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1 Introduction

Economic theory often predicts that some economic variables must be linked through long run

equilibrium relationships. From an applied viewpoint, a methodology for empirically assessing the

existence of such relationships when linear, is given by the concept of cointegration. Indeed, two

or more economic variables that are expected to be in equilibrium must be cointegrated. Examples

include linkages between wealth and consumption recently investigated in Lettau and Ludvigson

(2004), variables which theory suggests are tied via present value relationships such as prices and

dividends (Campbell and Shiller (1987)), amongst numerous others (see Ogaki, Jang and Lim (2005)

for a comprehensive overview). This statistical notion of an equilibrium relationship or long run

attractor linking two or more variables, together with Granger’s representation theorem ensuring

the existence of an error correction representation, provided researchers with valuable tools for

jointly modelling and conducting inferences on the long run equilibrium characterising two or more

variables, together with the short run adjustment process towards such an equilibrium.

Although economic relationships are often nonlinear, characterised for instance by the presence

of regime specific behaviour such as the display of different dynamics depending on the phases of

the business cycle, the statistical concept of cointegration as originally defined aimed to refer solely

to linear combinations of variables linked through a long run equilibrium relationship. In this paper

our objective is to propose a test for assessing the presence of regime specific nonlinearities within

cointegrating relationships. Although the idea of extending the concept of cointegration to a non-

linear framework is not new (see Granger and Terasvirta (1993), Granger (1995), Balke and Fomby

(1997), Hansen and Seo (2002), Seo (2004), Kapetanios, Shin and Snell (2004) amongst numerous

others), nonlinearities in this context have been only understood to affect the adjustment process

to equilibrium while the equilibrium relationship itself has typically been taken to be represented

by a single and linear regression model.

The type of nonlinearity we propose to work with instead involves introducing regime specific

behaviour within the long run equilibrium relationship itself. More specifically, we propose to intro-

duce threshold type effects to model the possibility that the relationship linking the nonstationary

variables undergoes regime switches. Such threshold effects lead to cointegrating regressions that

are piecewise linear, separated according to the magnitude of a threshold variable which triggers

the regime switches. Unlike Markov-Switching type of nonlinearities where an unobservable state
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governs regime switches, our analysis exclusively focuses on nonlinearities induced by observable

factors, possibly dictated by economic theory and that are assumed to be stationary throughout

(e.g. growth rate in the economy, term structure of interest rates). In addition to offering an intu-

itive way of capturing economically meaningful nonlinearities, models with threshold effects are also

straightforward to estimate by simple least squares methods or their variants which is a considerable

advantage in the present context. Although the multitude of alternative nonlinear specifications

designed to capture regime switching behaviour may suggest that the threshold family of models is

only a narrow subset, especially given the fact that economic theory is often silent about the specific

type of nonlinearity that may characterise the linkages among economic variables, Petruccelli (1992)

has also shown that threshold specifications may be viewed as an approximation to a more general

class of nonlinear models.

Having inference tools designed to assess the presence of nonlinearities within a cointegrating

regression is particularly important in applied work. Unlike the case where the nonlinearities are

introduced solely within the adjustment process to equilibrium for instance, omitting the presence

of nonlinear components such as threshold effects in long run equilibrium relationships themselves

will lead to misleading interpretations of equilibrium relationships since the cointegrating vector

will no longer be consistently estimated. Given the importance of threshold effects documented

in the economics literature (see for instance Kanbur (2005) and references therein) and the fact

that cointegrating regressions can be viewed as a statistical counterpart to the notion of a long

run equilibrium linking two or more variables, we also conjecture that the econometric framework

we focus on in this paper may provide a useful statistical environment for modelling the notion of

switching or multiple long run equilibria. The literature on animal spirits for instance (Howitt and

McAffee (1992)) suggests instances where some extraneous random variable such as a confidence

indicator may cause macroeconomic variables to switch across different paths.

Our analytical framework involves working within a triangular type of representation of a set

of variables known to be of I(1) type. Our goal is then to explore the properties of a test statistic

for testing the null hypothesis of linear cointegration versus nonlinear threshold type cointegration,

maintaining the presence of cointegration under both the null and alternative hypotheses.

In related work, Choi and Saikkonen (2004) also explored the properties of statistical tests for

detecting the presence of nonlinearities within cointegrating regressions. Unlike the present frame-

work however, they concentrated on a smooth transition type of functional form whose argument
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was taken to be one of the unit root variables within the cointegrating regression. The idea of

introducing nonlinear dynamics directly within cointegrating regressions has also been recently ad-

dressed in Park and Phillips (1999, 2001) and Chang, Park and Phillips (2001) where the authors

key concern was parameter estimation rather than testing in the context of regression models con-

taining nonlinear transformations of I(1) variables. Earlier research that explored the possibility

of regime switches in cointegrating vectors can also be found in Hansen (1992) and Gregory and

Hansen (1996) where the motivation of the authors was to test for the presence of structural break

type parameter instability within cointegrating relationships.

The plan of the paper is as follows. Section II introduces the formal statistical model, our

operating assumptions together with the resulting limiting distributions. Section III assesses the

finite sample properties of the test for threshold cointegration. Section IV concludes.

2 Testing for Threshold Effects

2.1 The Model and Test Statistic

We consider the following cointegrating regression with a threshold nonlinearity

yt = β′xt + λ′xtI(qt−d > γ) + ut (1)

xt = xt−1 + vt (2)

where ut and vt are scalar and p-vector valued stationary disturbance terms, qt−d with d ≥ 1 is the

stationary threshold variable and I(qt−d > γ) is the usual indicator function taking the value one

when qt−d > γ and zero otherwise. The particular choice of d is not essential for our analysis and

d will be taken as known throughout. For the simplicity of the exposition we temporarily exclude

the presence of deterministic components from (1) and postpone their inclusion to the end of this

section.

Note that cointegration in the context of the specification in (1) is understood in the sense

that although both yt and xt have variances that grow with t, the threshold combination given

by ut is stationary. Because of the lack of a precise definition of concepts such as nonlinear or

threshold cointegration in the existing literature, it is not unusual to find the same terms refer

to fundamentally different concepts. Unlike our specification in (1) for instance, the notion of

3



threshold cointegration has often been used to refer to cases where the cointegrating relationship

linking two or more variables is linear while the adjustment process to the long run equilibrium

contains threshold effects. Differently put, a cointegrating relationship that is linear has commonly

been referred to as “threshold cointegration” because of the presence of threshold effects in the

adjustment mechanism.

An important source of difficulty when attempting to define a concept such as threshold cointe-

gration comes from the fact that the concept of integratedness commonly used to refer to series as

I(1) or I(0) is a linear concept and not helpful when trying to establish the stationarity properties

of nonlinear processes. If xt is an I(1) variable for instance, the degree of integration of powers of

xt is not obvious. Similar problems occur when dealing with stochastic unit root models or models

containing threshold effects with terms such as yt = xtI(qt > γ) where taking first differences do not

make the series I(0) (strictly speaking they would be I(∞) processes). Because of these difficulties

and before introducing a formal definition of the concept of threshold cointegration we propose to

use the following alternative to the concept of I(.)’ness

Definition 1 A time series yt is said to be summable of order δ, symbolically represented as Sy(δ)

if the sum Sy =
∑T

t=1(yt − E[yt]) is such that Sy/T
1
2
+δ = Op(1) as T →∞.

Note that in the context of the above definition, a process that is I(d) can be referred to as Sy(d)

and the threshold process introduced in (1) is clearly Sy(1). Using this concept of summability of

order δ we can now provide a formal definition of the concept of threshold cointegration as follows

Definition (Threshold Cointegration) Let yt and xt be Sy(δ1) and Sy(δ2) respectively. They are

threshold cointegrated if there exists a threshold combination (1,−(β1I(qt ≤ γ) + β2I(qt > γ))) such

that zt = yt − β1xtI(qt ≤ γ)− β2xtI(qt > γ) is Sy(δ0) with δ0 < min(δ1, δ2).

Given the formal definition of threshold cointegration presented above it is now clear that within

our specification in (1), yt and xt are threshold cointegrated with δ0 = 0 and δ1 = δ2 = 1. The

threshold variable qt−d allows the cointegrating vector to switch between (1,−β′) and (1,−(β+λ)′)

depending on whether qt−d crosses the unknown threshold level given by γ. This is also what we

denote as two long-run equilibria.

We next turn to the properties of a test statistic for assessing the presence of threshold cointe-
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gration. For this purpose, it is convenient to reformulate (1) in matrix format as

y = Xβ + Xγλ + u (3)

where X stacks xt while Xγ stacks xtI(qt−d > γ). For later use we also introduce the (p + 1)

dimensional random disturbance vector wt = (ut,v
′
t)
′. In the context of the model in (1) or

(3), a natural test of the hypothesis of linear cointegration versus the alternative of threshold

cointegration takes the form of testing H0 : λ = 0 against H1 : λ 6= 0 and here we propose to

explore the properties of an LM type test statistic for testing this null hypothesis. Note that under

H0 the threshold parameter given by γ remains unidentified. This is now a well known problem

in the literature on testing for regime switching type of nonlinearities and is usually handled by

viewing the test statistic as a random function of the nuisance parameter and basing inferences on

a particular functional of the test statistic such as its supremum over γ for instance (see Davies

(1977, 1987), Andrews and Ploberger (1994), Hansen (1996)).

Letting LMT (γ) denote the Lagrange Multiplier type test statistic obtained for each γ, we

will base our inferences on the quantity given by SupLM = supγ∈Γ LMT (γ). At this stage it is

also important to recall that given γ ∈ Γ the model in (3) is linear in its parameters and can

therefore be easily estimated as it would have been the case in a purely linear framework. Letting

M = I−X(X′X)−1X′, the standard form of the LMT (γ) statistic can be formulated as

LMT (γ) =
1

σ̃2
0

y′MXγ(X
′
γMXγ)

−1X′
γMy (4)

where σ̃2
0 denotes the residual variance estimated from (3) under the null hypothesis of linear

cointegration. Since under the null hypothesis we have y′M = u′M, the test statistic in (4) can

also be written as

LMT (γ) =
1

σ̃2
0

u′MXγ(X
′
γMXγ)

−1X′
γMu. (5)

2.2 Assumptions and Limiting Distributions

Throughout this paper, we will be operating under the following set of assumptions

(A1) The sequence {ut,vt, qt} is strictly stationary and ergodic and strong mixing with mixing

coefficients αn satisfying
∑∞

n=1 α
1
2
− 1

r
n < ∞ for some r > 2; The threshold variable qt has a

distribution function F (.) that is continuous and strictly increasing.
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(A2)
1√
T

[Tr]∑
t=1

wt ⇒ B(r) = (Bu(r),Bv(r)
′)′ where B(r) is a (p + 1) dimensional Brownian Motion

with a long run covariance matrix given by

Ω =

(
σ2

u Ωuv

Ωvu Ωvv

)
> 0,

where σ2
u = E[u2

t ], Ωuv = Σuv +Λuv +Λ′
vu, Ωvu = Σvu +Λvu +Λ′

uv and Ωvv = Σvv +Λvv +Λ′
vv

where Σuv = E[utv
′
t], Σvv = E[vtv

′
t], Λuv =

∑∞
k=1 E[ut−kvt], Λvu =

∑∞
k=1 E[vt−kut] and

Λvv =
∑∞

k=1 E[vtv
′
t−k].

(A3) E(ut) = 0, E|ut|4 = κ < ∞ and ut is independent of F qu
t−1 where F qu

t = σ(qt−j, ut−j; j ≥ 0).

(A4) The threshold parameter γ is such that γ ∈ Γ = [γL, γU ] a closed and bounded subset of the

sample space of the threshold variable.

(A5) The p dimensional I(1) vector xt is not cointegrated.

Assumptions (A1) and (A3) above are needed for establishing a limit theory for an empirical process

such as
∑T

t=1 utI(qt−1 ≤ γ)/
√

T and are similar to the assumptions in Caner and Hansen (2001).

Assumption (A2) is a multivariate invariance principle for the partial sum process constructed from

wt and is standard in the literature. Note for instance that (A2) is implied by (A1) provided

that some moment requirements are imposed on ut and vt. More specifically, under E(ut) = 0,

E(vt) = 0 and the requirement that E|ut|2+ρ < ∞, E|vit|2+ρ < ∞ and E|utvit|2+ρ < ∞ for some

ρ > 0 and i = 1, . . . , p, the multivariate invariance principle follows directly from (A1). Although the

finite fourth moment assumption we are making in (A3) is not strictly necessary for the invariance

principle, it is here needed for establishing the tightness properties of the above mentioned empirical

process. It is important to note at this stage that the particular structure of the long run covariance

matrix Ω restricts the nature of the temporal dependence displayed by ut. Although it allows for

the endogeneity of xt and serial correlation in vt, it rules out the possibility of serial correlation

in ut. The treatment of serial correlation in ut or more generally the presence of dependent errors

in nonlinear models with I(1) variables is a new and technically challenging area for which few

results are available in the literature (see De Jong (2002)). We postpone the treatment of this

case to the end of this section, where we present a new set of results covering a range of relevant

scenarios allowing ut to be a serially correlated process. It is also important to note at this stage

6



that even under the more restrictive framework described by (A2) the properties of tests on the

parameters underlying (1) turn out to be substantially different from what is commonly documented

in the linear cointegration literature. An assumption similar to (A2)-(A3) above is also made in

Chang, Park and Phillips (2001) for instance, where the author’s goal was to explore the asymptotic

properties of parameter estimators obtained from a nonlinear cointegrating regression.

It is also important to highlight the fact that assumption (A1) requires the variable triggering

the regime switches to be stationary while at the same time allowing it to follow a very rich class of

stochastic processes. It rules out however the possibility of qt being I(1) itself. Assumption (A4) is

standard in the literature on threshold models (see for instance Hansen (1996, 1999, 2000), Gonzalo

and Pitarakis (2002, 2006a, 2006b)). The threshold variable sample space Γ is typically taken to

be [γL, γU ] with γL and γU chosen such that P (qt−d ≤ γL) = θ1 > 0 and P (qt−d ≤ γU) = 1 − θ1.

The choice of θ1 is commonly taken to be 10% or 15%. Restricting the parameter space of γ in this

fashion ensures that there are enough observations in each regime and also guarantees the existence

of nondegenerate limits for the test statistics of interest. Assumption (A5) rules out the possibility

that the components of the p-vector xt being themselves cointegrated. It can be seen as equivalent

to requiring that the long run covariance matrix Ωvv be positive definite.

Given the above assumptions, our key objective is to next obtain the limiting distribution of

the SupLM statistic under the null hypothesis H0 : λ = 0. In analogy with the linear cointegration

framework in the context of testing hypotheses on cointegrating vectors, our analysis will distinguish

across various scenarious about the possible endogeneity of regressors. Taking Ωuv and Ωvu different

from zero in Ω for instance allows for xt to be endogenous in (1) while setting them equal to zero

forces strict exogeneity of regressors. In what follows we make use of the equality I(qt−d ≤ γ) =

I(F (qt−d) ≤ F (γ)), which allows us to use uniformly distributed random variables (see Caner and

Hansen (2001), p. 1586). In this context, we let θ ≡ F (γ) ∈ Θ with Θ = [θ1, 1− θ1] and throughout

this paper we will be using θ and F (γ) interchangeably.

The next propositions present the limiting distributions of the test statistic of interest under

alternative assumptions on Ω. In what follows the quantity Wu(r, θ) will denote a scalar standard

Brownian Sheet (two parameter standard Brownian Motion) indexed by [0, 1]2, which is a zero

mean Gaussian process with covariance (r1 ∧ r2)(θ1 ∧ θ2) while Bu(r, θ) denotes a Brownian Sheet

with covariance σ2
u(r1 ∧ r2)(θ1 ∧ θ2). Similarly, the quantity Ku(r, θ) will denote a standard Kiefer

Process defined as Ku(r, θ) = Wu(r, θ) − θWu(r, 1). A Kiefer process on [0, 1]2 is also a Gaussian

7



process with zero mean and covariance function (r1∧r2)(θ1∧θ2−θ1θ2). Finally, in analogy to Bv(r)

introduced in (A2), we also let Wv(r) denote a p dimensional standard Brownian Motion.

The following proposition initially concentrates on the case where there is no regressor endo-

geneity in (1) by setting Ωuv = Ωvu = 0 in the expression of Ω in (A2).

Proposition 1 Under the null hypothesis H0 : λ = 0 and assumptions (A1)-(A5) with Ωuv =
Ωvu = 0, we have

SupLM ⇒ sup
θ

1
θ(1− θ)

[∫ 1

0

Wv(r)dKu(r, θ)
]′ [∫ 1

0

Wv(r)Wv(r)′dr

]−1 [∫ 1

0

Wv(r)dKu(r, θ)
]

(6)

where Ku(r, θ) = Wu(r, θ)−θWu(r, 1) is a standard Kiefer Process and Wu(r, θ) a standard Brownian

Sheet.

The above proposition establishes the limiting distribution of the SupLM test statistic for testing

the null hypothesis of linear cointegration against threshold cointegration. Although it is free of

nuisance parameters, making it directly operational, it is important to emphasise the fact that the

formulation in (6) rules out the presence of regressor endogeneity. It is very interesting to observe

however that because of the independence of Wu(r) and Wv(r), the Kiefer process given by Ku(r, θ)

is also independent of Wv(r). Since Ku(r, θ)/
√

θ(1− θ) is itself a standard Brownian Motion (given

θ), writing W̃u(r) ≡ Ku(r, θ)/
√

θ(1− θ), we can reformulate the limiting random variable in the

right hand side of (6) as

[∫ 1

0

Wv(r)dW̃u(r, θ)

]′ [∫ 1

0

Wv(r)Wv(r)
′dr

]−1 [∫ 1

0

Wv(r)dW̃u(r, θ)

]

from which it is easy to infer its equivalence to a χ2(p) random variable (see Park and Phillips

(1988)). In effect the above result is directly analogous to the standard asymptotics phenomenon

obtained in the linear cointegration literature when testing hypotheses about cointegrating vectors,

except that here the analogy is with the distributional theory obtained in the stationary nonlinear

framework as in Hansen (1996) and where the limiting random variable is typically referred to as

a χ2 process, indexed by a nuisance parameter such as θ. It is also interesting to note here that

the limiting distribution of the SupLM test statistic presented in Proposition 1 is equivalent to

a random variable given by the supremum of a squared normalised Brownian Bridge process, say

[W(θ)− θW(1)]′[W(θ)− θW(1)]/θ(1− θ) with W(.) denoting a p-dimensional standard Brownian

Motion. For inference purposes, critical values for the above distribution are readily available (see

Andrews (1993, Table 1, p.840) or Hansen (1997)).
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We next consider the case where regressor endogeneity is allowed within the cointegrating re-

gression (1). The limiting distribution of the SupLM test statistic under this scenario is summarised

in the following Proposition.

Proposition 2 Under the null hypothesis H0 : λ = 0 and assumptions (A1)-(A5) we have

SupLM ⇒ sup
θ

1
θ(1− θ)

[∫ 1

0

Bv(r)dK̃u(r, θ)
]′ [∫ 1

0

Bv(r)Bv(r)′dr

]−1 [∫ 1

0

Bv(r)dK̃u(r, θ)
]

(7)

where K̃u(r, θ) = (Bu(r, θ) − θBu(r, 1))/σu with Bu(r, θ) denoting a Brownian Sheet with variance

σ2
urθ.

At this stage, it is interesting to note the key difference between the result in Proposition 2 and

the typical result that is documented in the linear cointegration literature. An important difference

in the present framework arises from the fact that although Bu(r) and Bv(r) are not indepen-

dent since Ωuv 6= 0, we have E[K̃u(r, θ)Bv(r)] = (E[Bu(r, θ)Bv(r)] − θE[Bu(r, 1)Bv(r)])/σu =

(rθΩuv − θrΩuv)/σu = 0 and in effect
∫ 1

0
Bv(r)dK̃u(r, θ) ≈ N(0, V ar[K̃u(r, θ)]G)dP (G) with G =∫ 1

0
Bv(r)Bv(r)

′dr. Since V ar[K̃u(r, θ)] = rθ(1 − θ) it follows that the SupLM statistic will have a

limiting distribution that is free of nuisance parameters despite the presence of endogeneity and the

limiting distributions obtained under Propositions 1 and 2 are the same.

2.3 Extensions

2.3.1 Deterministic Components

So far, our results in Propositions 1 and 2 are based on the specification of a cointegrating regression

without an intercept term. It is algebraically straightforward to generalise all our results to the case

where the model in (1) is allowed to contain an intercept term by focusing on a specification given by

yt = β0 +β′xt +(λ0 +λ′xt)I(qt−d > γ)+ut. In this context, the regressor matrices X and Xγ in (3)

would stack 1 and xt, and I(qt−d > γ) and xtI(qt−d > γ) respectively. It is then straightforward to

establish that both our results in Propositions 1 and 2 continue to hold provided that the Brownian

Motions Wv(r) and Bv(r) are replaced with W∗
v(r) = (1,Wv(r)

′)′ and B∗
v(r) = (1,Bv(r)

′)′.

2.3.2 Serial Correlation in ut

Given the structure of the long run covariance matrix we operated under, with our assumption (A2)

our results in Propositions 1 and 2 ruled out the possibility of ut being serially correlated. This
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assumption allowed us to appeal directly to the weak convergence results involving quantities such

as GuT (r, θ) =
∑[Tr]

t=1 utI(F (qt−d) ≤ θ)/
√

T established in Caner and Hansen (2001) and to evaluate

the long run variance and asymptotic covariance kernel of related quantities in a straightforward

manner. In what follows and for notational simplicity we set d = 1 and since I(qt−1 ≤ γ) =

I(F (qt−1) ≤ F (γ)), with no loss of generality we proceed taking qt as a uniform random variable

and let θ ≡ F (γ). We also let It(θ) ≡ I(F (qt) ≤ θ).

Although the treatment of a serially correlated ut within a linear cointegration framework is

straightforward, handling the same setup within our specification in (1) becomes much more in-

volved. The main complications come from the need to obtain a Functional Central Limit Theorem

for a marked empirical process such as GuT (r, θ) in which both the marks ut as well as qt are possi-

bly correlated general stationary processes (see Caner and Hansen (2001, Theorem 1) for the case

of ut following an i.i.d process). To our knowledge formal FCLTs for such a case are not readily

available in either the econometrics or the statistics literature. The statistics literature on empirical

processes for instance has considered such processes, typically under an i.i.d. or martingale differ-

ence sequence assumption for the marks (see Koul (1996), Koul and Stute (1999), Stute (1997) and

references therein). Although the literature on linear processes offers a valuable tool such as the

Beveridge and Nelson decomposition for handling the case of weakly dependent errors in regression

models via the choice of processes such as ut = C(L)et with et an i.i.d. or a martingale difference

sequence and C(L) =
∑∞

j=0 cjL
j (see Phillips and Solo (1992)), the same decomposition applied to

a nonlinear process such as GuT (r, θ) does not lead to a convenient formulation for establishing an

FCLT type of result via the use of a CLT for martingale differences for instance. Indeed, using the

BN decomposition of ut together with summation by parts, we can write

1√
T

T∑
t=1

utIt−1 =
1√
T

C(1)
T∑

t=1

etIt−1 +
1√
T

T∑
t=1

ẽt∆It + op(1), (8)

where ẽt = C̃(L)et =
∑∞

j=0 c̃jet−j with c̃j =
∑∞

k=j+1 ck. Clearly, had the second term in the

right hand side of (8) vanished asymptotically, the use of the results in Caner and Hansen (2001)

would have been sufficient to treat the case of serial correlation in ut. Note also that the two

components in the right hand side of (8) are not independent and the second one clearly does not

form a martingale difference sequence since ẽt is another weakly dependent process. It could also

have been possible to take an alternative approach whereby one uses our assumption (A1) to argue

that utIt−1 is also strong mixing. Finite dimensional convergence would then follow through the
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use of a CLT for strongly mixing sequences. Unfortunately, in this context it becomes difficult

to establish the tightness of GuT (r, θ) due to the lack of an appropriate inequality equivalent to

Rosenthal’s inequality available for martingale differences. To our knowledge the existing statistical

toolkit and the literature on moment inequalities for strongly mixing processes in particular does

not presently allow a full treatment of the asymptotics of objects such as GuT (r, θ) under more

general assumptions. Shao and Yu (1996) present a set of useful moment inequalities for strong

mixing sequences but they are not useful for dealing with the special case of the above empirical

process.

In order to deal with the case of serial correlation in ut and to allow us to obtain a tractable limit

theory for handling quantities such as GuT (r, θ) above, our generalisation will involve taking ut to

follow a linear Moving Average process of finite order `. More formally, we introduce the following

assumption about the behaviour of the ut sequence which now replaces our earlier assumption (A3)

(B1) ut = Ψ`(L)et where Ψ`(L) =
∑`

j=0 ΨjL
j with Ψ0 = 1, E(et) = 0, E(e2

t ) = σ2
e , E|et|4 < ∞ and

et is independent of F δ
t−1 = σ(qt+`−j, et−j; j ≥ 1).

We also let ω2
u denote the long run variance of ut which given our chosen process can be written

as ω2
u = σ2

eΨ`(1)2. In what follows we will also refer to assumption (A2’) as (A2) but with the

stochastic behaviour of ut replaced with that in (B1). Although we allow for serial correlation in

ut as well as in qt, in order for us to obtain a functional CLT for GuT (r, θ) it is crucial to restrict

the dependence structure between the error process driving the cointegrating regression and the

threshold variable.

Our next goal is to obtain an FCLT type of result for our nonlinear process and subsequently

generalise our earlier Propositions to cover the present framework.

Proposition 3 Letting GuT (r, θ) =
∑[Tr]

t=1 utIt−1/
√

T and under assumptions (A1), (B1) and (A4)

we have GuT (r, θ) ⇒ Gu(r, θ) on (r, θ) ∈ [0, 1]2 as T →∞, where Gu(r, θ) is a zero mean Gaussian

process with covariance kernel ω2
G(r1, r2, θ1, θ2) = (r1∧r2)σ

2
eE[(

∑`
j=0 ΨjIt−1+j(θ1))(

∑`
j=0 ΨjIt−1+j(θ2))].

Our result in Proposition 3 specialises to Theorem 1 of Caner and Hansen (2001) if we set Ψj = 0 for

j ≥ 1 since this corresponds to the case where the marks of the empirical process are i.i.d. Indeed,

from the expression of ω2
G(r1, r2, θ1, θ2) above we obtain ω2

G(r1, r2, θ1, θ2) = σ2
e(r1∧r2)(θ1∧θ2) which

can be recognised as the covariance kernel of a standard Brownian Sheet. We now have

11



Proposition 4 Under the null hypothesis H0 : λ = 0 and assumptions (A1), (A2’), (B1) and
(A4)-(A5) we have

SupLM ⇒ sup
θ

1
θ(1− θ)

[∫ 1

0

Bv(r)dM̃u(r, θ)
]′ [∫ 1

0

Bv(r)Bv(r)′dr

]−1 [∫ 1

0

Bv(r)dM̃u(r, θ)
]

(9)

where M̃u(r, θ) = (Gu(r, θ)− θGu(r, 1))/σu.

Unlike Propositions 1 and 2 where the limiting distributions were free of nuisance parameters,

the limiting process in (9) clearly depends on model specific parameters such as the Ψ′
js. This

occurrence is in fact the norm in this literature where it is well documented that universal tabulations

of distributions cannot be obtained. In this sense it is remarkable that in the context of our

Propositions 1 and 2, our particular specification led to tractable asymptotics free of nuisance

parameters. In general however this is not the case and the common approach for conducting

inferences involves using bootstrap methods to approximate the null distribution of the test statistic.

It is beyond the scope of this paper to develop new bootstrapping techniques that can accomodate

the above framework. It could be an interesting extension to follow the approach proposed in Caner

and Hansen (2001) for this purpose, to our knowledge however the validity of the bootstrap has not

been established in this literature.

In the context of our results in Proposition 4 however, an important simplification occurs under

the additional assumption that qt follows an iid process. Under this particular case it is straight-

forward to write the long run variance of Gu(r, θ) as ω2
G(r, θ) = r[θ2ω2

u + θ(1− θ)σ2
u]. It is then easy

to see that the process M̃u(r, θ) in (9) is such that M̃u(r, θ) ≡ Ku(r, θ) and the limiting distribution

in (9) reduces to that presented in Propositions 1 and 2. We summarise the results pertaining to

this particular scenario in the following Proposition.

Proposition 5 When qt is an iid process and ut is as in (B1) the limiting distribution in (9) is

identical to the one obtained in Propositions 1 and 2.

3 Adequacy of Asymptotic Approximations and Finite Sam-

ple Performance

We initially illustrate the key features of the distributions presented in Propositions 1-2 through the

simulation of a wide range of models under the null hypothesis of linear cointegration. Our first goal

is to highlight the robustness of the limiting distribution of the SupLM test statistic to regressor

12



endogeneity using a large sample size such as T = 1000 and comparing the resulting critical values.

Our general data generating process (DGP) is given by yt = β0 + β1xt + ut with ∆xt = vt and

vt = ρvt−1 + εt, while the fitted model is given by yt = β0 + β1xt + (λ0 + λ1xt)I(qt−1 > γ) + ut.

We take qt to follow the AR(1) process qt = φqt−1 + νt and ut = NID(0, 1). The null hypothesis

of interest is H0 : λ0 = λ1 = 0. Regarding the covariance structure of the random disturbances,

letting zt = (ut, εt, νt)
′ and Σz = E[ztz

′
t], we use

Σz =

 1 σuε σuν

σεu 1 σεν

σuν σεν 1


which allows for a sufficiently general covariance structure while imposing unit variances. Our

chosen covariance matrix parameterisation allows the threshold variable to be contemporaneously

correlated with the random shocks hitting the cointegrating regression and its regressors. All our

experiments are based on N = 2000 replications and set {β0, β1} = {1, 2} throughout. In order

to document the robustness of our results to the degree of persistence in the threshold variable qt,

our experiments are also conducted using φ = {0.5, 0.9}. Since our initial motivation is to explore

the robustness of the limiting distributions to the presence/absence of endogeneity, we consider the

following DGPs. DGP1 : {σuε, σuν , σεν} = {0.3, 0.7, 0.6}, DGP2 : {σuε, σuν , σεν} = {0.3, 0.0, 0.6} and

DGP3 : {σuε, σuν , σεν} = {0.0, 0.0, 0.0}. Note that DGP1 and DGP2 allow for the endogeneity of

xt while DGP3 takes it as strictly exogenous. The implementation of the SupLM test also assumes

10% trimming at each end of the sample.

Table 1 below presents a range of quantiles of the simulated limiting distribution approximated

by the use of a sample of size T=1000.

Table 1: Asymptotic Critical Values

10% 5% 2.5% 1% 10% 5% 2.5% 1%

φ = 0.5 φ = 0.9

DGP1, ρ = 0.0, T = 1000 10.28 12.12 13.85 15.97 10.75 12.35 14.04 15.43

DGP2, ρ = 0.0, T = 1000 10.15 12.09 13.74 15.60 10.66 12.37 13.95 15.94

DGP3, ρ = 0.0, T = 1000 10.38 12.10 13.38 15.78 10.34 12.58 14.00 15.99

DGP1, ρ = 0.4, T = 1000 10.34 12.00 13.81 15.91 10.33 12.08 13.51 15.05

DGP2, ρ = 0.4, T = 1000 10.19 11.73 13.70 15.46 10.64 12.36 13.94 15.98

DGP3, ρ = 0.4, T = 1000 10.34 11.95 13.36 15.76 10.37 12.60 13.98 16.02

Andrews 10.50 12.27 NA 16.04 10.50 12.27 NA 16.04
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The critical values tabulated in Table 1 support the asymptotic based result that the limiting dis-

tributions are robust to the presence of endogeneity as well as serial correlation in vt. Comparing

the tabulated critical values with the process tabulated in Andrews (1993) it is also clear that the

documented equivalence of the limiting distributions is supported by our T=1000 based simulations.

Looking at the tabulations across the two magnitudes of φ, it also appears that the limiting distri-

butions are reasonably well approximated even when the threshold variable is highly persistent. It

is also useful to recall that in Hansen (1997) the author provided approximate asymptotic p-values

for the same distribution as that in Andrews (1993) and they can easily be used in the present

context. In what follows therefore our inferences will be based on the p-values of the computed

SupLM statistic obtained through the tabulations in Hansen (1997).

We next aim to document the size properties of the SupLM test statistic across smaller sample

sizes. For this purpose, we simulate the same DGPs as in Table 1 using samples of size T = 200 and

T = 400 and document the number of times the null hypothesis is rejected using the asymptotic

based critical values. Results for this experiment are presented in Table 2 below. Looking at

the first column of Table 2 the reported empirical size estimates match their nominal counterparts

reasonably well even for samples such as T=200. Recall that our size estimates have been computed

using Hansen’s (1997) p-value approximations which are not exact p-values but obtained through

simulations instead. As the degree of persistence of the threshold variable is allowed to increase,

we note a slight deterioration in the size properties of the test in small to moderate samples. The

reported figures suggest that the direction of the distortions depend on the DGP parameters (e.g.

covariance structure) in a complicated manner with some tendency towards undersizeness. Overall

however the documented size properties of our test compare favourably with those reported in the

existing literature (see for instance Table II in Hansen (1996)).

Table 2: Empirical Size Estimates

Nominal 5% 2.5% 1% 5% 2.5% 1%

φ = 0.5 φ = 0.9

DGP1, ρ = 0.4, T = 200 5.00% 2.60% 0.95% 4.55% 2.15% 0.85%

DGP1, ρ = 0.4, T = 400 4.95% 2.45% 0.96% 4.20% 2.00% 1.00%

DGP2, ρ = 0.4, T = 200 4.65% 2.45% 0.80% 4.90% 2.35% 0.85%

DGP2, ρ = 0.4, T = 400 4.75% 2.45% 0.75% 4.35% 1.70% 0.70%

DGP3, ρ = 0.4, T = 200 4.50% 2.30% 0.75% 3.85% 2.10% 0.70%

DGP3, ρ = 0.4, T = 400 4.70% 2.70% 1.20% 3.98% 1.90% 0.60%
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Our next set of experiments are designed to highlight the finite sample power properties of the

SupLM test statistic. For this purpose we consider the DGP yt = β0 + β1xt + (λ0 + λ1xt)I(qt−1 >

γ0) + ut with qt, ut and vt maintained as in our size simulations. We also maintain the earlier

parameterisation for β0, β1 and φ as {β0, β1} = {1, 2} and φ = {0.5, 0.9}. Results are summarised

in Table 3 below which concentrates on the parameterisation given by DGP3 across alternative

magnitudes for λ0 and λ1. Results for DGP1 and DGP2 were virtually identical and are therefore

omitted.

Table 3: Empirical Power Estimates

Nominal 5% 2.5% 1% 5% 2.5% 1%

φ = 0.5, γ0 = 0 φ = 0.9, γ0 = 0

DGP3, λ0 = λ1 = 0.05, T = 200 48.90 41.40 34.90 46.25 38.80 31.20

DGP3, λ0 = λ1 = 0.05, T = 400 84.90 81.10 76.15 83.55 79.05 73.70

DGP3, λ0 = λ1 = 0.05, T = 800 99.15 98.90 98.15 99.20 98.75 98.15

DGP3, λ0 = λ1 = 0.15, T = 200 95.55 93.90 92.10 94.00 92.00 89.25

DGP3, λ0 = λ1 = 0.15, T = 400 99.95 99.85 99.65 99.95 99.00 99.85

DGP3, λ0 = λ1 = 0.15, T = 800 100.00 100.00 100.00 100.00 100.00 100.00

The empirical power estimates presented above suggest that the SupLM based test has good power

properties for detecting the presence of threshold effects in cointegrating regressions. Even under

an alternative that is very close to the null hypothesis (e.g. λ0 = λ1 = 0.05) the test is able

to reject the null approximately 85% of the times under T=400. The above figures also compare

favourably with the power properties of the SupLM type test statistics documented in the literature

in the context of stationary regression frameworks such as testing for SETAR type nonlinearities

(see Hansen (1996)). Experiments with different magnitudes of γ0 (e.g. γ0 = 0.5) led to virtually

identical results and are omitted.

Our last set of experiments are designed to illustrate our analysis of the case where ut follows

an MA process. More specifically, we concentrate on the particular scenario where the limiting

distributions of the SupLM statistic were shown to be unaffected by the presence of serial correlation

in ut. For this purpose we let ut follow an MA(1) process given by ut = et − 0.5et−1 with et =

NID(0, 1). The process for vt is chosen as an AR(1) with ρ = 0.4. Our chosen covariance structure

allows for endogeneity while forcing qt and et to be independent with qt = NID(0, 1). Replacing zt

above with zt = (et, εt, qt), the covariance matrix Σz now has σeε = 0.5, σeq = 0, and σεq = 0.6 with
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unit variances. Thus although we allow qt to be correlated with the shock hitting the regressor xt,

it is independent of ut. We refer to this parameterisation as DGP4 and also consider the case where

Σz = I, referring to it as DGP5. Results for this set of experiments are presented in Table 4 below.

Table 4: Asymptotic Critical Values under MA Cointegrating Errors

10% 5% 2.5% 1%

DGP4, T = 1000 10.35 11.74 13.41 15.07

DGP5, T = 1000 10.42 11.97 13.46 15.42

Comparing the critical values obtained in Table 4 with the ones in Table 1 clearly illustrates

empirically our point in Proposition 5 where we established that even under a serially correlated

error process there are instances where the limiting distribution of the LM statistic remains free of

nuisance parameters and is identical to the one obtained in Propositions 1 and 2.

4 Conclusions

The goal of this paper was to intoduce a test statistic designed to detect the presence of threshold ef-

fects within equilibrium relationships. Operating within the framework of a cointegrating regression

and allowing for the presence of endogeneity and some degree of temporal dependence we obtained

the asymptotic distribution of an LM based test statistic designed to test the null hypothesis of

linear cointegration against threshold cointegration.

Our work assumed cointegration under both the null and alternative hypotheses. This is common

in this literature but a very useful albeit challenging extension would be to develop a test for

the presence of cointegration that is robust to the presence or absence of nonlinear components

such as the threshold effects analysed here. Although the framework under which we operated

is quite general there is also considerable scope for extension by exploring the effect of including

deterministic trend components and additional stationary regressors within the specification in (1).

Perhaps more importantly, a general estimation and inference theory dealing with the presence of

threshold type nonlinearities in both the long run equilibrium relationship(s) and the adjustment

process to equilibrium is still not completed. These issues are currently being investigated by the

authors.
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APPENDIX

A more detailed presentation of all our proofs can be found in Gonzalo and Pitarakis (2005).

Proof of Proposition 1. Follows as a special case of the proof of Proposition 2 writing Bu(r, θ) =

σuWu(r, θ), Bv(r) = Ω
1
2
vvWv(r) and letting Ωuv = 0.

Proof of Proposition 2. Lemma 3.1 in Phillips and Durlauf (1986), Lemma A3 in Gonzalo and

Pitarakis (2006a) and the continuous mapping theorem give X′
γMXγ/T

2 ⇒ θ(1 − θ)
∫ 1

0
BvB

′
vdr.

From Lemma 3.1 in Phillips and Durlauf (1986) we have X′u/T ⇒
∫ 1

0
Bv(r)dBu(r, 1) + Λvu +

Σvu. From Theorem 2 in Caner and Hansen (2001) and standard manipulations, it follows that

X′
γu/T ⇒

∫ 1

0
Bv(r)dBu(r, 1)−

∫ 1

0
BvdBu(r, θ) + (1− θ)Λvu + (1− θ)Σvu, leading to X′

γMu/T σ̃0 ⇒

−
∫ 1

0
Bv(r)dK̃u(r, θ). Combining the above into the expression of the SupLM test statistic and the

use of the continuous mapping theorem leads to the desired result.

Proof of Proposition 3. From
∑T

t=1 utIt−1(θ) =
∑T

t=1(
∑`

j=0 Ψjet−j)It−1(θ), using summation by

parts we obtain
∑[Tr]

t=1 utIt−1(θ)/
√

T =
∑[Tr]

t=1 etδt−1(θ)/
√

T+op(1) where δt−1(θ) =
∑`

j=0 ΨjIt−1+j(θ).

For all θ, {etδt−1(θ),F δ
t } with F δ

t = σ(qt+`−j, et−j; j ≥ 0) is a strictly stationary and ergodic mar-

tingale difference sequence with variance E[e2
t δt−1(θ)

2]. By the central limit theorem for martin-

gale difference sequences, it follows that for any (r, θ), GT (r, θ)
d→ N(0, ω2

G(r, θ)) with ω2
G(r, θ) =

rE[e2
t δt−1(θ)

2]. It is also straightforward to see that the limiting covariance kernel is given by

ω2
G(r1, r2, θ1, θ2) = (r1∧ r2)σ

2
eE[e2

t δt−1(θ1)δt−1(θ2)]. Combined with the Cramer-Wold device the fidi

convergence follows. Given our assumptions on et the stochastic equicontinuity of GT (r, θ) follows

directly from Theorem 1 in Caner and Hansen (2001).

Prooof of Proposition 4. The difference between the setup of Proposition 2 and the present

framework is the treatment of the quantity u′Xγ/T where Xγ = X ∗ I(q ≤ γ). It is a direct

consequence of Theorem 2 in Caner and Hansen (2001) that we have u′Xγ/T ⇒
∫ 1

0
Bv(r)dGu(r, θ)+

ΛG
vu + ΣG

vu on θ ∈ [0, 1] and the above limiting process is almost surely continuous. Here ΛG
vu =∑∞

k=1 E[vt−kutIt−1] +
∑∞

k=1 E[ut−kIt−k−1vt], ΣG
vu = E[vtutIt−1] and given our assumptions we have

ΛG
vu = θΛvu and ΣG

vu = θΣvu. The rest of the proof follows as the proof of Proposition 2.

Prooof of Proposition 5. Under qt iid it can be shown that Gu(r, θ) is equivalent to θBu(r) +

σuKu(r, θ). Plugging this in the expression of M̃u(r, θ) in (9) gives M̃u(r, θ) = Ku(r, θ) and the

result follows.
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