and also guarantees the existence of
nondegenerate limits for the test statistics of interest. Assumption (A5)
rules out the possibility that the components of the p-vector xt being
themselves cointegrated. It can be seen as equivalent to requiring that the
long-run covariance matrix Xvv be positive definite.

Given the above assumptions, our key objective is to next obtain the
limiting distribution of the SupLM statistic under the null hypothesis
H0 : k ¼ 0. In analogy with the linear cointegration framework in the
context of testing hypotheses on cointegrating vectors, our analysis will
distinguish across various scenarios about the possible endogeneity of
regressors. Taking Xuv and Xvu different from zero in X, for instance,
allows for xt to be endogenous in equation (1), while setting them equal
to zero forces strict exogeneity of regressors. In what follows we make
use of the equality I(qt)d� c) ¼ I(F(qt)d)�F(c)), which allows us to use
uniformly distributed random variables (see Caner and Hansen, 2001,
p. 1586). In this context, we let h � F(c) 2 Q with Q ¼ [h1, 1 ) h1] and
throughout this paper we will be using h and F(c) interchangeably.

The next propositions present the limiting distributions of the test
statistic of interest under alternative assumptions on X. In what follows,
the quantity Wu(r, h) will denote a scalar standard Brownian sheet (two
parameter standard Brownian motion) indexed by [0, 1]2, which is a
zero-mean Gaussian process with covariance (r1 ^ r2)(h1 ^ h2), while
Bu(r, h) denotes a Brownian sheet with covariance r2

uðr1 ^ r2Þðh1 ^ h2Þ.
Similarly, the quantity Ku(r, h) will denote a standard Kiefer process
defined as Ku(r, h) ¼ Wu(r, h) ) hWu(r, 1). A Kiefer process on [0, 1]2

is also a Gaussian process with zero mean and covariance func-
tion (r1 ^ r2) (h1 ^ h2 ) h1h2). Finally, in analogy to Bv(r) introduced
in (A2), we also let Wv(r) denote a p-dimensional standard Brownian
motion.

Proposition 1 initially concentrates on the case where there is no regressor
endogeneity in equation (1) by setting Xuv ¼ Xvu ¼ 0 in the expression of X
in (A2).

820 Bulletin

� Blackwell Publishing Ltd 2006



Proposition 1. Under the null hypothesis H0 : k ¼ 0 and Assumptions (A1)–
(A5) with Xuv ¼ Xvu ¼ 0, we have

SupLM) sup
h

1

hð1� hÞ

Z 1

0
WvðrÞdKuðr; hÞ

� �0 Z 1

0
WvðrÞWvðrÞ0dr

� ��1

�
Z 1

0
WvðrÞdKuðr; hÞ

� �
ð6Þ

where Ku(r, h) ¼ Wu(r, h) ) hWu(r, 1) is a standard Kiefer process and
Wu(r, h) a standard Brownian sheet.

The above proposition establishes the limiting distribution of the SupLM
test statistic for testing the null hypothesis of linear cointegration against
threshold cointegration. Although it is free of nuisance parameters, making
it directly operational, it is important to emphasize the fact that the
formulation in equation (6) rules out the presence of regressor endogeneity.
It is very interesting to observe, however, that because of the independ-
ence of Wu(r) and Wv(r), the Kiefer process given by Ku(r, h) is also
independent of Wv(r). As Kuðr; hÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1 � hÞ

p
is itself a standard

Brownian motion (given h), writing ~WuðrÞ � Kuðr; hÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1 � hÞ

p
, we

can reformulate the limiting random variable in the right-hand side of
equation (6) asZ 1

0
WvðrÞd ~Wuðr; hÞ

� �0 Z 1

0
WvðrÞWvðrÞ0dr

� ��1 Z 1

0
WvðrÞd ~Wuðr; hÞ

� �

from which it is easy to infer its equivalence to a v2(p) random variable
(see Park and Phillips, 1988). In effect, the above result is directly
analogous to the standard asymptotic phenomenon obtained in the linear
cointegration literature when testing hypotheses about cointegrating vectors,
except that here the analogy is with the distributional theory obtained in
the stationary nonlinear framework as in Hansen (1996) and where the
limiting random variable is typically referred to as a v2 process, indexed by
a nuisance parameter such as h. It is also interesting to note here that
the limiting distribution of the SupLM test statistic presented in Propo-
sition 1 is equivalent to a random variable given by the supremum of
a squared normalized Brownian bridge process, say [W(h) ) hW(1)]0·
[W(h) ) hW(1)]/h(1 ) h), with W(�) denoting a p-dimensional standard
Brownian motion. For inference purposes, critical values for the above
distribution are readily available (see Andrews, 1993, Table 1, p. 840 or
Hansen, 1997).

We next consider the case where regressor endogeneity is allowed within
the cointegrating regression (1). The limiting distribution of the SupLM test
statistic under this scenario is summarized in Proposition 2.
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Proposition 2. Under the null hypothesis H0 : k ¼ 0 and Assumptions (A1)–
(A5) we have

SupLM) sup
h

1

hð1� hÞ

Z 1

0
BvðrÞd~Kuðr; hÞ

� �0 Z 1

0
BvðrÞBvðrÞ0dr

� ��1

�
Z 1

0
BvðrÞd~Kuðr; hÞ

� �
ð7Þ

where ~Kuðr; hÞ ¼ ðBuðr; hÞ � hBuðr; 1ÞÞ=ru with Bu(r, h) denoting a
Brownian Sheet with variance r2

urh.

At this stage, it is interesting to note the key difference between the result in
Proposition 2 and the typical result that is documented in the linear
cointegration literature. An important difference in the present framework
arises from the fact that although Bu(r) and Bv(r) are not independent since
Xuv 6¼ 0, we have

E½~Kuðr; hÞBvðrÞ� ¼ ðE½Buðr; hÞBvðrÞ� � hE½Buðr; 1ÞBvðrÞ�Þ=ru

¼ ðrhXuv � hrXuvÞ=ru ¼ 0
and in effectZ 1

0
BvðrÞd~Kuðr;hÞ	Nð0;var½~Kuðr;hÞ�GÞdP ðGÞ with G¼

Z 1

0
BvðrÞBvðrÞ0dr:

Since var½~Kuðr; hÞ� ¼ rhð1� hÞ, it follows that the SupLM statistic will have a
limiting distribution that is free of nuisance parameters despite the presence of
endogeneity, and the limiting distributions obtained under Propositions 1 and
2 are the same.

2.3. Extensions

Deterministic components
So far, our results in Propositions 1 and 2 are based on the specification
of a cointegrating regression without an intercept term. It is algebraically
straightforward to generalize all our results to the case where the model in
equation (1) is allowed to contain an intercept term by focusing on a
specification given by yt ¼ b0 þ b0xt þ ðk0 þ k0xtÞIðqt�d > cÞ þ ut. In
this context, the regressor matrices X and Xc in equation (3) would stack 1 and
xt, and I(qt)d > c) and xtI(qt)d > c), respectively. It is then straightforward to
establish that both our results in Propositions 1 and 2 continue to hold
provided that the Brownian motions Wv(r) and Bv(r) are replaced with
W
vðrÞ ¼ ð1; WvðrÞ0Þ0 and B
vðrÞ ¼ ð1; BvðrÞ0Þ0, respectively.

Serial correlation in ut
Given the structure of the long-run covariance matrix we operated under, with
our Assumption (A2), our results in Propositions 1 and 2 ruled out the
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possibility of ut being serially correlated. This assumption allowed us to
appeal directly to the weak convergence results involving quantities such as

GuT ðr; hÞ ¼
X½Tr�
t¼1

utIðF ðqt�dÞ � hÞ=
ffiffiffiffi
T
p

established in Caner and Hansen (2001) and to evaluate the long-run variance
and asymptotic covariance kernel of related quantities in a straightforward
manner. In what follows and for notational simplicity we set d ¼ 1 and since
I(qt)1� c) ¼ I(F(qt)1)�F(c)), with no loss of generality we proceed taking
qt as a uniform random variable and let h � F(c). We also let It(h) �
I(F(qt)� h).

Although the treatment of a serially correlated utwithin a linear cointegration
framework is straightforward, handling the same setup within our specification
in equation (1) becomes much more involved. The main complications come
from the need to obtain a functional central limit theorem (FCLT) for a marked
empirical process such as GuT(r, h) in which both the marks ut as well as qt are
possibly correlated general stationary processes (see Caner and Hansen, 2001,
Theorem 1, for the case of ut following an independent and identially distributed
i.i.d process). To our knowledge, formal FCLTs for such a case are not readily
available in either the econometrics or the statistics literature. The statistics
literature on empirical processes for instance has considered such processes,
typically under an i.i.d. or martingale difference sequence assumption for the
marks (see Koul, 1996; Koul and Stute, 1999; Stute, 1997 and references
therein). Although the literature on linear processes offers a valuable tool such as
the Beveridge and Nelson (BN) decomposition for handling the case of weakly
dependent errors in regression models via the choice of processes such
as ut ¼ C(L)et with et an i.i.d. or a martingale difference sequence and
CðLÞ ¼

P1
j¼0 cjLj (see Phillips and Solo, 1992), the same decomposition

applied to a nonlinear process such as GuT(r, h) does not lead to a convenient
formulation for establishing an FCLT type of result via the use of a CLT for
martingale differences, for instance. Indeed, using the BN decomposition of ut
together with summation by parts, we can write

1ffiffiffiffi
T
p

XT

t¼1
utIt�1 ¼

1ffiffiffiffi
T
p Cð1Þ

XT

t¼1
etIt�1 þ

1ffiffiffiffi
T
p

XT

t¼1
~etDIt þ opð1Þ; ð8Þ

where

~et ¼ ~CðLÞet ¼
X1
j¼0

~cjet�j with ~cj ¼
X1

k¼jþ1
ck:

Clearly, had the second term in the right hand-side of equation (8) vanished
asymptotically, the use of the results in Caner and Hansen (2001) would have
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been sufficient to treat the case of serial correlation in ut. Note also that the
two components in the right-hand side of equation (8) are not independent and
the second one clearly does not form a martingale difference sequence since ~et

is another weakly dependent process. It could also have been possible to take
an alternative approach whereby one uses our Assumption (A1) to argue that
utIt)1 is also strong mixing. Finite dimensional convergence would then
follow through the use of a CLT for strongly mixing sequences. Unfortunately,
in this context, it becomes difficult to establish the tightness of GuT(r, h)
because of the lack of an appropriate inequality equivalent to Rosenthal’s
inequality available for martingale differences. To our knowledge, the existing
statistical toolkit and the literature on moment inequalities for strongly mixing
processes, in particular, does not presently allow a full treatment of the
asymptotics of objects such as GuT(r, h) under more general assumptions.
Shao and Yu (1996) present a set of useful moment inequalities for strong
mixing sequences but they are not useful for dealing with the special case of
the above empirical process.

In order to dealwith the case of serial correlation in ut and to allowus to obtain
a tractable limit theory for handling quantities such as GuT(r, h) above, our
generalizationwill involve taking ut to follow a linearmoving average process of
finite order ‘. More formally, we introduce the following assumption about the
behaviour of the ut sequence which now replaces our earlier assumption (A3):

(B1) ut ¼ W‘(L)et where W‘ðLÞ ¼
P‘

j¼0 WjLj with W0 ¼ 1, E(et) ¼ 0,
Eðe2t Þ ¼ r2

e , E|et|
4 <1 and et is independent of F qe

t�1 ¼ rðqtþ‘�j; et�j; j � 1Þ.
We also let x2

u denote the long-run variance of ut which given our chosen
process can be written as x2

u ¼ r2
eW‘ð1Þ2. In what follows we will also refer to

Assumption (A20) as (A2) but with the stochastic behaviour of ut replaced
with that in (B1). Although we allow for serial correlation in ut as well as in qt,
in order for us to obtain a functional CLT for GuT(r, h) it is crucial to restrict
the dependence structure between the error process driving the cointegrating
regression and the threshold variable.

Our next goal is to obtain an FCLT type of result for our nonlinear process
and subsequently generalize our earlier propositions to cover the present
framework.

Proposition 3. Letting

GuT ðr; hÞ ¼
X½Tr�
t¼1

utIt�1=
ffiffiffiffi
T
p

and under Assumptions (A1), (B1) and (A4) we have GuT(r, h) � Gu(r, h) on
(r, h) 2 [0, 1]2 as T!1, where Gu(r, h) is a zero-mean Gaussian process
with covariance kernel
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x2
Gðr1; r2; h1; h2Þ ¼ ðr1 ^ r2Þr2

eE
X‘
j¼0

WjIt�1þjðh1Þ
 ! X‘

j¼0
WjIt�1þjðh2Þ

 !" #
:

Our result in Proposition 3 specializes to Theorem 1 of Caner and Hansen
(2001) if we set Wj ¼ 0 for j � 1, because this corresponds to the case where
the marks of the empirical process are i.i.d. Indeed, from the expression of
x2

Gðr1; r2; h1; h2Þ above, we obtain x2
Gðr1; r2; h1; h2Þ ¼ r2

eðr1 ^ r2Þðh1 ^ h2Þ
which can be recognized as the covariance kernel of a standard Brownian
sheet. We now have Proposition 4.

Proposition 4. Under the null hypothesis H0 : k ¼ 0 and Assumptions (A1),
(A20), (B1), (A4) and (A5) we have

SupLM) sup
h

1

hð1� hÞ

Z 1

0
BvðrÞd ~Muðr; hÞ

� �0 Z 1

0
BvðrÞBvðrÞ0dr

� ��1

�
Z 1

0
BvðrÞd ~Muðr; hÞ

� �
ð9Þ

where ~Muðr; hÞ ¼ ðGuðr; hÞ � hGuðr; 1ÞÞ=ru.

Unlike Propositions 1 and 2 where the limiting distributions were free of
nuisance parameters, the limiting process in equation (9) clearly depends on
model-specific parameters such as the Wj

0s. This occurrence is in fact the
norm in this literature where it is well documented that universal tabulations
of distributions cannot be obtained. In this sense, it is remarkable that in
the context of our Propositions 1 and 2, our particular specification led to
tractable asymptotics free of nuisance parameters. In general, however, this
is not the case and the common approach for conducting inferences involves
using bootstrap methods to approximate the null distribution of the test
statistic. It is beyond the scope of this paper to develop new bootstrapping
techniques that can accomodate the above framework. It could be an
interesting extension to follow the approach proposed in Caner and Hansen
(2001) for this purpose; to our knowledge, however, the validity of the
bootstrap has not been established in this literature.

In the context of our results in Proposition 4, however, an important
simplification occurs under the additional assumption that qt follows an i.i.d.
process. Under this particular case, it is straightforward to write the long-run
variance of Gu(r, h) as x2

Gðr; hÞ ¼ r½h2x2
u þ hð1� hÞr2

u�. It is then easy to see
that the process ~Muðr; hÞ in equation (9) is such that ~Muðr; hÞ � Kuðr; hÞ
and the limiting distribution in equation (9) reduces to that presented in
Propositions 1 and 2. We summarize the results pertaining to this particular
scenario in the following proposition.
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Proposition 5. When qt is an i.i.d. process and ut is as in (B1), the limiting
distribution in equation (9) is identical to the one obtained in Propositions 1
and 2.

III. Adequacy of asymptotic approximations and finite sample
performance

We initially illustrate the key features of the distributions presented in
Propositions 1 and 2 through the simulation of a wide range of models under
the null hypothesis of linear cointegration. Our first goal is to highlight the
robustness of the limiting distribution of the SupLM test statistic to regressor
endogeneity using a large sample size such as T ¼ 1,000 and comparing the
resulting critical values.

Our general data-generating process (DGP) is given by yt ¼ b0 + b1xt + ut
with Dxt ¼ vt and vt ¼ qvt)1 + �t, while the fitted model is given by
yt ¼ b0 + b1xt + (k0 + k1xt)I(qt)1 > c) + ut. We take qt to follow the AR(1)
process qt ¼ /qt)1 + vt and ut ¼ n.i.d.(0, 1). The null hypothesis of interest is
H0 : k0 ¼ k1 ¼ 0. Regarding the covariance structure of the random disturb-
ances, letting zt ¼ (ut, �t, vt)0 and Rz ¼ E[ztzt

0], we use

Rz ¼
1 ru� ruv

r�u 1 r�v
ruv r�v 1

0
@

1
A

which allows for a sufficiently general covariance structure while imposing
unit variances. Our covariance matrix parameterization allows the threshold
variable to be contemporaneously correlated with the random shocks hitting
the cointegrating regression and its regressors. All our experiments are
based on N ¼ 2,000 replications and set {b0, b1} ¼ {1, 2} throughout.
In order to document the robustness of our results to the degree of
persistence in the threshold variable qt, our experiments are also con-
ducted using / ¼ {0.5, 0.9}. Since our initial motivation is to explore the
robustness of the limiting distributions to the presence/absence of endo-
geneity, we consider the following DGPs. DGP1 : {ru�, ruv, r�v} ¼
{0.3, 0.7, 0.6}, DGP2 : {ru�, ruv, r�v} ¼ {0.3, 0.0, 0.6} and DGP3 : {ru�,
ruv, r�v} ¼ {0.0, 0.0, 0.0}. Note that DGP1 and DGP2 allow for the endo-
geneity of xt while DGP3 takes it as strictly exogenous. The imple-
mentation of the SupLM test also assumes 10% trimming at each end of the
sample.

Table 1 presents a range of quantiles of the simulated limiting distribution
approximated by the use of a sample of size T ¼ 1,000.

The critical values tabulated in Table 1 support the asymptotic-based result
that the limiting distributions are robust to the presence of endogeneity as well
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as serial correlation in vt. Comparing the tabulated critical values with the
process tabulated in Andrews (1993), it is also clear that the documented
equivalence of the limiting distributions is supported by our T ¼ 1,000 based
simulations. Looking at the tabulations across the two magnitudes of /, it also
appears that the limiting distributions are reasonably well approximated even
when the threshold variable is highly persistent. It is also useful to recall that
Hansen (1997) provided approximate asymptotic p-values for the same
distribution as Andrews (1993) and that they can easily be used in the present
context. In what follows, therefore, our inferences will be based on the
p-values of the computed SupLM statistic obtained through the tabulations in
Hansen (1997).

We next aim to document the size properties of the SupLM test statistic
across smaller sample sizes. For this purpose, we simulate the same DGPs as
in Table 1 using samples of size T ¼ 200 and T ¼ 400 and document the
number of times the null hypothesis is rejected using the asymptotic-based
critical values. Results for this experiment are presented in Table 2 below.
Looking at the first column of Table 2, the reported empirical size estimates

TABLE 1

Asymptotic critical values

/ ¼ 0.5 / ¼ 0.9

10% 5% 2.5% 1% 10% 5% 2.5% 1%

DGP1, q ¼ 0.0, T ¼ 1,000 10.28 12.12 13.85 15.97 10.75 12.35 14.04 15.43
DGP2, q ¼ 0.0, T ¼ 1,000 10.15 12.09 13.74 15.60 10.66 12.37 13.95 15.94
DGP3, q ¼ 0.0, T ¼ 1,000 10.38 12.10 13.38 15.78 10.34 12.58 14.00 15.99
DGP1, q ¼ 0.4, T ¼ 1,000 10.34 12.00 13.81 15.91 10.33 12.08 13.51 15.05
DGP2, q ¼ 0.4, T ¼ 1,000 10.19 11.73 13.70 15.46 10.64 12.36 13.94 15.98
DGP3, q ¼ 0.4, T ¼ 1,000 10.34 11.95 13.36 15.76 10.37 12.60 13.98 16.02
Andrews 10.50 12.27 NA 16.04 10.50 12.27 NA 16.04

TABLE 2

Empirical size estimates

Nominal

/ ¼ 0.5 / ¼ 0.9

5% 2.5% 1% 5% 2.5% 1%

DGP1, q ¼ 0.4, T ¼ 200 5.00% 2.60% 0.95% 4.55% 2.15% 0.85%
DGP1, q ¼ 0.4, T ¼ 400 4.95% 2.45% 0.96% 4.20% 2.00% 1.00%
DGP2, q ¼ 0.4, T ¼ 200 4.65% 2.45% 0.80% 4.90% 2.35% 0.85%
DGP2, q ¼ 0.4, T ¼ 400 4.75% 2.45% 0.75% 4.35% 1.70% 0.70%
DGP3, q ¼ 0.4, T ¼ 200 4.50% 2.30% 0.75% 3.85% 2.10% 0.70%
DGP3, q ¼ 0.4, T ¼ 400 4.70% 2.70% 1.20% 3.98% 1.90% 0.60%
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match their nominal counterparts reasonably well even for samples such as
T ¼ 200. Recall that our size estimates have been computed using Hansen’s
(1997) p-value approximations which are not exact p-values but obtained
through simulations instead. As the degree of persistence of the threshold
variable is allowed to increase, we note a slight deterioration in the size
properties of the test in small to moderate samples. The reported figures
suggest that the direction of the distortions depends on the DGP parameters
(e.g. covariance structure) in a complicated manner with some tendency
towards undersizeness. Overall, however, the documented size properties of
our test compare favourably with those reported in the existing literature
(see, for instance, Table II in Hansen, 1996).

Our next set of experiments are designed to highlight the finite sample
power properties of the SupLM test statistic. For this purpose, we con-
sider the DGP yt ¼ b0 + b1xt + (k0 + k1xt)I(qt ) 1 > c0) + ut with qt, ut and
vt maintained as in our size simulations. We also maintain the earlier
parameterization for b0, b1 and / as {b0, b1} ¼ {1, 2} and / ¼ {0.5, 0.9}.
Results are summarized in Table 3, which concentrates on the parameter-
ization given by DGP3 across alternative magnitudes for k0 and k1. Results for
DGP1 and DGP2 were virtually identical and are therefore omitted.

The empirical power estimates presented in Table 3 suggest that the
SupLM-based test has good power properties for detecting the presence of
threshold effects in cointegrating regressions. Even under an alternative that is
very close to the null hypothesis (e.g. k0 ¼ k1 ¼ 0.05), the test is able to reject
the null approximately 85% of the times under T ¼ 400. These figures also
compare favourably with the power properties of the SupLM-type test
statistics documented in the literature in the context of stationary regression
frameworks such as testing for SETAR-type nonlinearities (see Hansen,
1996). Experiments with different magnitudes of c0 (e.g. c0 ¼ 0.5) led to
virtually identical results and are omitted.

TABLE 3

Empirical power estimates

Nominal

/ ¼ 0.5, c0 ¼ 0 / ¼ 0.9, c0 ¼ 0

5% 2.5% 1% 5% 2.5% 1%

DGP3, k0 ¼ k1 ¼ 0.05, T ¼ 200 48.90 41.40 34.90 46.25 38.80 31.20
DGP3, k0 ¼ k1 ¼ 0.05, T ¼ 400 84.90 81.10 76.15 83.55 79.05 73.70
DGP3, k0 ¼ k1 ¼ 0.05, T ¼ 800 99.15 98.90 98.15 99.20 98.75 98.15
DGP3, k0 ¼ k1 ¼ 0.15, T ¼ 200 95.55 93.90 92.10 94.00 92.00 89.25
DGP3, k0 ¼ k1 ¼ 0.15, T ¼ 400 99.95 99.85 99.65 99.95 99.00 99.85
DGP3, k0 ¼ k1 ¼ 0.15, T ¼ 800 100.00 100.00 100.00 100.00 100.00 100.00
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Our last set of experiments are designed to illustrate our analysis of the
case where ut follows an MA process. More specifically, we concentrate on
the particular scenario where the limiting distributions of the SupLM statistic
were shown to be unaffected by the presence of serial correlation in ut. For this
purpose, we let ut follow an MA(1) process given by ut ¼ et ) 0.5et)1 with
et ¼ n.i.d.(0, 1). The process for vt is chosen as an AR(1) with q ¼ 0.4. Our
chosen covariance structure allows for endogeneity while forcing qt and et to
be independent with qt ¼ n.i.d.(0, 1). Replacing zt above with zt ¼ (et, �t, qt),
the covariance matrix Rz now has re� ¼ 0.5, req ¼ 0, and r�q ¼ 0.6 with unit
variances. Thus although we allow qt to be correlated with the shock hitting
the regressor xt, it is independent of ut. We refer to this parameterization as
DGP4 and also consider the case where Rz ¼ I, referring to it as DGP5. Results
for this set of experiments are presented in Table 4.

Comparing the critical values obtained in Table 4 with the ones in
Table 1 clearly illustrates empirically our point in Proposition 5 where we
established that even under a serially correlated error process there are
instances where the limiting distribution of the LM statistic remains free of
nuisance parameters and is identical to the one obtained in Propositions 1
and 2.

IV. Conclusions

The goal of this paper was to introduce a test statistic designed to detect the
presence of threshold effects within equilibrium relationships. Operating
within the framework of a cointegrating regression and allowing for the
presence of endogeneity and some degree of temporal dependence, we
obtained the asymptotic distribution of an LM-based test statistic designed
to test the null hypothesis of linear cointegration against threshold cointeg-
ration.

Our work assumed cointegration under both the null and alternative
hypotheses. This is common in this literature, but a very useful albeit
challenging extension would be to develop a test for the presence of
cointegration that is robust to the presence or absence of nonlinear components
such as the threshold effects analysed here. Although the framework under
which we operated is quite general, there is also considerable scope for

TABLE 4

Asymptotic critical values under MA cointegrating errors

10% 5% 2.5% 1%

DGP4, T ¼ 1,000 10.35 11.74 13.41 15.07
DGP5, T ¼ 1,000 10.42 11.97 13.46 15.42
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extension by exploring the effect of including deterministic trend components
and additional stationary regressors within the specification in equation (1).
Perhaps, more importantly, a general estimation and inference theory dealing
with the presence of threshold-type nonlinearities in both the long-run
equilibrium relationship(s) and the adjustment process to equilibrium is still not
completed. These issues are currently being investigated by the authors.
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Appendix

A more detailed presentation of all our proofs can be found in Gonzalo and
Pitarakis (2005).
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Proof of Proposition 1

Follows as a special case of the proof of Proposition 2 writing
Bu(r, h) ¼ ruWu(r, h), BvðrÞ ¼ X

1
2
vvWvðrÞ and letting Xuv ¼ 0. j

Proof of Proposition 2

Lemma 3.1 in Phillips and Durlauf (1986), Lemma A3 in Gonzalo and
Pitarakis (2006a) and the continuous mapping theorem give

X0cMXc=T 2 ) hð1� hÞ
Z 1

0
BvB

0
vdr:

From Lemma 3.1 in Phillips and Durlauf (1986) we have

X0u

T
)
Z 1

0
BvðrÞdBuðr; 1Þ þ Kvu þ Rvu:

From Theorem 2 in Caner and Hansen (2001) and standard manipulations, it
follows that

X0cu

T
)
Z 1

0
BvðrÞdBuðr; 1Þ �

Z 1

0
BvdBuðr; hÞ þ ð1� hÞKvu þ ð1� hÞRvu;

leading to

X0cMu

T ~r0
) �

Z 1

0
BvðrÞd~Kuðr; hÞ:

Combining the above into the expression of the SupLM test statistic and the
use of the continuous mapping theorem leads to the desired result. j

Proof of Proposition 3

From

XT

t¼1
utIt�1ðhÞ ¼

XT

t¼1
ð
X‘
j¼0

Wjet�jÞIt�1ðhÞ;

using summation by parts we obtain

P½Tr�
t¼1

utIt�1ðhÞffiffiffiffi
T
p ¼

P½Tr�
t¼1

etdt�1ðhÞffiffiffiffi
T
p þ opð1Þ where dt�1ðhÞ ¼

X‘
j¼0

WjIt�1þjðhÞ:

For all h, fetdt�1ðhÞ; F qe
t�1g with F qe

t�1 ¼ rðqtþ‘�j; et�j; j � 0Þ is a strictly
stationary and ergodic martingale difference sequence with variance
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E½e2t dt�1ðhÞ2�. By the CLT for martingale difference sequences, it follows that
for any (r, h), GT ðr; hÞ !d Nð0; x2

Gðr; hÞÞ with x2
Gðr; hÞ ¼ rE½e2t dt�1ðhÞ2�.

It is also straightforward to see that the limiting covariance kernel is given
by x2

Gðr1; r2; h1; h2Þ ¼ ðr1 ^ r2Þr2
eE½e2t dt�1ðh1Þdt�1ðh2Þ�. Combined with the

Cramer–Wold device the fidi convergence follows. Given our assumptions on
et, the stochastic equicontinuity of GT(r, h) follows directly from Theorem 1 in
Caner and Hansen (2001). j

Proof of Proposition 4

The difference between the setup of Proposition 2 and the present framework
is the treatment of the quantity u0 �Xc=T where �Xc ¼ X 
 Iðq � cÞ. It is a
direct consequence of Theorem 2 in Caner and Hansen (2001) that we have

u0 �Xc

T
)
Z 1

0
BvðrÞdGuðr; hÞ þ KG

vu þ RG
vu

on h 2 [0, 1] and the above limiting process is almost surely continuous. Here

KG
vu ¼

X1
k¼1

E½vt�kutIt�1� þ
X1
k¼1

E½ut�kIt�k�1vt�; RG
vu ¼ E½vtutIt�1�

and given our assumptions we have KG
vu ¼ hKvu and RG

vu ¼ hRvu. The rest of
the proof follows as the proof of Proposition 2. j

Proof of Proposition 5

Under qt i.i.d. it can be shown that Gu(r, h) is equivalent to hBu(r) +
ruKu(r, h). Plugging this in the expression of ~Muðr; hÞ in equation (9) gives
~Muðr; hÞ ¼ Kuðr; hÞ and the result follows. j
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