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Predictive regressions are linear specifications linking a noisy variable such as stock returns to past values
of a very persistent regressor with the aim of assessing the presence of predictability. Key complications
that arise are the potential presence of endogeneity and the poor adequacy of asymptotic approximations.
In this article, we develop tests for uncovering the presence of predictability in such models when the
strength or direction of predictability may alternate across different economically meaningful episodes. An
empirical application reconsiders the dividend yield-based return predictability and documents a strong
predictability that is countercyclical, occurring solely during bad economic times. This article has online
supplementary materials.
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1. INTRODUCTION

Predictive regressions with a persistent regressor (e.g., divi-
dend yields, interest rates, realized volatility) aim to uncover the
ability of a slowly moving variable to predict future values of an-
other typically noisier variable (e.g., stock returns, GDP growth)
within a bivariate regression framework. Their pervasive nature
in many areas of economics and finance and their importance in
the empirical assessment of theoretical predictions of economic
models made this particular modeling environment an important
and active area of theoretical and applied research (for instance,
see Jansson and Moreira 2006 and references therein).

A common assumption underlying old and new developments
in this area involves working within a model in which the per-
sistent regressor enters the predictive regression linearly, thus
not allowing for the possibility that the strength and direction of
predictability may themselves be a function of some economic
factor or time itself. Given this restriction, existing work has fo-
cused on improving the quality of estimators and inferences in
this environment, characterized by persistence and endogeneity,
among other econometric complications. These complications
manifest themselves in the form of nonstandard asymptotics,
distributions that are not free of nuisance parameters, poor
finite-sample approximations, etc. Important recent method-
ological breakthroughs have been obtained by Jansson and
Moreira (2006), Campbell and Yogo (2006), Valkanov (2003),
and Lewellen (2004), while recent applications in the area of
financial economics and asset pricing can be found in Cochrane
(2008), Lettau and Nieuwerburgh (2008), Bandi and Perron
(2008), among others.

The purpose of this article is to instead develop an economet-
ric toolkit for uncovering the presence of predictability within
regression models with highly persistent regressors when the
strength or direction of predictability, if present, may alternate
across different economically meaningful episodes (e.g., peri-

ods of rapid versus slow growth, periods of high versus low
stock market valuation, periods of high versus low consumer
confidence, etc.). For this purpose, we propose to expand the
traditional linear predictive regression framework to a more gen-
eral environment that allows for the possibility that the strength
of predictability may itself be affected by observable economic
factors. We have in mind scenarios whereby the predictability
induced by some economic variable kicks in under particu-
lar instances, such as when the magnitude of the variable in
question (or some other variable) crosses a threshold but is use-
less in terms of predictive power otherwise. Alternatively, the
predictive impact of a variable may alternate in sign/strength
across different regimes. Ignoring such phenomena by proceed-
ing within a linear framework, as has been done in the litera-
ture, may mask the forecasting ability of a particular variable
and, more generally, mask the presence of interesting and eco-
nomically meaningful dynamics. We subsequently apply our
methodology to the prediction of stock returns with dividend
yields (DY). Contrary to what has been documented in the lin-
ear predictability literature, our findings strongly point toward
the presence of regimes in which DY-based predictability kicks
in solely during bad economic times. More importantly, our
analysis also illustrates the fact that the presence of regimes
may make predictability appear as nonexistent when assessed
within a linear model.

The plan of the article is as follows. Section 2 introduces
our model and hypotheses of interest. Section 3 develops the
limiting distribution theory of our test statistics. Section 4
explores the finite-sample properties of the inferences devel-
oped in Section 3, Section 5 proposes an application, and
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Section 6 concludes. All proofs are relegated to the Ap-
pendix. Due to space considerations, additional Monte Carlo
simulations and further details on some of the proofs are pro-
vided as an online supplementary appendix.

2. THE MODEL AND HYPOTHESES

We will initially be interested in developing the limiting dis-
tribution theory for a Wald-type test statistic designed to test
the null hypothesis of a linear relationship between yt+1 and xt
against the following threshold alternative

yt+1 =
{
α1 + β1xt + ut+1 qt ≤ γ

α2 + β2xt + ut+1 qt > γ ,
(1)

where xt is parameterized as the nearly nonstationary process

xt = ρT xt−1 + vt , ρT = 1 − c

T
, (2)

with c > 0, qt = µq + uqt , and ut , uqt , and vt are stationary
random disturbances. The above parameterization allows xt to
display local to unit root behavior and has become the norm
for modeling highly persistent series for which a pure unit root
assumption may not always be sensible. The threshold variable
qt is taken to be a stationary process, and γ refers to the unknown
threshold parameter. Under α1 = α2 and β1 = β2, our model in
(1)–(2) coincides with that in Jansson and Moreira (2006) or
Campbell and Yogo (2006) and is commonly referred to as a
predictive regression model, while underα1 = α2, β1 = β2 = 0,
we have a constant mean specification.

The motivation underlying our specification in (1)–(2) is
its ability to capture phenomena such as regime-specific pre-
dictability within a simple and intuitive framework. We have in
mind scenarios whereby the slope corresponding to the predictor
variable becomes significant solely in one regime. Alternatively,
the strength of predictability may differ depending on the regime
determined by the magnitude of qt . The predictive instability in
stock returns that has been extensively documented in the re-
cent literature and the vanishing impact of DYs from the 1990s
onward in particular (see Ang and Bekaert 2007 and also Ta-
ble 7) may well be the consequence of the presence of regimes
for instance. Among the important advantages of a threshold-
based parameterization are the rich set of dynamics it allows
us to capture despite its mathematical simplicity, its estimabil-
ity via a simple least squares-based approach, and the observ-
ability of the variable triggering regime switches, which may
help attach a “cause” to the underlying predictability. Following
Petruccelli (1992), it is also useful to recall that the piecewise
linear structure can be viewed as an approximation to a much
wider family of nonlinear functional forms. In this sense, al-
though we do not argue that our chosen threshold specification
mimics reality, we believe that it offers a realistic approximation
to a wide range of more complicated functional forms and to
regime-specific behavior in particular. It is also interesting to
highlight the consequences that a behavior such as (1)–(2) may
have if ignored and if predictability is assessed within a linear
specification instead, say yt = βxt−1 + ut . Imposing zero inter-
cepts for simplicity and assuming (1)–(2) holds with some γ0,
it is easy to establish that β̂

p→ β1 + (β2 − β1)P (qt > γ0). This
raises the possibility that β̂ may converge to a quantity that is

very close to zero (e.g., when P (qt > γ0) ≈ β1/(β1 − β2)) so
that tests conducted within a linear specification may frequently
and wrongly suggest the absence of any predictability.

Our choice of modeling xt as a nearly integrated process fol-
lows the same motivation as in the linear predictive regression
literature, where such a choice for xt has been advocated as
an alternative to proceeding with conventional Gaussian critical
values that typically provide poor finite-sample approximations
to the distribution of t statistics. In the context of a stationary
AR(1) for instance, Chan (1988) demonstrated that for values
of T (1 − ρ) ≥ 50, the normal distribution offers a good approx-
imation, while for T (1 − ρ) ≤ 50, the limit obtained assuming
near integratedness works better when the objective involves
conducting inferences about the slope parameter of the AR(1)
(see also Cavanagh, Elliott, and Stock 1995 for similar points
in the context of a predictive regression model). Models that
combine persistent variables with nonlinear dynamics as (1)–
(2) offer an interesting framework for capturing stylized facts
observed in economic data. Within a univariate setting (e.g.,
threshold unit root models), recent contributions toward their
theoretical properties have been obtained by Caner and Hansen
(2001) and Pitarakis (2008).

In what follows, the threshold parameter γ is assumed un-
known, with γ ∈ � = [γ1, γ2], and γ1 and γ2 are selected
such that P (qt ≤ γ1) = π1 > 0 and P (qt ≤ γ2) = π2 < 1, as in
Caner and Hansen (2001). We also define I1t ≡ I (qt ≤ γ ) and
I2t ≡ I (qt > γ ) but replace the threshold variable with a uni-
formly distributed random variable, making use of the equality
I (qt ≤ γ ) = I (F (qt ) ≤ F (γ )) ≡ I (Ut ≤ λ). Here, F (.) is the
marginal distribution of qt , and Ut denotes a uniformly dis-
tributed random variable on [0, 1]. Before proceeding further,
it is also useful to reformulate (1) in matrix format. Letting
y denote the vector stacking yt+1 and Xi the matrix stacking
(Iit xt Iit ) for i = 1, 2, we can write (1) as y = X1θ1 +X2θ2 + u

or y = Zθ + u, with Z = (X1 X2), θ = (θ1, θ2), and θi =
(αi, βi)′ i = 1, 2. For later use, we also define X = X1 +X2

as the regressor matrix that stacks the constant and xt . It is now
easy to see that for given γ or λ, the homoscedastic Wald statis-
tic for testing a general restriction on θ , say Rθ = 0, is given by
WT (λ) = θ̂ ′R′(R(Z′Z)−1R′)−1Rθ̂/σ̂ 2

u , with θ̂ = (Z′Z)−1Z′y,
and σ̂ 2

u = (y ′y −∑2
i=1 y

′Xi(X′
iXi)

−1X′
iy)/T is the residual

variance obtained from (1). In practice, since the threshold pa-
rameter is unidentified under the null hypothesis, inferences
are conducted using the SupWald formulation, expressed as
supλ∈[π1,π2]WT (λ), with π1 = F (γ1) and π2 = F (γ2). Through-
out this article, the practical implementation of our SupWald
statistics will use 10% trimming at each end of the sample.

In the context of our specification in (1)–(2), we will initially
be interested in the null hypothesis of linearity given by HA

0 :
α1 = α2, β1 = β2. We write the corresponding restriction matrix
as RA = [I − I ], with I denoting a 2 × 2 identity matrix and
the SupWald statistic supλ W

A
T (λ). At this stage, it is important

to note that the null hypothesis given by HA
0 corresponds to

the linear specification yt+1 = α + βxt + ut+1 and thus does
not test predictability per se since xt may appear as a predictor
under both the null and the alternative hypothesis. Thus, we also
consider the null given byHB

0 : α1 = α2, β1 = β2 = 0, with the
corresponding SupWald statistic written as supλ W

B
T (λ), where

now RB = [1 0 − 1 0, 0 1 0 0, 0 0 0 1]. Under this null
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hypothesis, the model is given by yt+1 = α + ut+1 and the test
is expected to have power against departures from both linearity
and predictability.

3. LARGE-SAMPLE INFERENCE

Our objective here is to investigate the asymptotic proper-
ties of Wald-type tests for detecting the presence of thresh-
old effects in our predictive regression setup. We initially
obtain the limiting distribution of WA

T (λ) under the null hy-
pothesis HA

0 : α1 = α2, β1 = β2. We subsequently turn to the
joint null hypothesis of linearity and no predictability given by
HB

0 : α1 = α2, β1 = β2 = 0, and explore the limiting behavior
of WB

T (λ).
Our operating assumptions about the core probabilistic struc-

ture of (1)–(2) will closely mimic the assumptions imposed
in the linear predictive regression literature but will occa-
sionally also allow for a greater degree of generality (e.g.,
Cavanagh et al. 1995; Campbell and Yogo 2006; Jansson and
Moreira 2006, among others). Specifically, the innovations vt
will be assumed to follow a general linear process we write
as vt = 
(L)et , where
(L) = ∑∞

j=0 ψjL
j ,
∑∞

j=0 j |ψj | < ∞
and 
(1) 	= 0, while the shocks to yt , denoted ut , will take
the form of a martingale difference sequence (m.d.s.) with re-
spect to an appropriately defined information set. More formally,
letting w̃t = (ut , et )′ and F w̃q

t = {w̃s, uqs |s ≤ t}, the filtration
generated by (w̃t , uqt ) we will operate under the following as-
sumptions:

Assumption 1. E[w̃t |F w̃q

t−1] = 0, E[w̃t w̃′
t |F w̃q

t−1] = �̃ > 0,
supt Ew̃

4
it < ∞.

Assumption 2. The threshold variable qt = µq + uqt has a
continuous and strictly increasing distribution F (.) and is such
that uqt is a strictly stationary, ergodic, and strong mixing se-
quence, with mixing numbers αm satisfying

∑∞
m=1 α

1
m

− 1
r < ∞

for some r > 2.

One implication of Assumption 1 and the properties of

(L) is that a functional central limit theorem holds
for the joint process wt = (ut , vt )′ (see Phillips 1987).
More formally,

∑[T r]
t=1 wt/

√
T ⇒ B(r) = (Bu(r), Bv(r))′, with

the long-run variance of the bivariate Brownian motion
B(r) being given by 
 = ∑∞

k=−∞ E[w0w
′
k] = [(ω2

u, ωuv),
(ωvu, ω2

v)] = � +�+�′. Our notation is such that �̃ =
[(σ 2

u , σue), (σue, σ 2
e )] and � = [(σ 2

u , σuv), (σuv, σ 2
v )], with σ 2

v =
σ 2
e

∑∞
j=0 ψ

2
j and σuv = σue, since E[utet−j ] = 0 ∀j ≥ 1 by

assumption. Given our parameterization of vt and the m.d.s.
assumption for ut , we have ωuv = σue
(1) and ω2

v = σ 2
e 
(1)2.

For later use, we also let λvv = ∑∞
k=1 E[vtvt−k] denote the one-

sided autocovariance so that ω2
v = σ 2

v + 2λvv ≡ σ 2
e

∑∞
j=0 ψ

2
j +

2λvv . At this stage, it is useful to note that the m.d.s. assump-
tion in Assumption 1 imposes a particular structure on 
. For
instance, since serial correlation in ut is ruled out, we have
ω2
u = σ 2

u . It is worth emphasizing, however, that while rul-
ing out serial correlation in ut , our assumptions allow for a
sufficiently general covariance structure linking (1)–(2) and a
general dependence structure for the disturbance terms driv-
ing xt and qt . The m.d.s. assumption on ut is a standard as-
sumption that has been made throughout all recent research

on predictive regression models (for instance, see Campbell
and Yogo 2005 and references therein; Jansson and Moreira
2006) and appears to be an intuitive operating framework, given
that many applications take yt+1 to be stock returns. Writing
� = ∑∞

k=1 E[wtw′
t−k] = [(λuu, λuv), (λvu, λvv)], it is also use-

ful to explicitly highlight the fact that within our probabilistic
environment, λuu = 0 and λuv = 0 due to the m.d.s. property of
the u′

t s, while λvv and λvu may be nonzero.
Regarding the dynamics of the threshold variable qt and how

it interacts with the remaining variables driving the system,
Assumption 1 requires qt−j ’s to be orthogonal to ut for j ≥ 1.
Since qt is stationary, this is in a way a standard regression model
assumption and is crucial for the development of our asymptotic
theory. We note, however, that our assumptions allow for a broad
level of dependence between the threshold variable qt and the
other variables included in the model (e.g., qt may be contem-
poraneously correlated with both ut and vt ). At this stage, it
is perhaps also useful to reiterate the fact that our assumption
about the correlation of qt with the remaining components of
the system is less restrictive than what is typically found in the
literature on marked empirical processes or functional coeffi-
cient models such as yt+1 = f (qt )xt + ut+1, which commonly
take qt to be independent of ut and xt .

Since our assumptions also satisfy Caner and Hansen’s
(2001) framework, from their theorem 1, we can write∑[T r]

t=1 utI1t−1/
√
T ⇒ Bu(r, λ) as T → ∞, with Bu(r, λ) de-

noting a two-parameter Brownian motion with covariance
σ 2
u (r1 ∧ r2)(λ1 ∧ λ2) for (r1, r2), (λ1, λ2) ∈ [0, 1]2 and where
a ∧ b ≡ min{a, b}. Noting that Bu(r, 1) ≡ Bu(r), we will also
make use of a particular process, known as a Kiefer process and
defined as Gu(r, λ) = Bu(r, λ) − λBu(r, 1). A Kiefer process
on [0, 1]2 is Gaussian with zero mean and covariance func-
tion σ 2

u (r1 ∧ r2)(λ1 ∧ λ2 − λ1λ2). Finally, we introduce the dif-
fusion process Kc(r) = ∫ r

0 e
(r−s)cdBv(s), with Kc(r) such that

dKc(r) = cKc(r) + dBv(r) and Kc(0) = 0. Note that we can
also write Kc(r) = Bv(r) + c

∫ r
0 e

(r−s)cBv(s)ds. Under our as-
sumptions, it follows directly from lemma 3.1 in Phillips (1988)
that x[T r]/

√
T ⇒ Kc(r). For notational clarity in what follows,

it is important to recall that Kc(r) and all our other processes
indexed by either u or v are univariate.

3.1 Testing H A
0 : α1 = α2, β1 = β2

Having outlined our key operating assumptions, we now turn
to the limiting behavior of our test statistics. We will initially
concentrate on the null hypothesis given byHA

0 : α1 = α2, β1 =
β2 and the behavior of supλ W

A
T (λ), which is summarized in the

following proposition.

Proposition 1. Under the null hypothesis HA
0 : α1 =

α2, β1 = β2, Assumptions 1 and 2, and as T → ∞, the lim-
iting distribution of the SupWald statistic is given by:

sup
λ

WA
T (λ) ⇒ sup

λ

1

λ(1 − λ)σ 2
u

[∫ 1

0
Kc(r)dGu(r, λ)

]′

×
[∫ 1

0
Kc(r)Kc(r)

′
]−1[∫ 1

0
Kc(r)dGu(r, λ)

]
,

(3)
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where Kc(r) = (1,Kc(r))′, Gu(r, λ) is a Kiefer process and
Kc(r) an Ornstein-Uhlenbeck process.

Although the limiting random variable in (3) appears to de-
pend on unknown parameters, such as the correlation between
Bu and Bv , σ 2

u , and the near-integration parameter c, a closer
analysis of the expression suggests instead that it is equivalent
to a random variable given by a quadratic form in normalized
Brownian bridges, identical to the one that occurs when testing
for structural breaks in a purely stationary framework. We can
write it as

sup
λ

BB(λ)′BB(λ)

λ(1 − λ)
, (4)

with BB(λ) denoting a standard bivariate Brownian bridge (re-
call that a Brownian bridge is a zero mean Gaussian process with
covariance λ1 ∧ λ2 − λ1λ2). This result follows from the fact
that the processes Kc(r) and Gu(r, λ) appearing in the stochas-
tic integrals in (3) are uncorrelated and thus independent since
Gaussian. Indeed,

E[Gu(r1, λ1)Kc(r2)]

= E

[
(Bu(r1, λ1) − λ1Bu(r1, 1))(Bv(r2)

+ c
∫ r2

0
e(r2−s)cBv(s)ds)

]
= E[Bu(r1, λ1)Bv(r2)] − λ1E[Bu(r1, 1)Bv(r2)]

+ c
∫ r2

0
e(r2−s)cE[Bu(r1, λ1)Bv(s)]ds

− λ1c

∫ r2

0
e(r2−s)cE[Bu(r1, 1)Bv(s)]ds

= ωuv(r1 ∧ r2)λ1 − λ1ωuv(r1 ∧ r2)

+ cλ1

∫ r2

0
e(r2−s)c(r1 ∧ s)ds − cλ1

×
∫ r2

0
e(r2−s)c(r1 ∧ s)ds = 0.

Given that Kc(r) is Gaussian and independent of Gu(r, λ) and
also E[Gu(r1, λ1)Gu(r2, λ2)] = σ 2

u (r1 ∧ r2)((λ1 ∧ λ2) − λ1λ2,
we have

∫
Kc(r)dGu(r, λ) ≡ N (0, σ 2

u λ(1 − λ)
∫
Kc(r)2) condi-

tionally on a realization of Kc(r). Normalizing by σ 2
u

∫
K2
c (r),

as in (3), gives the Brownian bridge process in (4), which
is also the unconditional distribution since it is not depen-
dent on a realization of Kc(r) (see also lemma 5.1 in Park
and Phillips 1988). Obviously, the discussion trivially car-
ries through to Kc and Gu since E[Kc(r2)Gu(r1, λ1)]′ =
E[Gu(r1, λ1) Kc(r2)Gu(r1, λ1)]′ = [0 0]′.

The result in Proposition 1 is unusual and interesting for a
variety of reasons. It highlights an environment in which the null
distribution of the SupWald statistic no longer depends on any
nuisance parameters as it is typically the case in a purely station-
ary environment and thus no bootstrapping schemes are needed
for conducting inferences. In fact, the distribution presented
in Proposition 1 is extensively tabulated in Andrews (1993),
and Hansen (1997) provided p-value approximations that can
be used for inference purposes. More recently, Estrella (2003)

also provided exact p-values for the same distribution. Finally
and perhaps more importantly, the limiting distribution does not
depend on c, the near-integration parameter, which is another
unusual feature of our framework.

All these properties are in contrast with what has been doc-
umented in the recent literature on testing for threshold effects
in purely stationary contexts. In Hansen (1996) for instance,
the author investigated the limiting behavior of a SupLM-type
test statistic for detecting the presence of threshold nonlin-
earities in purely stationary models. There, it was established
that the key limiting random variables depend on numerous
nuisance parameters involving unknown population moments
of variables included in the fitted model. From theorem 1
in Hansen (1996), it is straightforward to establish, for in-
stance, that under stationarity, the limiting distribution of a
Wald-type test statistic would be given by S∗(λ)′M∗(λ)−1S∗(λ),
withM∗(λ) = M(λ) −M(λ)M(1)−1M(λ), and S∗(λ) = S(λ) −
M(λ)M(1)−1S(1). Here, M(λ) = E[X′

1X1] and S(λ) is a zero
mean Gaussian process with varianceM(λ). Since in this context
the limiting distribution depends on the unknown model-specific
population moments, the practical implementation of inferences
is through a bootstrap-style methodology.

One interesting instance worth pointing out, however, is the
fact that this limiting random variable simplifies to a Brown-
ian bridge type of limit when the threshold variable is taken as
exogenous in the sense M(λ) = λM(1). Although the compar-
ison with the present context is not obvious since we take xt
to be near-integrated and we allow the innovations in qt to be
correlated with those of xt , the force behind the analogy comes
from the fact that xt and qt have variances with different orders
of magnitude. In a purely stationary setup, taking xt as station-
ary and the threshold variable as some uniformly distributed

random variable leads to results such as
∑
x2
t I (Ut ≤ λ)/T

p→
E[x2

t I (Ut ≤ λ)], and if xt and Ut are independent, we also have
E[x2

t I (Ut ≤ λ)] = λE[x2
t ]. It is this last key simplification that

is instrumental in leading to the Brownian bridge type of limit
in Hansen’s (1996) framework. If now xt is taken as a nearly
integrated process and regardless of whether its shocks are corre-
lated withUt or not, we have

∑
x2
t I (Ut ≤ λ)/T 2 ⇒ λ

∫
K2
c (r),

which can informally be viewed as analogous to the previous
scenario. Heuristically, this result follows by establishing that
asymptotically, objects interacting xt/

√
T and (I1t − λ), such

as 1
T

∑
( xt√

T
)2(I1t − λ) or 1

T

∑
( xt√

T
)(I1t − λ), converge to zero

(see also Caner and Hansen 2001, p. 1585; Pitarakis 2008). This
would be similar to arguing that xt/

√
T and I1t are asymp-

totically uncorrelated in the sense that their sample covariance
(normalized by T) is zero in the limit.

3.2 Testing H B
0 : α1 = α2, β1 = β2 = 0

We next turn to the case where the null hypothesis of interest
tests jointly the absence of linearity and no predictive power;
that is, we focus on testing HB

0 : α1 = α2, β1 = β2 = 0 using
the supremum ofWB

T (λ). The following proposition summarizes
its limiting behavior.

Proposition 2. Under the null hypothesis HB
0 : α1 =

α2, β1 = β2 = 0, Assumptions 1 and 2, and as T → ∞, the
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limiting distribution of the SupWald statistic is given by

sup
λ

WB
T (λ) ⇒

[∫
K∗
c (r)dBu(r, 1)

]2

σ 2
u

∫
K∗
c (r)2

+ sup
λ

1

λ(1 − λ)σ 2
u

×
[∫

K
∗
c (r)dGu(r, λ)

]′ [∫
K

∗
cK

∗
c (r)

′
]−1

×
[∫

K
∗
c (r)dGu(r, λ)

]′
, (5)

where K
∗
c (r) = (1,K∗

c (r))′, K∗
c (r) = Kc(r) − ∫ 1

0 Kc(r)dr and
the remaining variables are as in Proposition 1.

Looking at the expression of the limiting random variable in (5),
we note that it consists of two components, with the second one
being equivalent to the limiting random variable we obtained
under Proposition 1. Under endogeneity, the first component on
the right-hand side of (5) is more problematic in the sense that it
does not simplify further due to the fact that K∗

c (r) and Bu(r, 1)
are correlated, since ωuv may take nonzero values. However, if
we were to rule out endogeneity by setting ωuv = 0, then it is
interesting to note that the limiting distribution of the SupWald
statistic in Proposition 2 takes the following simpler form

sup
λ

WB
T (λ) ⇒ W (1)2 + sup

λ

BB(λ)′BB(λ)

λ(1 − λ)
, (6)

where BB(λ) is a bivariate Brownian bridge and W (1) a uni-
variate standard normally distributed random variable. The first
component on the right-hand side of either (5) or (6) can be rec-
ognized as the χ2(1) limiting distribution of the Wald statistic
for testing H0 : β = 0 in the linear specification

yt+1 = α + βxt + ut+1, (7)

and the presence of this first component makes the test powerful
in detecting deviations from the null (see Rossi 2005 for an
illustration of a similar phenomenon in a different context).

Our next concern is to explore ways of making (5) opera-
tional since, as it stands, the first component of the limiting
random variable depends on model-specific moments and can-
not be universally tabulated. For this purpose, it is useful to note
that the problems arising from the practical implementation of
(5) are partly analogous to the difficulties documented in the
single-equation cointegration testing literature, where the goal
was to obtain nuisance-parameter-free chi-squared asymptotics
for Wald-type tests on β in (7) despite the presence of endo-
geneity (see Phillips and Hansen 1990; Saikkonen 1991, 1992).
As shown by Elliott (1998), however, inferences about β in
(7) can no longer be mixed normal when xt is a near-unit root
process. It is only very recently that Phillips and Magdalinos
(2009) (PM09 thereafter) reconsidered the issue and resolved
the difficulties discussed in Elliott (1998) via the introduction
of a new instrumental-variable-type estimator of β in (7). Their
method is referred to as IVX estimation since the relevant IV is
constructed solely via a transformation of the existing regressor
xt . It is this same method that we propose to adapt to our present
context.

Before proceeding further, it is useful to note thatWB
T (λ) can

be expressed as the sum of the following two components:

WB
T (λ) ≡ σ̂ 2

lin

σ̂ 2
u

WT (β = 0) +WA
T (λ), (8)

where WT (β = 0) is the standard Wald statistic for testing H0 :
β = 0 in (7) and WA

T (λ) is as in Proposition 1. Specifically,

WT (β = 0) = 1

σ̂ 2
lin

[∑
xt−1yt − T x̄ȳ

]2[∑
x2
t−1 − T x̄2

] , (9)

with x̄ = ∑
xt−1/T and σ̂ 2

lin = (y ′y − y ′X(X′X)−1X′y)/T is
the residual variance obtained from the same linear specifica-
tion. Although not of direct interest, this reformulation ofWB

T (λ)
can simplify the implementation of the IVX version of the Wald
statistic since the setup is now identical to that of PM09 and
involves constructing a Wald statistic for testing H0 : β = 0 in
(7); that is, we replace WT (β = 0) in (8) with its IVX-based
version, which is shown to be asymptotically distributed as a
χ2(1) random variable that does not depend on the noncentral-
ity parameter c or other endogeneity-induced parameters. Note
that although PM09 operated within a model without an in-
tercept, Stamatogiannis (2010) and Kostakis, Magdalinos, and
Stamatogiannis (2010) have also established the validity of the
theory in models with a fitted constant term.

The IVX methodology starts by choosing an artificial slope
coefficient, say

RT = 1 − cz

T δ
(10)

for a given constant cz > 0 and δ < 1 and uses the latter to
construct an IV generated as z̃t = RT z̃t−1 +�xt or under zero
initialization z̃t = ∑t

j=1 R
t−j
T �xj . This IV is then used to ob-

tain an IV estimator of β in (7) and to construct the corre-
sponding Wald statistic for testing H0 : β = 0. Through this
judicious choice of the instrument, PM09 showed that it is
possible to clean out the effects of endogeneity even within
the near-unit root case and to subsequently obtain an estima-
tor of β that is mixed normal under a suitable choice of δ (i.e.,
δ ∈ (2/3, 1)) and setting cz = 1 (see PM09, pp. 7–12). More im-
portantly, the resulting limiting distribution of the Wald statistic
for testing β = 0 in (7) no longer depends on the noncentrality
parameter c.

Following PM09 and Stamatogiannis (2010) and letting y∗
t ,

x∗
t , and z̃∗t denote the demeaned versions of yt , xt , and z̃t , we can

write the IVX estimator of β as β̃ ivx = ∑
y∗
t z̃

∗
t−1/

∑
x∗
t−1z̃

∗
t−1.

Note that contrary to PM09 or Stamatogiannis (2010), we do
not need a bias correction term in the numerator of β̃ ivx since we
operate under the assumption that λuv = 0. The corresponding
IVX-based Wald statistic for testing H0 : β = 0 in (7) is now
written as:

W ivx
T (β = 0) = (β̃ ivx)2

(∑
x∗
t−1z̃

∗
t−1

)2

σ̃ 2
u

∑(
z̃∗t−1

)2 , (11)

with σ̃ 2
u = ∑

(y∗
t − β̃IVXx∗

t−1)2/T . Note that this latter quantity
is also asymptotically equivalent to σ̂ 2

lin since the least squares
estimator of β remains consistent. Under the null hypothesis
HB

0 , we also have that these two residual variances are in turn
asymptotically equal to σ̂ 2

u so that σ̂ 2
lin/σ̂

2
u ≈ 1 in (8).
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We can now introduce our modified Wald statistic, say
W
B,ivx
T (λ), for testing HB

0 : α1 = α2, β1 = β2 = 0 in (1) as

W
B,ivx
T (λ) = W ivx

T (β = 0) +WA
T (λ). (12)

Its limiting behavior is summarized in the following proposition.

Proposition 3. Under the null hypothesis H
(B)
0 : α1 =

α2, β1 = β2 = 0, Assumptions 1 and 2, δ ∈ (2/3, 1) in (10),
and as T → ∞, we have

sup
λ

W
B,ivx
T (λ) ⇒ W (1)2 + sup

λ

BB(λ)′BB(λ)

λ(1 − λ)
, (13)

with BB(λ) denoting a standard Brownian bridge.

Our result in (13) highlights the usefulness of the IVX-based
estimation methodology since the resulting limiting distribution
of the SupWald statistic is now equivalent to the one obtained
under strict exogeneity (i.e., underωuv = 0) in (6). The practical
implementation of the test is also straightforward, requiring
nothing more than the computation of an IV estimator.

4. FINITE-SAMPLE ANALYSIS

4.1 Testing H A
0 : α1 = α2, β1 = β2

Having established the limiting properties of the SupWald
statistic for testing HA

0 , our next goal is to illustrate the finite-
sample adequacy of our asymptotic approximation and empiri-
cally illustrate our theoretical findings. It will also be important
to highlight the equivalence of the limiting results obtained in
Proposition 1 to the Brownian bridge type of limit documented in
Andrews (1993) and for which Hansen (1997) obtained p-value
approximations and Estrella (2003), exact p-values. Naturally,
this allows us to evaluate the size properties of our tests as well.

Our data-generating process (DGP) underHA
0 is given by the

following set of equations:

yt = α + βxt−1 + ut ,

xt =
(

1 − c

T

)
xt−1 + vt ,

vt = ρvt−1 + et , (14)

with ut and et both NID(0, 1), while the fitted model is given by
(1), with qt assumed to follow the AR(1) process qt = φqt−1 +
uqt , with uqt = NID(0, 1). Regarding the covariance structure
of the random disturbances, letting zt = (ut , et , uqt )′ and �z =

E[ztz′t ], we use

�z =
⎛⎝ 1 σue σuuq
σue 1 σeuq
σuuq σeuq 1

⎞⎠ ,
which allows for a sufficiently general covariance structure,
while imposing unit variances. Note also that our chosen co-
variance matrix parameterization allows the threshold vari-
able to be contemporaneously correlated with the shocks to
yt . All our HA

0 -based size experiments use N = 5000 replica-
tions and set {α, β, ρ, φ} = {0.01, 0.10, 0.40, 0.50} throughout.
Since our initial motivation is to explore the theoretically doc-
umented robustness of the limiting distribution of SupWaldA to
the presence or absence of endogeneity, we consider the two
scenarios given by

DGP1 : {σue, σuuq , σeuq } = {−0.5, 0.3, 0.4},
DGP2 : {σue, σuuq , σeuq } = {0.0, 0.0, 0.0}.

The implementation of all our Sup-based tests assumes 10%
trimming at each end of the sample.

Table 1 presents some key quantiles of the SupWaldA dis-
tribution (see Proposition 1) simulated using moderately small
sample sizes and compares them with their asymptotic coun-
terparts. Results are displayed solely for the DGP1 covariance
structure since the corresponding figures for DGP2 were almost
identical.

Looking across the different values of c as well as the different
quantiles, we note an excellent adequacy of the T = 200- and
T = 400-based finite-sample distributions to the asymptotic
counterpart tabulated in Andrews (1993) and Estrella (2003).
This also confirms our results in Proposition 1 and provides
empirical support for the fact that inferences are robust to the
magnitude of c. Note that with T = 200, the values of (1 −
c/T ) corresponding to our choices of c in Table 1 are 0.995,
0.975, 0.950, and 0.800, respectively. Thus, the quantiles of the
simulated distribution appear to be highly robust to a wide range
of persistence characteristics.

Naturally, the fact that our finite-sample quantiles match
closely with their asymptotic counterparts even under T = 200
is not sufficient to claim that the test has good size proper-
ties. For this purpose, we have computed the empirical size of
the SupWaldA-based test, making use of the pvsup routine of
Hansen (1997). The latter is designed to provide approximate
p-values for test statistics whose limiting distribution is as in (4).
Results are presented in Table 2, which concentrates solely on
the DGP1 covariance structure. We initially focus on the first two

Table 1. Critical values of SupWaldA

DGP1, T=200 DGP1, T=400

c = 1 c = 5 c = 10 c = 20 c = 1 c = 5 c = 10 c = 20 ∞
2.5% 2.18 2.21 2.21 2.19 2.31 2.24 2.24 2.27 2.41
5.0% 2.53 2.52 2.57 2.50 2.65 2.63 2.62 2.63 2.75
10.0% 3.01 3.07 2.99 2.99 3.13 3.10 3.11 3.12 3.27
90.0% 10.20 10.46 10.48 10.39 10.28 10.23 10.20 10.30 10.46
95.0% 12.07 12.03 12.13 12.19 11.85 12.05 12.11 12.08 12.17
97.5% 13.82 13.76 13.85 13.84 13.74 13.57 13.91 13.64 13.71
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Table 2. Size properties of SupWaldA

T = 200 T = 400 T = 200, BOOT T = 400, BOOT

2.5% 5.0% 10% 2.5% 5.0% 10% 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

c = 1 2.60 4.70 8.90 2.50 4.60 9.60 3.01 6.20 11.14 3.62 5.98 11.02
c = 5 2.50 4.90 9.30 2.40 4.90 9.30 2.98 6.36 11.86 3.38 6.08 11.02
c = 10 2.80 4.80 9.20 2.70 5.10 9.30 3.26 6.42 12.00 3.26 5.64 10.66
c = 20 2.60 4.80 9.50 2.50 5.00 9.60 3.20 6.42 11.32 3.26 6.16 11.40

left-hand panels, while the ones referred to as T = 200,BOOT
and T = 400,BOOT are discussed later.

From the figures presented in the two left-hand panels in
Table 2, we again note the robustness of the empirical size
estimates of SupWaldA to the magnitude of the noncentrality
parameter. Overall, the size estimates match their nominal coun-
terparts quite accurately even under a moderately small sample
size.

It is also interesting to compare the asymptotic approxima-
tion in (4) with that occurring when xt is assumed to follow
an AR(1), with |ρ| < 1, rather than the local to unit root spec-
ification we have adopted in this article. Naturally, under pure
stationarity, the results of Hansen (1996, 1999) apply and infer-
ences can be conducted by simulating critical values from the
asymptotic distribution that is the counterpart of (3) obtained
under pure stationarity and following the approach outlined in
the aforementioned articles. This latter approach is similar to an
external bootstrap but should not be confused with the idea of
obtaining critical values from a bootstrap distribution. The ob-
vious question we are next interested in documenting is which
approximation works better when xt is a highly persistent pro-
cess. For this purpose, the two right-hand panels in Table 2,
referred to as BOOT, present the corresponding empirical size
estimates obtained using the asymptotic approximation and its
external bootstrap-style implementation developed by Hansen
(1996, 1999) and justified by the multiplier central limit theorem
(see Van der Vaart and Wellner 1996). Although our comparison
involves solely size properties, the above figures suggest that our
nuisance-parameter-free Brownian bridge-based asymptotic ap-
proximation does a good job in matching empirical sizes with
nominal sizes when ρ is close to the unit root frontier. Proceed-
ing using Hansen’s (1996) approach on the other hand suggests
that the procedure is mildly oversized, which does not taper off
as T is allowed to increase.

Before proceeding further, it is also important to docu-
ment SupWaldA’s ability to correctly detect the presence of
threshold effects via a finite-sample power analysis. Our goal
here is not to develop a full theoretical and empirical power

analysis of our test statistics that would bring us well be-
yond our scope but to instead give a snapshot of the abil-
ity of our test statistics to lead to a correct decision under
a series of fixed departures from the null. All our power-
based DGPs use the same covariance structure as our size ex-
periments and are based on the following configurations for
{α1, α2, β1, β2, γ } in (1): DGPA1 {−0.03,−0.03, 1.26, 1.20, 0},
DGPA2 {−0.03, 0.15, 1.26, 1.20, 0}, and DGPA3 {−0.03, 0.25,
1.26, 1.26, 0}, thus covering both intercept only, slope only, and
joint intercept and slope shifts. In Table 3, the figures represent
correct decision frequencies evaluated as the number of times
the p-value of the test statistic leads to a rejection of the null
using a 2.5% nominal level.

We note from Table 3 that power converges toward 1 un-
der all three parameter configurations, albeit quite slowly when
only intercepts are characterized by threshold effects. The test
displays good finite-sample power even under T = 200 when
the slopes are allowed to shift, as in DGPA1 and DGPA2 . It is
also interesting to note the negative influence of an increasing
c on finite-sample power under the DGPs with shifting slopes.
As expected, this effect vanishes asymptotically since even for
T ≥ 400, the frequencies across the different magnitudes of c
become very similar.

4.2 Testing H B
0 : α1 = α2, β1 = β2 = 0

We next turn to the null hypothesis given by HB
0 : α1 =

α2, β1 = β2 = 0. As documented in Proposition 2, we recall that
the limiting distribution of the SupWaldB statistic is no longer
free of nuisance parameters and does not take a familiar form
when we operate under the set of assumptions characterizing
Proposition 1. However, one instance under which the limiting
distribution of the SupWaldB statistic takes a simple form is
when we impose the exogeneity assumption, as when consider-
ing the covariance structure referred to as DGP2 above. Under
this scenario, the relevant limiting distribution is given by (6)
and can be easily tabulated through standard simulation-based
methods.

Table 3. Power properties of SupWaldA

c = 1 c = 5 c = 10

DGPA1 DGPA2 DGPA3 DGPA1 DGPA2 DGPA3 DGPA1 DGPA2 DGPA3

T = 200 0.73 0.73 0.15 0.39 0.44 0.14 0.20 0.26 0.14
T = 400 0.98 0.98 0.37 0.92 0.93 0.37 0.78 0.82 0.37
T = 1000 1.00 1.00 0.88 1.00 1.00 0.89 1.00 1.00 0.86
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Table 4. Critical values of SupWaldB under exogeneity

2.5% 5% 10% 90% 95% 97.5%

c = 1
T = 200 2.59 3.03 3.58 11.73 13.63 15.36
T = 400 2.67 3.06 3.67 11.80 13.69 15.41
T = 800 2.67 3.15 3.78 11.71 13.42 15.35

c = 5
T = 200 2.56 3.02 3.64 11.63 13.69 15.46
T = 400 2.65 3.06 3.69 11.97 13.79 15.85
T = 800 2.71 3.15 3.73 11.55 13.42 15.14

For this purpose, Table 4 presents some empirical quantiles
obtained using T = 200, T = 400, and T = 800 from the null
DGP yt = 0.01 + ut . As can be inferred from (6) we note that
the quantiles are unaffected by the chosen magnitude of c and
appear sufficiently stable across the different sample sizes con-
sidered. Viewing the T = 800-based results as approximating
the asymptotic distribution for instance, the quantiles obtained
under T = 200 and T = 400 match closely with their asymp-
totic counterparts.

We next turn to the more general scenario in which one wishes
to test HB

0 within a specification that allows for endogeneity.
Taking our null DGP as yt = 0.01 + ut and the covariance struc-
ture referred to as DGP1, it is clear from Proposition 2 that using
the critical values from Table 4 will lead to misleading results.
This is indeed confirmed empirically with size estimates for
SupWaldB lying about two percentage points above their nomi-
nal counterparts (see Table 5). Using our IVX-based test statistic
in (11)–(12), however, ensures that the above critical values re-
main valid even under the presence of endogeneity. Results for
this experiment are also presented in Table 5. Table 5 also aims
to highlight the influence of the choice of the δ parameter in the
construction of the IVX variable (see (10)) on the size properties
of the test.

Overall, we note an excellent match of the empirical sizes
with their nominal counterparts. As δ increases toward 1, it is
possible to note a very slight deterioration in the size prop-

erties of SupWaldB,ivx, with empirical sizes mildly exceeding
their nominal counterparts. Looking also at the power figures
presented in Table 6, it is clear that as δ → 1, there is a very
mild-size power tradeoff that kicks in. This is perhaps not sur-
prising since as δ → 1, the instrumental variable starts behaving
like the original nearly integrated regressor. Overall, choices of
δ in the 0.7–0.8 region appear to lead to very sensible results,
with almost unnoticeable variations in the corresponding size
estimates. Even under δ = 0.9 and looking across all configu-
rations, we can reasonably argue that the resulting size proper-
ties are good to excellent. Finally, the rows labeled SupWaldB

clearly highlight the unsuitability of this uncorrected test statis-
tic, whose limiting distribution is as in (5) and is affected by
the presence of endogeneity as well as the near-integration pa-
rameter c in the underlying model. In additional simulations
not reported here for instance and a configuration given by
{σue, σuuq , σeuq } = {−0.7, 0.3, 0.3}, T = 200, {c, δ} = {1, 0.7},
we obtained empirical size estimates of 4.44%, 8.28%, and
15.04% under 2.5%, 5%, and 10% nominal sizes, respectively,
for SupWaldB compared with 2.78%, 5.60%, and 10.70% for
SupWaldB,ivx.

Next, we also considered the finite-sample power proper-
ties of our SupWaldB,ivx statistic through a series of fixed de-
partures from the null based on the following configurations
for {α1, α2, β1, β2, γ }: DGPB1 {0.01, 0.01, 0.05, 0.05, 0}, DGPB2
{−0.03, 0.25, 0.05, 0.05, 0}, and DGPB3 {0.01, 0.25, 0, 0, 0}.
Results for this set of experiments are presented in Table 6.

The above figures suggest that our modified SupWaldB,ivx

statistic has good power properties under moderately large sam-
ple sizes. We again note that violating the null restriction that
affects the slopes leads to substantially better power properties
than scenarios where solely the intercepts violate the equality
constraint.

5. REGIME-SPECIFIC PREDICTABILITY OF
RETURNS WITH VALUATION RATIOS

One of the most frequently explored specification in the fi-
nancial economics literature has aimed to uncover the predictive

Table 5. Size properties of SupWaldB,ivx and SupWaldB under endogeneity

2.5% 5.0% 10.0% 2.5% 5.0% 10.0% 2.5% 5% 10%

T = 200 c = 1 c = 5 c = 10
δ = 0.70 2.80 5.12 10.26 2.48 5.02 10.40 2.62 5.00 10.34
δ = 0.80 2.84 5.60 10.38 2.52 5.08 10.78 2.70 5.10 10.40
δ = 0.90 3.04 5.48 10.68 2.70 5.20 10.86 2.76 5.32 10.56
SupWaldB 3.54 6.36 12.28 3.06 5.94 11.52 2.98 5.72 11.14
T = 400 c = 1 c = 5 c = 10
δ = 0.70 3.02 5.66 11.06 3.00 5.36 10.60 2.74 5.32 10.14
δ = 0.80 3.14 5.92 11.46 3.14 5.36 10.94 2.82 5.44 10.32
δ = 0.90 3.42 6.28 12.08 3.24 5.52 11.04 2.82 5.48 10.52
SupWaldB 4.28 7.30 13.20 3.46 6.22 11.46 3.08 5.66 11.08
T = 1000 c = 1 c = 5 c = 10
δ = 0.70 2.74 5.14 10.24 2.62 4.96 10.22 2.50 4.72 10.18
δ = 0.80 2.96 5.68 10.74 2.64 5.40 10.12 2.66 4.74 10.62
δ = 0.90 3.30 5.90 11.50 2.92 5.42 10.06 2.64 4.96 10.44
SupWaldB 4.00 6.52 13.18 3.22 5.72 10.74 2.74 5.16 10.74
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Table 6. Power properties of SupWaldB,ivx

DGPB1 DGPB2 DGPB3

c = 1,T 200 400 1000 200 400 1000 200 400 1000
δ = 0.70 0.81 0.97 1.00 0.89 0.99 1.00 0.17 0.37 0.87
δ = 0.80 0.89 0.99 1.00 0.94 1.00 1.00 0.17 0.37 0.87
c = 5,T 200 400 1000 200 400 1000 200 400 1000
δ = 0.70 0.71 1.00 1.00 0.85 1.00 1.00 0.16 0.36 0.87
δ = 0.80 0.79 1.00 1.00 0.89 1.00 1.00 0.16 0.36 0.87
c = 10,T 200 400 1000 200 400 1000 200 400 1000
δ = 0.70 0.51 1.00 1.00 0.74 1.00 1.00 0.16 0.36 0.87
δ = 0.80 0.58 1.00 1.00 0.78 1.00 1.00 0.16 0.36 0.86

power of valuation ratios such as DYs for future stock returns via
significance tests implemented on simple linear regressions link-
ing rt+1 to DYt . The econometric complications that arise due to
the presence of a persistent regressor, together with endogeneity
issues, have generated a vast methodological literature aiming
to improve inferences in such models, commonly referred to
as predictive regressions (e.g., Valkanov 2003; Lewellen 2004;
Campbell and Yogo 2006; Jansson and Moreira 2006; Ang and
Bekaert 2007, among numerous others).

Given the multitude of studies conducted over a variety of
sample periods, methodologies, data definitions, and frequen-
cies, it is difficult to extract a clear consensus on predictabil-
ity. From the recent analysis of Campbell and Yogo (2006),
there appears to be statistical support for some very mild DY-
based predictability, with the latter having substantially declined
in strength post 1995 (see also Lettau and Van Nieuwerburgh
2008). Using monthly data over the 1946–2000 period, Lewellen
(2004) documented a rather stronger DY-based predictability
using a different methodology that was mainly concerned with
small-sample bias correction. See also Cochrane (2008) for a
more general overview of this literature.

Our goal here is to reconsider this potential presence of pre-
dictability through our regime-based methodology focusing on
the DY predictor. More specifically, using growth in industrial
production as our threshold variable proxying for aggregate
macro conditions, our aim is to assess whether the data sup-
port the presence of regime-dependent predictability induced by
good versus bad economic times. Theoretical arguments justify-
ing the possible existence of episodic instability in predictability
have been alluded to in the theoretical setting of Menzly, San-
tos, and Veronesi (2004), and more recently, Henkel, Martin, and
Nardari (2009) explored the issue empirically using Bayesian
methods within a Markov switching setup. We will show that
our approach leads to a novel view and interpretation of the
predictability phenomenon and that its conclusions are robust
across alternative sample periods. Moreover, our findings may
provide an explanation for the lack of robustness to the sample
period documented in existing work under linearity. An alterna-
tive strand of the recent predictive regression literature, or more
generally the forecasting literature, has also explored the issue
of predictive instability through the allowance of time variation
via structural breaks and the use of recursive estimation tech-
niques. A general message that has come out from this research
is the omnipresence of model instability and the important in-
fluence of time variation on forecasts (see Rossi 2005, 2006;

Rapach and Wohar 2006; Timmermann 2008, among others).
Our own research is also motivated by similar concerns but fo-
cuses on explicitly identifying predictability episodes induced
by a particular variable such as a business cycle proxy.

Our analysis will be based on the same CRSP (Center for
Research in Security Prices) dataset as the one considered in
the vast majority of predictability studies (value-weighted re-
turns for NYSE, AMEX, and NASDAQ). Throughout all our
specifications, the dividend yield is defined as the aggregate
dividends paid over the last 12 months divided by the market
capitalization and is logged throughout (LDY thereafter). For
robustness considerations, we will distinguish between returns
that include dividends and returns that exclude dividends. Fi-
nally, using the 90-day T-bills (Treasury bills), all our inferences
will also distinguish between raw returns and their excess coun-
terparts. Following Lewellen (2004), we will restrict our sample
to the post-war period. We will concentrate solely on monthly
data since the regime-specific nature of our models would make
yearly or even quarterly data-based inferences less reliable due
to the potentially very small size of the sample. We will sub-
sequently explore the robustness of our results to alternative
sample periods.

Looking first at the stochastic properties of the DY predictor
over the 1950M1–2007M12 period, it is clear that the series
is highly persistent, as judged by a first-order sample auto-
correlation coefficient of 0.991. A unit root test implemented
on the same series unequivocally fails to reject the unit root
null. The industrial production growth series is stationary as ex-
pected, displaying some very mild first-order serial correlation
and clearly conforming to our assumptions about qt in (1)–(2).
Before proceeding with the detection of regime-specific pre-
dictability, we start by assessing return predictability within
a linear specification, as has been done in the existing litera-
ture. Results across both raw and excess returns are presented
in Table 7, with VWRETD denoting the returns inclusive of
dividends and VWRETX denoting the returns ex-dividends.
The columns named as p and pHAC refer to the standard and
HAC (heteroscedasticity and autocorrelation consistent)-based
p-values.

The coefficient estimates of Table 7 refer to the OLS (ordi-
nary least squares) estimates of βDY in the regression rt+1 =
α + βDY LDYt + ut+1. Focusing first on the VWRETD series,
our results conform with the consensus that predictability has
been vanishing from the late 1980s onward (for instance, see
Campbell and Yogo 2006). The remaining p-values suggest
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Table 7. Linear predictability rt+1 = αDY + βDYLDYt + ut+1

VWRETD β̂DY pHAC p R2 VWRETX β̂DY pHAC p R2

1950–2007 0.010 0.011 0.008 0.9% 1950–2007 0.008 0.054 0.046 0.4%
1960–2007 0.010 0.056 0.037 0.6% 1960–2007 0.008 0.142 0.110 0.3%
1970–2007 0.009 0.069 0.056 0.6% 1970–2007 0.007 0.170 0.148 0.2%
1980–2007 0.011 0.059 0.042 0.9% 1980–2007 0.009 0.131 0.103 0.5%
1990–2007 0.014 0.153 0.105 0.8% 1990–2007 0.001 0.207 0.152 0.5%

Excess Excess
1950–2007 0.009 0.025 0.019 0.7% 1950–2007 0.007 0.102 0.087 0.3%
1960–2007 0.007 0.210 0.169 0.2% 1960–2007 0.004 0.417 0.372 0.0%
1970–2007 0.006 0.269 0.240 0.1% 1970–2007 0.004 0.665 0.479 0.0%
1980–2007 0.007 0.253 0.208 0.2% 1980–2007 0.005 0.439 0.392 0.0%
1990–2007 0.013 0.198 0.138 0.6% 1990–2007 0.011 0.263 0.196 0.0%

some mild predictability, especially when considering the entire
1950–2007 sample range. Interestingly, as we switch from raw
to excess returns, the picture changes considerably, with most
p-values strongly pointing toward the absence of any predictabil-
ity. Given these p-value magnitudes, it is difficult to conceive
that any methodological improvements may reverse the big pic-
ture. Also worth pointing out is the fact that a conventional test
for heteroscedasticity implemented on the above specifications
failed to reject the null of no heteroscedasticity. This is partic-
ularly reassuring since one of our assumptions leading to our
theoretical results in Propositions 1 and 2 ruled out the presence
of heteroscedasticity.

Next, focusing on the returns that exclude dividend payments,
it is again the case that with p-values as high as 0.665, the null
of no predictability cannot be rejected. Results appear to also
be robust across different starting periods, except perhaps under
the full 1950–2007 range, under which we note a mild rejection
of the null. It is also important to note that all results were robust
across HAC versus non-HAC standard errors. This latter point is
particularly important since our assumptions surrounding (1)–
(2) rule out serial correlation and heteroscedasticity in ut .

Overall, the above linearity-based results corroborate the view
that predictability is at best mildly present and its strength ap-
pears to have declined. Perhaps more importantly, Table 7 also
suggests that one should be particularly cautious and worry
about robustness considerations when assessing DY-induced
predictability of returns since findings may be extremely sen-
sitive to data definitions, frequency, and chosen sample period.
At this stage, it is also important to reiterate that our analysis
in Table 7 is mainly meant to provide a comparison benchmark
for our subsequent regime-based inferences rather than reverse
findings from the existing literature. This is also the reason why
we do not explore outcomes based on alternative methodologies,
as developed in the recent econometric literature.

The fact that numerous studies documented a decline in
predictability characterizing the 1990s could also be due to
the fact that predictability kicks in during particular economic
episodes. Table 8 presents the results of our tests of the hypothe-
ses HB

0 : α1 = α2, β1 = β2 = 0 and HA
0 : α1 = α2, β1 = β2 as

applied to the VWRETD series (∗ indicates rejection at 2.5%).
Since results for the return series that exclude dividends as well
as their excess counterparts were both qualitatively and quanti-
tatively similar, in what follows, we concentrate solely on the
VWRETD series.

The evidence presented in Table 8 comfortably points toward
the presence of regime-specific predictability since bothHA

0 and
HB

0 are strongly rejected. We also note that inferences based on
SupWaldB,ivx appear robust to alternative choices of δ in the
construction of the IVX variable. It is also interesting to note
that unlike the linear case, inferences appear to be robust to
the starting period. One should be cautious, however, when
interpreting inferences such as the ones based on the 1990–
2007 period due to sample size limitations, which are further
exacerbated when fitting a threshold specification.

Recalling that theR2’s characterizing the various linear speci-
fications were clustered around values close to zero (see Table 7),
it is also useful to highlight the remarkable jump in goodness of
fit in our proposed threshold model presented in (15). Our results
strongly point toward the presence of very strong predictabil-
ity during bad times when the growth in industrial production
(IP) (variable �IPt = ln(IPt /IPt−1)) is negative, while no or
very weak predictability during expansionary periods or normal
times. More specifically, over the 1950–2007 period, we have

r̂t+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.1606(0.0357) + 0.0441(0.0107)LDYt

�IPt ≤ −0.0036, R2
1 = 17.47%, N1 = 131

0.0135(0.0161) + 0.0010(0.0045)LDYt

�IPt > −0.0036, R2
2 = 0.00%, N2 = 564,

(15)

with a jointR2 of 3.88%. Estimated standard errors are in paren-
theses. Besides being interesting in its own right, this result may
also help explain the conflicting results obtained in the recent
literature where the samples considered included or excluded
data on the late 1990s and 2000s, a period with few reces-
sions. Even with the reduction in the sample size, it is quite

Table 8. Regime-specific predictability

SupWaldB,ivx

SupWaldA δ = 0.7 δ = 0.8 δ = 0.9

1950–2007 20.75 (0.001) 26.75∗ 28.87∗ 30.21∗

1960–2007 18.98 (0.002) 23.24∗ 23.40∗ 23.46∗

1970–2007 17.73 (0.004) 21.64∗ 21.82∗ 21.77∗

1980–2007 24.52 (0.000) 27.73∗ 28.60∗ 28.96∗

1990–2007 28.87 (0.000) 29.52∗ 30.18∗ 31.10∗
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remarkable that the goodness of fit can jump from a magnitude
close to zero to about 17% in one subset. Overall, our results
strongly support DY-based predictability in U.S. returns but oc-
curring solely during bad times. Note, for instance, that more
than half of the periods during which �IPt ≤ −0.0036 coin-
cide with the NBER (National Bureau of Economic Research)
recessions. The strength of this predictability is very strong and
unlikely to be sensitive to the methodology or our assumptions.
Interestingly and through a different methodology, our findings
about the presence of strong return predictability during bad
times also corroborate the findings in Henkel et al. (2009). Us-
ing Bayesian inference techniques on a Markov switching VAR
(vector autoregression) setup in which they consider multiple
predictors in addition to the DY, the authors document a sub-
stantial jump in predictive strength of variables such as DY,
short-term rates, term structure, etc., during recessions.

6. CONCLUSIONS

The goal of this article was to develop inference methods use-
ful for detecting the presence of regime-specific predictability
in predictive regressions. We obtained the limiting distributions
of a series of Wald statistics designed to test the null of linearity
versus threshold-type nonlinearity and the joint null of linear-
ity and no predictability. One important feature of the limiting
distribution that arises in the first case is the fact that it does
not depend on any unknown nuisance parameters, thus making
it straightforward to use. This is an unusual occurrence in this
literature, where under a purely stationary framework (as op-
posed to a nearly integrated one), it is well known that limiting
distributions typically depend on unknown population moments
of the underlying models.

Our empirical application also leads to the interesting result
that U.S. return series are clearly predictable using valuation
ratios such as DY, but this predictability kicks in solely during
bad times and would therefore be masked in studies that operate
within linear specifications.

Finally, some important extensions to the present work
are worth mentioning. A useful extension we are currently
considering involves introducing long-horizon variables into
(1)–(2). This would offer an interesting parallel to the linear
predictive regression literature, which has often distinguished
long- versus short-horizon predictability. Other important
extensions include extending (1)–(2) to allow for more than two
regimes, following some of the methods developed in Gonzalo
and Pitarakis (2002), while further statistical properties (e.g.,
confidence intervals) of objects such as the estimated threshold
parameter may be explored using the subsampling methodology
of Gonzalo and Wolf (2005).

A key assumption under which we have operated ruled out
heteroscedasticity and serial correlation in ut . As our empirical
application has documented however, our results can continue
to be extremely useful despite this limitation. This restriction
is in fact the norm rather than the exception in any work that
introduced nonlinearities parametrically or nonparametrically
in models that contain persistent variables. Albeit challenging,
we expect future work to also be directed toward tackling these
issues.

APPENDIX: PROOFS

Lemma 1. Under Assumptions 1 and 2 and as T →
∞, we have (a)

∑
I1t

T

p→ λ, (b)
∑
xt

T
3
2

⇒ ∫ 1
0 Kc(r)dr ,

(c)
∑
x2
t

T 2 ⇒ ∫ 1
0 K

2
c (r)dr , (d)

∑
xt−1vt
T

⇒ ∫ 1
0 Kc(r)dBv(r) + λvv .

(e)
∑
xt−1ut
T

⇒ ∫ 1
0 Kc(r)dBu(r, 1), (f)

∑
x2
t I1t

T 2 ⇒ λ
∫ 1

0 K
2
c (r)dr ,

(g)
∑
xt I1t

T
3
2

⇒ λ
∫ 1

0 Kc(r)dr , (h)
∑[T r]

t=1 ut I1t−1√
T

⇒ Bu(r, λ), (i)∑
xt−1ut I1t−1

T
⇒ ∫ 1

0 Kc(r)dBu(r, λ)

Proof of Lemma 1. (a) By Assumptions 1 and 2, I1t is strong
mixing with the same mixing numbers as qt . The result then
follows from a suitable law of large numbers (see White 2001,
secs. 3.3– 3.4). (b)–(e) Under our Assumptions 1 and 2, the
results follow directly from lemma 3.1 in Phillips (1988). (f)
Letting XT,t = xt/

√
T and XT (r) = x[T r]/

√
T , we can rewrite

(f) as

1

T

∑
X2
T ,t I1t = λ

1

T

∑
X2
T ,t +

1

T

∑
X2
T ,t (I1t − λ). (A.1)

Under Assumptions 1 and 2 and requiring E|et |p < ∞ for
some p ≥ 4, we can make use of the strong approxima-
tion result supr∈[0,1] |XT (r) −Kc(r)| = op(T −a), with a =
(p − 2)/2p (see lemma A.3 in Phillips 1998, and Phillips and
Magdalinos 2007), to obtain

1

T

∑
X2
T ,t =

∫ 1

0
K2
c (r)dr + op(T −a). (A.2)

Indeed,∣∣∣∣∫ 1

0
XT (r)2dr −

∫ 1

0
Kc(r)

2dr

∣∣∣∣
≤
∫ 1

0

∣∣XT (r)2 −Kc(r)
2
∣∣ dr

=
∫ 1

0
|XT (r) −Kc(r)| |XT (r) +Kc(r)| dr

≤ sup
r

|XT (r) −Kc(r)|
(

sup
r

|XT (r)| + sup
r

|Kc(r)|
)

= op(T −a). (A.3)

The above then leads to

1

T

∑
X2
T ,t I1t − λ

∫ 1

0
Kc(r)

2dr

= 1

T

∑
X2
T ,t (I1t − λ) + op(T −a), (A.4)

holding uniformly ∀λ ∈ �. Finally, given that
supr∈[0,1] |XT (r)| = Op(1), together with the fact that the
result in (a) also holds uniformly over λ (see lemma 1 in Hansen
1996), we have supλ | 1

T

∑
X2
T ,t I1t − λ

∫ 1
0 Kc(r)

2dr| = op(1),
implying the required result. (g) follows identical lines to
the proof of (f). (h)–(i) Since our assumptions satisfy their
assumption 2, the result in (h) is theorem 1 of Caner and Hansen
(2001), while our result in (i) follows along the same lines as
theorem 2 of Caner and Hansen (2001).
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Proof of Proposition 1. It is initially convenient to reformu-
late WA

T (λ) under HA
0 as

WA
T (λ) = [

u′X1 − u′X(X′X)−1X′
1X1

]
× [

X′
1X1 −X′

1X1(X′X)−1X′
1X1

]−1

× [
X′

1u− (X′
1X1)(X′X)−1X′u

]
/σ̂ 2

u , (A.5)

where Xi is the matrix stacking (Iit xt Iit ) for i = 1, 2. With
DT = diag(

√
T , T ), we can write

D−1
T X

′
1X1D

−1
T =

⎛⎜⎜⎝
∑
I1t

T

∑
xtI1t

T
3
2∑

xtI1t

T
3
2

∑
x2
t I1t

T 2

⎞⎟⎟⎠ , (A.6)

and using Lemma 1, we have the following weak convergence
results:

D−1
T X1

′X1D
−1
T ⇒

⎛⎝ λ λ
∫ 1

0 Kc(r)dr

λ
∫ 1

0 Kc(r)dr λ
∫ 1

0 K
2
c (r)dr

⎞⎠
≡ λ

∫ 1

0
Kc(r)Kc(r)

′ (A.7)

and

D−1
T X

′XD−1
T ⇒

∫ 1

0
Kc(r)Kc(r)

′, (A.8)

where Kc(r) = (1,Kc(r)). It now follows from the continuous
mapping theorem (CMT) that[

D−1
T X

′
1X1D

−1
T −D−1

T X
′
1X1(X′X)−1X′

1X1D
−1
T

]−1

⇒ 1

λ(1 − λ)

(∫ 1

0
Kc(r)Kc(r)

′
)−1

. (A.9)

We next focus on the limiting behavior ofD−1
T X

′u andD−1
T X

′
1u.

Looking at each component separately, setting σ 2
u = 1 for sim-

plicity and no loss of generality and using Lemma 1, we have

D−1
T X

′
1u=

⎛⎜⎜⎝
∑
I1t ut+1√
T∑

xtI1t ut+1

T

⎞⎟⎟⎠⇒
(

Bu(r, λ)∫ 1
0 Kc(r)dBu(r, λ)

)
,

(A.10)

and

D−1
T X

′u =

⎛⎜⎜⎝
∑
ut+1√
T∑

xtut+1

T

⎞⎟⎟⎠ ⇒
(

Bu(r, 1)∫ 1
0 Kc(r)dBu(r, 1)

)
.

(A.11)

The above now allows us to formulate the limiting behavior of
D−1
T X

′
1u− λD−1

T X
′u as

D−1
T X

′
1u− λD−1

T X
′u ⇒

∫ 1

0
Kc(r)dGu(r, λ), (A.12)

whereGu(r, λ) = Bu(r, λ) − λBu(r, 1). The result in (3) follows
straightforwardly through the use of the CMT and standard
algebra.

Proof of Proposition 2. We rewrite our most general un-
restricted specification in (1) as y = α1I1 + β1x1 + α2I2 +
β2x2 + u. Within this notation, lower-case x ′

i s stack xtIit ,
while the I ′

i s stack Iit for i = 1, 2. We also recall that
Xi = (Ii xi) for i = 1, 2. It is now convenient to reformu-
late (1) as y = α + βx +X2η + u, where α = α1, β = β1,
and η = (γ, δ)′, with γ = α2 − α1 and δ = β2 − β1 so that
within this alternative parameterization, HA

0 : η = 0 and HB
0 :

η = 0, β = 0. Next, consider a most general (MG) model
containing (1 x X2) = (X X2), a partially restricted (PR)
version containing X = (1 x), and a fully restricted (FR)
version containing the vector of 1’s. From standard projec-
tion algebra, the sum of squared errors corresponding to each
specification are SSEMG = y ′MX,X2y, SSEPR = y ′MXy, and
SSEFR = y ′M1y, whereMX = I −X(X′X)−1X′ andMX,X2 =
MX −MXX2(X′

2MXX2)−1X′
2MX. It now trivially follows that

we can write the Wald statistics corresponding to each hy-
pothesis as WA

T (λ) = [y ′MXy − y ′MX,X2y]/σ̂ 2
u (PR against

MG), WB
T (λ) = [y ′M1y − y ′MX,X2y]/σ̂ 2

u (FR against MG),
and WT (β = 0) = [y ′M1y − y ′MXy]/σ̂ 2

lin (FR against PR). It
can now immediately be observed that WB

T (λ) = WA
T (λ) +

(σ̂ 2
lin/σ̂

2
u )WT (β = 0). Under the null hypothesis, (σ̂ 2

lin/σ̂
2
u )

p→ 1
and therefore in large samples, WB

T (λ) ≈ WT (β = 0) +WA
T (λ)

and supλ W
B
T (λ) ≈ WT (β = 0) + supλ W

A
T (λ), as required. To

obtain the limiting distribution in (5), it now suffices to use the
results presented in Lemma 1, together with the CMT along
lines identical to those in the proof of Proposition 1.

Proof of Proposition 3. Our result in (13) follows directly
from (11)–(12), theorem 3.8 in PM09 (p. 14), Lemma 1, Propo-
sition 1, and the use of the CMT. Note that theorem 3.8 in PM09
has been obtained within a model with no fitted intercept; how-
ever, Stamatogiannis (2010, theorem 4.2, p. 154) and Kostakis
et al. (2010) also established its validity in the more general
setting that includes a constant term and a predictive regression
setting identical to our specification in (7) and thus leading to
our own result.

SUPPLEMENTARY MATERIALS

Appendix: File providing additional Monte Carlo simulations
and further details on some of the proofs.
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