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1 Introduction

The recognition that linear time series models may be too restrictive to capture economically

interesting asymmetries and empirically observed nonlinear dynamics has over the past

twenty years generated a vast research agenda on designing models which could capture such

features while remaining parsimonious and analytically tractable. Models that are capable

of capturing nonlinear dynamics have also been the subject of a much earlier and extensive

research led by Statisticians as well as practitioners in fields as broad as Biology, Physics

and Engineering with a very wide range of proposed specifications designed to capture,

model and forecast field specific phenomena (e.g. Bilinear models, Random Coefficient

Models, State Dependent Models etc.). The amount of research that has been devoted

to describing the nonlinear dynamics of Sunspot Numbers and Canadian Lynx data is an

obvious manifestation of this quest (see Tong (1990), Granger and Terasvirta (1995), Hansen

(1999), Terasvirta, Tjostheim and Granger (2010), and references therein).

A particular behaviour of interest to economists has been that of regime change or

regime switching whereby the parameters of a model are made to change depending on the

occurence of a particular event, episode or policy (e.g. recessions or expansions, periods of

low/high stock market valuations, low/high interest rates etc) but are otherwise constant

within regimes. Popular models that can be categorised within this group are the well known

Markov switching models popularised by Hamilton’s early work (see Hamilton (1989)) and

which model parameter change via the use of an unobservable discrete time Markov process.

This class of models in which parameter changes are triggered by an unobservable binary

variable has been used extensively as an intuitive way of capturing policy shifts in Macroe-

conomic models as well as numerous other contexts such as forecasting economic growth

and dating business cycles. In Leeper and Zha (2003), Farmer, Waggoner and Zha (2009),

Davig and Leeper (2007), Benhabib (2010) for instance the authors use such models to

introduce the concept of monetary policy switches and regime specific Taylor rules. Other

particularly fruitful areas of application of such regime switching specifications has involved
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the dating of Business Cycles, the modelling of time variation in expected returns among

numerous others (see Hamilton (2011), Perez-Quiros and Timmermann (2000) etc.).

An alternative, parsimonious and dynamically very rich way of modelling regime switch-

ing behaviour in economic data is to take an explicit stand on what might be triggering

such switches and adopt a piecewise linear setting in which regime switches are triggered

by an observed variable crossing an unknown threshold. Such models have been proposed

by Howell Tong in the mid 70s and have gone through an important revival following their

adoption by Economists and Econometricians during the 80s and 90s following the method-

ological work of Bruce Hansen (see also Hansen (2011) and references therein for a historical

overview), Ruey Tsay (Tsay (1989), Tsay (1991)), Koop, Pesaran and Potter (1996), Koop

and Potter (1999) and others. When each regime is described by an autoregressive process

and the threshold variable causing the regime change is also a lagged value of the vari-

able being modelled we have the well known Self Exciting Threshold AutoRegressive class

of models (SETAR) extensively studied in the early work of Tong and others (see Tong

and Lim (1980), Tong (1983, 1990), Chan (1990, 1993)). In general however the threshold

principle may apply to a wider range of linear univariate or multivariate models and need

not be solely confined to autoregressive functional forms. Similarly the threshold variable

triggering regime switches may or may not be one of the variables included in the linear

part of the model. Despite their simplicity, such models have been shown to be able to

capture a very diverse set of dynamics and asymmetries particularly relevant to economic

data. Important examples include the modelling of phenomena such as costly arbitrage

whereby arbitrage occurs solely after the spread in prices exceeds a threshold due for in-

stance to transport costs (see Lo and Zivot (2001), Obstfeld and Taylor (1997), O’Connell

and Wei (1997), Balke and Fomby (1997)). Other areas of application include the study of

asymmetries in the Business Cycles explored in Beaudry and Koop (1993), Potter (1995),

Koop and Potter (1999), Altissimo and Violante (2001), the modelling of asymmetries in

gasoline and crude oil prices (Borenstein, Cameron and Gilbert (1997)) and other markets

(Balke (2000), Gospodinov (2005), Griffin, Nardari and Stultz (2007) etc).
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Threshold models are particularly simple to estimate and conduct inferences on and

despite the lack of guidance offered by economic theory for a particular nonlinear functional

form such piecewise linear structures can be viewed as approximations to a wider range of

functional forms as discussed in Petruccelli (1992) and Tong (1990, pp. 98-100). Two

key econometric problems that need to be addressed when contemplating the use of such

models for one’s own data involve tests for detecting the presence of threshold effects and

if supported by the data the subsequent estimation of the underlying model parameters.

The purpose of this paper is to offer a pedagogical overview of the most commonly used

inference and estimation techniques developed in the recent literature on threshold models.

In so doing, we also aim to highlight the key strengths, weaknesses and limitations of each

procedure and perhaps more importantly discuss potential areas requiring further research

and interesting extensions. The plan of the paper is as follows. Section 2 concentrates

on tests for detecting the presence of threshold nonlinearities against linear specifications.

Section 3 explores methods of estimating the model parameters and their properties. Section

4 discusses important extensions and interesting areas for future work. Section 5 concludes.

2 Detecting Threshold Effects

In what follows we will be interested in methods for assessing whether the dynamics of a

univariate time series yt and a p-dimensional regressor vector xt may be plausibly described

by a threshold specification given by

yt =

 x′tβ1 + ut qt ≤ γ

x′tβ2 + ut qt > γ
(1)

with qt denoting the threshold variable triggering the regime switches and ut the random

disturbance term. At this stage it is important to note that our parameterisation in (1) is

general enough to also be viewed as encompassing threshold autoregressions by requiring

xt to contain lagged values of yt. Similarly, the threshold variable qt may be one of the

components of xt or some external variable. The threshold parameter γ is assumed unknown
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throughout but following common practice we require γ ∈ Γ with Γ = [γ, γ] denoting

a compact subset of the threshold variable sample space. Given our specification in (1)

the first concern of an empirical investigation is to test the null hypothesis of linearity

H0 : β1 = β2 against H1 : β1 6= β2.

Before proceeding with the various testing procedures it is useful to document alterna-

tive and occasionally more convenient formulations of the threshold model by introducing

relevant indicator functions. Letting I(qt ≤ γ) be such that I(qt ≤ γ) = 1 when qt ≤ γ and

I(qt ≤ γ) = 0 otherwise we define x1t(γ) = xt ∗ I(qt ≤ γ) and x2t(γ) = xt ∗ I(qt > γ) so

that (1) can also be written as

yt = x1t(γ)′β1 + x2t(γ)′β2 + ut (2)

or in matrix notation as

y = X1(γ)β1 +X2(γ)β2 + u (3)

with Xi(γ) stacking the elements of xit(γ) for i = 1, 2 and which is such that X1(γ)′X2(γ) =

0. Our notation in (2)-(3) also makes it clear that for a known γ, say γ = 0, the above

models are linear in their parameters and we are in fact in a basic textbook linear regression

setting. This latter observation also highlights the importance of recognising the role played

by the unknown threshold parameter when it comes to conducting inferences in threshold

models. The price to pay for our desire to remain agnostic about the possible magnitude

of γ and whether it exists at all is that we will need to develop tests that are suitable for

any γ ∈ Γ. Naturally, we will also need to develop methods of obtaining a good estimator

of γ once we are confident that the existence of such a quantity is supported by the data.

Within the general context of threshold models such as (1) the main difficulty for testing

hypotheses such as H0 : β1 = β2 arises from the fact that the threshold parameter γ is

unidentified under this null hypothesis of linearity. This can be observed very cleary from our

formulation in (3) since setting β1 = β2 leads to a linear model via X1(γ) +X2(γ) ≡ X and

in which γ plays no role. This problem is occasionally referred to as the Davies problem (see
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Davies (1977, 1987) and Hansen (1996)) and is typically adressed by viewing the traditional

Wald, LM or LR type test statistics as functionals of γ and subsequently focusing inferences

on quantities such as the supremum or average of the test statistics across all possible values

of γ.

Letting X = X1(γ) + X2(γ) denote the p-dimensional regressor matrix in the linear

model we can write its corresponding residual sum of squares as ST = y′y−y′X(X ′X)−1X ′y

while that corresponding to the threshold model is given by

ST (γ) = y′y −
2∑
i=1

y′Xi(γ)(Xi(γ)′Xi(γ))−1Xi(γ)′y (4)

for any γ ∈ Γ. This then allows us to write a Wald type test statistic for testing H0 : β1 = β2

as

WT (γ) =
T (ST − ST (γ))

ST (γ)
. (5)

Naturally we could also formulate alternative test statistics such as the likelihood ratio or

LM in a similar manner e.g. LRT (γ) = T lnST /ST (γ) and LMT (γ) = T (ST − ST (γ))/ST .

Due to the unidentified nuisance parameter problem inferences are typically based on quan-

tities such as supγ∈ΓWT (γ) or their variants (see Hansen (1996)).

For practical purposes the maximum Wald statistic is constructed as follows.

Step 1: Let qs denote the T × 1 dimensional sorted version of qt. Since we operate

under the assumption that γ ∈ Γ a compact subset of {qs[1],. . . ,qs[T]} we trim a given

fraction π from the top and bottom components of the T×1 vector qs so as to obtain a

new vector of threshold variable observations qss = qs[Tπ : T(1− π)]. If T = 1000 for

instance and π = 10% the new sorted and trimmed version of the threshold variable

is given by qss = qs[100 : 900]. Let Ts denote the number of observations included in

qss.

Step 2: For each i = 1, . . . ,Ts construct the top and bottom regime regressor matrices

given by X1[i] = x[1 : T] ∗ I(qt ≤ qss[i]) and X2[i] = x[1 : T] ∗ I(qt > qss[i]). Note that
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for each possible value of i, X1[i] and X2[i] are T ×p regressor matrices with ∗ denoting

the element by element multiplication operator and x[1 : T] refers to the T ×p original

regressor matrix X.

Step 3: Using X1[i], X2[i] and X construct

ST[i] = y′y − X1[i]
′(X1[i]

′X1[i])
−1X1[i]− X2[i]

′(X2[i]
′X2[i])

−1X2[i],

ST = y′y − y′X(X′X)−1X′y and obtain a magnitude of the Wald statistics as defined

above for each i, say WT[i] with i = 1, . . . ,Ts.

Step 4: Use max1≤i≤Ts WT[i] as the supremum Wald statistic and proceed similarly

for max1≤i≤Ts LRT[i] or max1≤i≤Ts LMT[i] as required. Alternative test statistics may

involve the use of averages such as
∑Ts

i=1WT[i]/Ts.

Upon completion of the loop, the decision regarding H0 : β1 = β2 involves rejecting

the null hypothesis for large values of the test statistics. Cutoffs and implied pvalues are

obviously dictated by the limiting distribution of objects such as maxiWT[i] which may or

may not be tractable, an issue we concentrate on below.

The early research on tests of the null hypothesis of linearity focused on SETAR versions

of (1) and among the first generation of tests we note the CUSUM type of tests developed in

Petruccelli and Davis (1986) and Tsay (1989). Chan (1990, 1991) subsequently extended this

testing toolkit by obtaining the limiting distribution of a maximum LR type test statistic

whose construction we described above. Chan (1990, 1991) established that under the null

hypothesis H0 : β1 = β2, suitable assumptions requiring stationarity, ergodicity and the

iid’ness of the u′ts, the limiting distribution of the supremum LR is such that supγ LRT (γ)⇒

supγ ζ(γ)′Ω(γ)ζ(γ) ≡ supγ G∞(γ) with ζ(γ) denoting a zero mean Gaussian process and

Ω(γ) its corresponding covariance kernel. Naturally the same result would hold for the Sup

Wald or Sup LM statistics.

These results were obtained within a SETAR setting with the covariance kernel of ζ(γ)

depending on model specific population moments in a complicated manner (e.g. unknown
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population quantities such as E[x2
t I(qt ≤ γ)] etc.). This latter aspect is important to

emphasise since it highlights the unavailability of universal tabulations for supγ G∞(γ).

Differently put the limiting distribution given by G∞(γ) depends on model specific nuisance

parameters and can therefore not be tabulated for practical inference purposes. There are

however some very restrictive instances under which G∞(γ) may simplify into a random

variable with a familiar distribution that is free of any nuisance parameters. This can

happen for instance if the threshold variable is taken as external, say independent of xt and

ut. In this instance G∞(γ) can be shown to be equivalent to a normalised squared Brownian

Bridge Process identical to the limiting distribution of the Wald, LR or LM statistic for

testing the null of linearity against a single structural break tabulated in Andrews (1993).

More specifically, the limiting distribution is given by [W (λ) − λW (1)]2/λ(1 − λ) with

W (λ) denoting a standard Brownian Motion associated with ut. Tong (1990, pp. 240-244)

documents some additional special cases in which the limiting random variable takes the

simple Brownian Bridge type formulation. See also Wong and Li (1997) for an application

of the same test to a SETAR model with conditional heteroskedasticity. Note also that

inferences would be considerably simplified if we were to proceed for a given value of γ,

say γ = 0. This scenario could arise if one were interested in testing for the presence of

threshold effects at a specific location such as qt crossing the zero line. In this instance it

can be shown that since ζ(γ = 0) is a multivariate normally distributed random variable

with covariance Ω(γ = 0) the resulting Wald statistic evaluated at γ = 0, say WT (0), will

have a χ2 limit.

The lack of universal tabulations for test statistics such as maxiWT[i] perhaps explains

the limited take up of threshold based specifications by Economists prior to the 90s. In an

important paper, Hansen (1996) proposed a broadly applicable simulation based method

for obtaining asymptotic pvalues associated with maxiWT[i] and related test statistics.

Hansen’s method is general enough to apply to both SETAR or any other threshold model

setting, and bypasses the constraint of having to deal with unknown nuisance parameters

in the limiting distribution. Hansen’s simulation based method proposes to replace the
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population moments of the limiting random variable with their sample counterparts and

simulates the score under the null using NID(0,1) draws. This simulation based method is

justified by the multiplier CLT (see Van der Wart and Wellner (1996)) and can in a way

be viewed as an external bootstrap. It should not be confused however with the idea of

obtaining critical values from a bootstrap distribution.

A useful exposition of Hansen’s simulation based approach which we repeat below can

be found in Hansen (1999). For practical purposes Hansen’s (1996) method involves writing

the sample counterpart of G∞(γ), say GT (γ) obtained by replacing the population moments

with their sample counterparts (the scores are simulated using NID(0,1) random variables).

One can then obtain a large sample of draws, say N=10000, from max1≤i≤Ts GT[i] so as to

construct an approximation to the limiting distribution given by supγ G∞(γ). The com-

puted test statistic max1≤i≤TsWT [i] can then be compared with either the quantiles of the

simulated distribution (e.g. 9750th sorted value) or alternatively pvalues can be computed.

It is important to note that this approach is applicable to general threshold specifications

and is not restricted to the SETAR family. Gauss, Matlab and R codes applicable to

a general threshold specification as in (1) can be found as a companion code to Hansen

(1997). The general format of the procedure involves the arguments y, x and q (i.e. the

data) together with the desired level of trimming π and the number of replications N . The

output then consists of max1≤i≤Ts WT[i] together with its pvalue, say

TEST(y, x, q, π,N) →
(

max
1≤i≤Ts

WT[i], pval

)
. (6)

The above approach allows one to test the null hypothesis H0 : β1 = β2 under quite general

conditions and is commonly used in applied work.

An alternative and equally general model selection based approach that does not require

any simulations has been proposed more recently by Gonzalo and Pitarakis (2002). Here,

the problem of detecting the presence of threshold effects is viewed as a model selection

problem among two competing models given by the linear specification yt = x′tβ + ut, say

M0, and M1 its threshold counterpart (2). The decision rule is based on an information
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theoretic criterion of the type

ICT (γ) = lnST (γ) + 2 p
cT
T
. (7)

Here 2p refers to the number of estimated parameters in the threshold model (i.e. p slopes

in each regime) and cT is a deterministic penalty term. Naturally, under the linear model

M0 we can write the criterion as

ICT = lnST + p
cT
T
. (8)

Intuitively, as we move from the linear to the less parsimonious threshold specification, the

residual sum of squares declines and this decline is balanced by a greater penalty term (i.e.

2 p cT versus p cT ). The optimal model is then selected as the model that leads to the

smallest value of the IC criterion. More formally, we choose the linear specification if

ICT < min
γ∈Γ

ICT (γ) (9)

and opt for the threshold model otherwise. It is interesting to note that this decision rule

is very much similar to using a maximum LR type test statistic since ICT −minγ ICT (γ) =

maxγ [ICT − ICT (γ)] = maxγ [ln(ST /ST (γ)) − pcT /T ]. Equivalently, the model selection

based approach points to the threshold model when maxγ LRT (γ) > p cT . Thus, rather

than basing inferences on the quantiles of the limiting distribution of maxγ LRT (γ) we

instead reach our decision by comparing the magnitude of maxγ LRT (γ) with the deter-

ministic quantity p cT . This also makes it clear that the practical implementation of this

model selection approach follows trivially once Steps 3 and 4 above have been completed.

More specifically noting that the model selection based approach points to the threshold

specification when

max
γ

T (ST − ST (γ))

ST (γ)
> T

(
e
p cT
T − 1

)
(10)

it is easy to see that the decision rule can be based on comparing max1≤i≤Ts WT[i] with the

deterministic term T (e
p cT
T − 1).
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Gonzalo and Pitarakis (2002) further established that this model selection based ap-

proach leads to the correct choice of models (i.e. limT→∞ P (M1|M0) = limT→∞ P (M0|M1) =

0) provided that the chosen penalty term is such that cT →∞ and cT /T → 0. Through ex-

tensive simulations Gonzalo and Pitarakis (2002) further argued that a choice of cT = lnT

leads to excellent finite sample results.

In Table 1 below we present a small simulation experiment in which we contrast the size

properties of the test based approach with the ability of the model selection approach to

point to the linear specification when the latter is true (i.e. correct decision frequencies).

Our Data Generating Process is given by yt = 1 + 0.5xt−1 + ut with xt generated from

an AR(1) process given by xt = 0.5xt−1 + vt. The random disturbances wt = (ut, vt) are

modelled as an NID(0,Ω2) random variable with Ω = {(1.0.5), (0.5, 1)}. The empirical size

estimates presented in Table 1 are obtained as the number of times across the N replications

that the empirical p-value exceeds 1%, 2.5% and 5% respectively. The empirical pvalues

associated with the computed Wald type maxWT [i] test statistic are obtained using Bruce

Hansen’s publicly available thrtest routine. The correct decision frequencies associated with

the model selection procedure correspond to the number of times across the N replications

that maxγ T (ST − ST (γ))/ST (γ) < T (ep lnT/T − 1).

Table 1. Size Properties of maxiWT[i] and Model Selection Based Correct Decision Frequencies under a

Linear DGP

0.010 0.025 0.050 MSEL

T = 100 0.009 0.019 0.041 0.862

T = 200 0.013 0.029 0.055 0.902

T = 400 0.011 0.023 0.052 0.964

The above figures suggest that the test based on supγWT (γ) has good size properties

even under small sample sizes. We also note that the ability of the model selection procedure

to point to the true model converges to 1 as we increase the sample size. This is expected
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from the underlying theory since the choice of a BIC type of penalty cT = lnT satisfies the

two conditions ensuring vanishing probabilities of over and under fitting.

In summary, we have reviewed two popular approaches for conducting inferences about

the presence or absence of threshold effects within multiple regression models that may or

may not include lagged variables. Important operating assumptions include stationarity and

ergodicity, absence of serial correlation in the error sequence ut, absence of endogeneity, and

a series of finiteness of moments assumptions ensuring that laws of large numbers and CLTs

can be applied. Typically, existing results are valid under a martingale difference assumption

on ut (see for instance Hansen (1999)) so that some forms of heterogeneity (e.g. conditional

heteroskedasticity) would not be invalidating inferences. In fact all of the test statistics

considered in Hansen (1996) are heteroskedasticity robust versions of Wald, LR and LM. It

is important to note however that regime dependent heteroskedasticity is typically ruled out.

A unified theory that may allow inferences in a setting with threshold effects in both the

conditional mean and variance (with possibly different threshold parameters) is not readily

available although numerous authors have explored the impact of allowing for GARCH

type effects in threshold models (see Wong and Li (1997), Gospodinov (2005, 2008)). It will

also be interesting to assess the possibility of handling serial correlation in models such as

(1). Finally, some recent research has also explored the possibility of including persistent

variables (e.g. near runit root processes) in threshold models. This literature was triggered

by the work of Caner and Hansen (2001) who extended tests for threshold effects to models

with unit root processes but much more remains to be done in this area (see Pitarakis

(2008), Gonzalo and Pitarakis (2011, 2012)).

3 Estimation of Threshold Models and Further Tests

The natural objective of an empirical investigation following the rejection of the null hy-

pothesis of linearity is the estimation of the unknown true threshold parameter, say γ0,

together with the unknown slope coefficients β10 and β20.
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3.1 Threshold and Slope Parameter Estimation

The true model is now understood to be given by yt = x1t(γ0)′β10 + x2t(γ0)′β20 + ut and

our initial goal is the construction of a suitable estimator for γ0. A natural choice is given

by the least squares principle which we write as

γ̂ = arg min
γ∈Γ

ST (γ) (11)

with ST (γ) denoting the concentrated sum of squared errors function. In words, the least

squares estimator of γ is the value of γ that minimises ST (γ). It is also important to note

that this argmin estimator is numerically equivalent to the value of γ that maximises the

homoskedastic Wald statistic for testing H0 : β1 = β2 i.e γ̂ = arg maxγWT (γ) with WT (γ) =

T (ST −ST (γ))/ST (γ). From a practical viewpoint therefore γ̂ is a natural byproduct of the

test procedure described earlier (see Appendix A for a simple Gauss code for estimating γ̂).

We have

Step 1: Record the index i = 1, . . . ,Ts that maximises WT[i], say î

Step 2: γ̂ is obtained as qss[̂i].

The asymptotic properties of γ̂ that have been explored in the literature have concen-

trated on its super consistency properties together with its limiting distribution. Early work

on these properties was completed in Chan (1993) in the context of SETAR type threshold

models (see also Koul and Qian (2002)). Chan (1993) established the important result of

the T-consistency of γ̂ in the sense that T (γ̂ − γ0) = Op(1). This result was also obtained

by Gonzalo and Pitarakis (2002) who concentrated on general threshold models with mul-

tiple regimes instead. Proving the consistency of the argmin estimator γ̂ is typicaly done

following a standard two step approach. In a first instance it is important to show that the

objective function, say ST (γ)/T satisfies

sup
γ∈Γ

∣∣∣∣ST (γ)

T
− S∞(γ)

∣∣∣∣ p→ 0 (12)

12



with S∞(γ) denoting a nonstochastic limit with a unique minimum. The consistency of γ̂

then follows by showing that S∞(γ) is uniquely minimised at γ = γ0 i.e. S∞(γ) > S∞(γ0)

for γ < γ0 and S∞(γ) > S∞(γ0) for γ > γ0.

In Chan (1993) the author also obtained the limiting distribution of T (γ̂ − γ0) with

the latter shown to be a function of a compound Poisson process. This limit did not lend

itself to any practical inferences however since dependent on a large number of nuisance

parameters besides being particularly difficult to simulate due to the presence of continuous

time jump processes.

As a way out of these difficulties and for the purpose of developing a toolkit that can

be used by practitioners, Hansen (2000) adopted an alternative parameterisation of the

threshold model that was then shown to lead to a convenient nuisance parameter free

limiting distribution for γ̂. The price to pay for this more favourable limiting theory was a

rate of convergence for γ̂ that was slightly lower than T . The main idea behind Hansen’s

approach was to reparameterise the threshold model in (1) in such a way that the threshold

effect vanishes with T in the sense that δT = β2 − β1 → 0 as T →∞. Assuming Gaussian

errors and using this vanishing threshold framework Hansen (2000) was able to obtain a

convenient distribution theory for γ̂ that is usable for conducting inferences and confidence

interval construction. In particular, Hansen (2000) derived the limiting distribution of a

Likelihood Ratio test for testing the null hypothesis H0 : γ = γ0 and showed it to be free

of nuisance parameters provided that δT → 0 at a suitable rate. As mentioned earlier,

the price to pay for this asymptotically vanishing threshold parameterisation is the slightly

slower convergence rate of γ̂. More specifically T 1−2α(γ̂ − γ0) = Op(1) for 0 < α < 1
2

which can be contrasted with the T -consistency documented under non vanishing threshold

effects. Note that here α is directly linked to the rate of decay of δT = β2 − β1 = c/Tα so

that the faster the threshold is allowed to vanish the slower the ensuing convergence of γ̂.

Hansen (2000) subsequently showed that a Likelihood Ratio type test for testing the

null hypothesis H0 : γ = γ0 takes a convenient and well known limiting expression that is
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free of nuisance parameters provided that ut is assumed to be homoskedastic in the sense

that E[u2
t |qt] = σ2

u. More specifically, Hansen (2000) established that

LRT (γ0)
d→ ζ (13)

with P (ζ ≤ x) = (1 − e−x/2)2. The practical implementation of the test is now trivial

and can be performed in two simple steps. Suppose for instance that one wishes to test

H0 : γ = 0. This can be achieved as follows

Step 1: Construct LRT = T (ST (γ = 0)− ST (γ̂))/ST (γ̂) with γ̂ = arg minγ∈Γ ST (γ).

Step 2: The pvalue corresponding to the test statistic is p = 1− (1− e−LRT /2)2.

Following the work of Hansen (2000) numerous authors explored the possibility of de-

veloping inferences about γ (e.g. confidence intervals) without the need to operate within

a vanishing threshold framework with gaussian errors and/or assuming error variances that

cannot shift across regimes. In Gonzalo and Wolf (2005) the authors developed a flexible

subsampling approach in the context of SETAR models while more recently Li and Ling

(2011) revisited the early work of Chan (1993) and explored the possibility of using simula-

tion methods to make the compound Poisson type of limit usable for inferences. The above

discussions have highlighted the important complications that are caused by the presence of

the discontinuity induced by the threshold variable. This prompted Seo and Linton (2007)

to propose an alternative approach for estimating the parameters of a threshold model that

relies on replacing the indicator functions that appear in (2) with a smoothed function à la

smoothed maximum score of Horowitz (1992).

Finally, following the availability of an estimator for γ, the remaining slope parameter

estimators can be constructed in a straigtforward manner as

β̂i(γ̂) = (Xi(γ̂)′Xi(γ̂))−1Xi(γ̂)′y (14)

for i = 1, 2. An important result that follows from the consistency of γ̂ and that makes

inferences about the slopes simple to implement is the fact that β̂i(γ̂) and β̂i(γ0) are asymp-

totically equivalent. More formally, we have
√
T (β̂i(γ̂) − β̂i(γ0))

p→ 0 so that inferences
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about the slopes can proceed as if γ were known. Under conditional homoskedasticity for

instance t-ratios can be constructed in the usual manner via the use of covariances given

by σ̂2
u(γ̂)(Xi(γ̂)′Xi(γ̂))−1 with σ̂2

u(γ̂) = ST (γ̂)/T .

3.2 Finite Sample Properties

At this stage it is also useful to gain some insights on the behaviour of estimators such as γ̂

and β̂i(γ̂) in finite samples commonly encountered in Economics. The bias and variability

of γ̂ is of particular importance since the asymptotics of β̂i(γ̂) rely on the fact that we may

proceed as if γ0 were known. As noted in Hansen (2000) it is unlikely that we will ever

encounter a scenario whereby γ̂ = γ0 and taking this uncertainty into account in subsquent

confidence intervals about the β′is becomes particulary important.

In order to evaluate the finite sample behaviour of the threshold and slope parameter

estimators we consider a simple specification given by

yt =

 β10 + β11xt−1 + ut qt−1 ≤ γ0

β20 + β21xt−1 + ut qt−1 > γ0

(15)

with xt = φxxt−1 +vt and qt = φqqt−1 +et. Letting wt = (ut, vt, et) we take wt ≡ NID(0,Ω)

and set Ω = {(1, 0.5,−0.3), (0.3, 1.0.4), (−0.5, 0.4, 1)} so as to allow for some dependence

across the random shocks while satisfying the assumptions of the underlying distributional

theory. Regarding the choice of parameters we use {φq, φx} = {0.5, 0.5} throughout and set

the threshold parameter γ0 = 0.25.

Our initial goal is to assess the finite sample bias and variability of γ̂ = arg minST (γ).

For this purpose we distinguish between two scenarios of strong and weak threshold effects.

Results for this experiment are presented in Table 2 below which display averages and

standard deviations across N=1000 replications.

Table 2. Finite Sample Properties of γ̂ and β̂i(γ̂)
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E(γ̂) σ(γ̂) E(β̂10) σ(β̂10) E(β̂20) σ(β̂20) E(β̂11) σ(β̂11) E(β̂21) σ(β̂21)

Case 1 (strong) : β10 = 1, β20 = 2, β11 = 0.5, β12 = 1, γ0 = 0.25

T = 100 0.227 0.183 0.991 0.142 2.012 0.199 0.515 0.138 1.009 0.163

T = 200 0.243 0.080 0.996 0.099 2.004 0.128 0.507 0.087 1.014 0.104

T = 400 0.246 0.034 0.999 0.069 2.000 0.087 0.502 0.059 1.004 0.073

Case 2 (weak) : β10 = 1, β20 = 1, β11 = 0.5, β12 = 1, γ0 = 0.25

T = 100 0.156 0.621 1.016 0.239 0.962 0.276 0.494 0.201 1.052 0.212

T = 200 0.219 0.396 0.994 0.126 0.981 0.156 0.489 0.109 1.041 0.131

T = 400 0.248 0.215 1.000 0.074 0.987 0.098 0.495 0.064 1.021 0.082

The above figures suggest that both the threshold and slope parameter estimators have

good small sample properties as judged by their bias and variability. We note that γ̂ has

negligible finite sample bias even under small sample sizes such as T=200. However an

interesting distinguishing feature of γ̂ is its substantial variability relative to that charac-

terising the slope parameter estimators. Under the weak threshold scenario for instance and

the moderately large sample size of T=400 we note that σ(γ̂) ≈ E(γ̂) whereas the standard

deviations of the β̂i(γ̂)′s are substantially smaller. It will be interesting in future work to

explore alternative estimators that may have lower variability.

The above Data Generating Process can also be used to assess the properties of the

LR based test for testing hypotheses about γ. Using the same parameterisation as in

Table 2 we next consider the finite sample size properties of the Likelihood Ratio test for

testing H0 : γ = 0.25. Results for this experiment are presented in Table 3 below which

contrasts nominal and empirical sizes. Empirical sizes have been estimated as the number

of times (across N replications) that the estimated pvalue is smaller than 1%, 2.5% and

5% respectively. The scenario under consideration corresponds to Case 2 under a weak

threshold parameterisation.

Table 3. Size Properties of the LR test for H0 : γ = 0.25
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0.010 0.025 0.050

T = 100 0.010 0.025 0.065

T = 200 0.017 0.030 0.065

T = 400 0.015 0.032 0.054

T = 800 0.010 0.024 0.055

Table 3 above suggests an excellent match of theoretical and empirical sizes across a

wide range of small to moderately large sample sizes. Note also that this happens under a

rather weak threshold effect forcing solely the slope parameters to switch once qt−1 cross

the value 0.25. It is also important to recall that the above inferences based on a nuisance

parameter free limiting distribution are valid solely under a homoskedasticity restriction

forcing E[u2
t |qt] to be constant.

4 Going Beyond the Standard Assumptions & Suggestions

for Further Work

The various methods for detecting the presence of threshold effects and subsequently esti-

mating the model parameters that we reviewed above crucially depend on the stationarity

and ergodicity of the series being modelled. It is indeed interesting to note that despite the

enormous growth of the unit root literature the vast majority of the research agenda on

exploring nonlinearities in economic data has operated under the assumption of stationarity

highlighting the fact that nonstationarity and nonlinearities have been mainly treated in iso-

lation. In fact one could also argue that they have often been viewed as mutually exclusive

phenomena with an important strand of the literature arguing that neglected nonlinearities

might be causing strong persistence.

One area through which threshold specifications entered the world of unit roots is

through the concept of cointegration, a statistical counterpart to the notion of a long run

equilibrium linking two or more variables. This naturally avoided the technical problems
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one may face when interacting nonlinearities with nonstationarities since cointegrated re-

lationships are by definition stationary processes and their residuals can be interpreted as

mean-reverting equilibrium errors whose dynamics may describe the adjustment process to

the long run equilibrium. Consider for instance two I(1) variables yt and xt and assume

that they are cointegrated in the sense that the equilibrium error zt is such that |ρ| < 1 in

yt = βxt + zt

zt = ρzt−1 + ut. (16)

Researchers such as Balke and Fomby (1997) proposed to use threshold type specifica-

tions for error correction terms for capturing the idea that adjustments to long run equilibria

may be characterised by discontinuities or that there may be periods during which the speed

of adjustment to equilibrium (summarised by ρ) may be slower or faster depending on how

far we are from the equilibrium or alternatively depending on some external variable sum-

marising the state of the economy. More formally the equilibrium error or error correction

term can be formulated as

∆ẑt =

 ρ1ẑt−1 + vt qt−1 ≤ γ

ρ2ẑt−1 + vt qt−1 > γ
(17)

with ẑt = yt − β̂xt typically taken as the threshold variable qt. Naturally one could also

incorporate more complicated dynamics to the right hand side of (17) in a manner similar

to an Augmented Dickey Fuller regression. The natural hypothesis to test in this context is

again that of linear adjustment versus threshold adjustment via H0 : ρ1 = ρ2. This simple

example highlights a series of important issues that triggered a rich literature on testing for

the presence of nonlinear dynamics in error correction models. First, the above framework

assumes that yt and xt are known to be cointegrated so that zt is stationary under both the

null and alternative hypotheses being tested. In principle therefore the theory developed in

Hansen (1996) should hold and standard tests discussed earlier should be usable (see also

Enders and Siklos (2001)). Another difficulty with the specification of a SETAR type of

model for ẑt is that its stationarity properties are still not very well understood beyond some
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simple cases (see Chan and Tong (1985) and Caner and Hansen (2001, pp. 1567-1568))1

One complication with alternative tests such as H0 : ρ1 = ρ2 = 0 is that under this null

the threshold variable (when qt ≡ ẑt) is no longer stationary. It is our understanding that

some of these issues are still in need of a rigorous methodological research agenda. Note for

instance that fitting a threshold model to ẑt in (17) involves using a generated variable via

yt − β̂xt unless one is willing to assume that the cointegrating vector is known.

Perhaps a more intuitive and rigorous framework for handling all of the above issues

is to operate within a multivariate vector error correction setting à la Johansen. Early

research in this area has been developed in Hansen and Seo (2002) who proposed a test

of the null hypothesis of linear versus threshold adjustment in the context of a VECM.

Assuming a VECM with a single cointegrating relationship and a known cointegrating

vector Hansen and Seo (2001) showed that the limiting theory developed in Hansen (1996)

continues to apply in this setting. However, and as recognised by the authors the validity

of the distributional theory under an estimated cointegrating vector is unclear. These two

points are directly relevant to our earlier claim about testing H0 : ρ1 = ρ2 in (17). If we are

willing to operate under a known β then the theory of Hansen (1996) applies and inferences

can be implemented using a supγWT (γ) or similar test statistic.

In Seo (2006) the author concentrates on the null hypothesis of no linear cointegration

which would correspond to testing the joint null hypothesis H0 : ρ1 = ρ2 = 0 within our

1Caner and Hansen (2001) was in fact one of the first papers that seeked to combine the presence of

unit root type of nonstationarities and threshold type nonlinear dynamics. Their main contribution was

the development of a new asymptotic theory for detecting the presence of threshold effects in a series

which was restricted to be a unit root process under the null of linearity (e.g. testing H0 : β1 = β2 in

∆yt = β1yt−1I(qt−1 ≤ γ) + β2yt−1I(qt−1 > γ) + ut with qt ≡ ∆yt−k for some k ≥ 1 when under the null of

linearity we have ∆yt = ut so that yt is a pure unit root process). Pitarakis (2008) has shown that when the

fitted threshold model contains solely deterministic regressors such as a constant and deterministic trends

together with the unit root regressor yt−1 the limiting distribution of maxiWT[i] takes a familiar form given

by a normalised quadratic form in Brownian Bridges and readily tabulated in Hansen (1997). Caner and

Hansen (2001) also explore further tests such as H0 : β1 = β2 = 0 which are directly relevant for testing

H0 : ρ1 = ρ2 = 0 in the above ECM.
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earlier ECM specification. Seo’s work clearly highlights the impact that a nonstationary

threshold variable has since under this null hypothesis the error correction term used as the

threshold variable is also I(1) and Hansen’s (1996) distributional framework is no longer

valid. It is also worth emphasising that Seo’s distributional results operate under the

assumption of a known cointegrating vector. In a more recent paper Seo (2011) explores

in greater depth the issue of an unknown cointegrating vector and derives a series of large

sample results about β̂ and γ̂ via a smoothed indicator function approach along the same

lines as Seo and Linton (2007).

Overall there is much that remains to be done. We can note for instance that all of the

above research operated under the assumption that threshold effects were relevant solely in

the adjustment process to the long run equilibrium with the latter systematically assumed to

be given by a single linear cointegrating regression. An economically interesting feature that

could greatly enhance the scope of the VECMs is the possibility of allowing the cointegrating

vectors to also be characterised by threshold effects. This would be particularly interesting

for the statistical modelling of switching equilibria. Preliminary work in this context can be

found in Gonzalo and Pitarakis (2006a, 2006b).

5 Conclusions

The purpose of this chapter was to provide a comprehensive methodological overview of the

econometrics of threshold models as used by Economists in applied work. We started our re-

view with the most commonly used methods for detecting threshold effects and subsequently

moved towards the techniques for estimating the unknown model parameters. Finally we

also briefly surveyed how the originally developed stationary threshold specifications have

evolved to also include unit root variables for the purpose of capturing economically inter-

esting phenomena such as asymmetric adjustment to equilibrium. Despite the enormous

methodological developments over the past ten to twenty years this line of research is still

at its infancy. Important new developments should include the full development of an es-
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timation and testing methodology for Threshold VARs similar to Johansen’s linear VAR

analysis together with a full representation theory that could allow for switches in both the

cointegrating vectors and their associated adjustment process. As dicussed in Gonzalo and

Pitarakis (2006a, 2006b) such developments are further complicated by the fact that it is

difficult to associate a formal definition of threshold cointegration with the rank properties

of VAR based long run impact matrices as it is the case in linearly cointegrated VARs.
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APPENDIX

The code below estimates the threshold parameter γ̂ = arg minγ ST (γ) using the specification in (15). It

takes as inputs the variables y ≡ yt, x ≡ xt−1 and qt ≡ qt−1 and outputs γ̂. The user also needs to inpute

the desired percentage of data trimming used in the determination of Γ (e.g. trimper=0.10).

proc gamhatLS(y,x,q,trimper);

local t,qs,top,bot,qss,sigsq1,r,xmat1,xmat2,thetahat,zmat,res1,idx;

t=rows(y); /* sample size */

qs=sortc(q[1:t-1],1); /* threshold variable */

top=t*trimper;

bot=t*(1-trimper);

qss=qs[top+1:bot]; /* Sorted and Trimmed Threshold Variable */

sigsq1=zeros(rows(qss),1); /* Initialisation: Defining some vector of length (bot-top) */

r=1; /* Looping over all possible values of qss */

do while r<=rows(qss);

xmat1=ones(t-1,1).*(q[1:t-1].<=qss[r])~x[1:t-1].*(q[1:t-1].<=qss[r]);

xmat2=ones(t-1,1).*(q[1:t-1].>qss[r])~x[1:t-1].*(q[1:t-1].>qss[r]);

zmat=xmat1~xmat2;

thetahat=invpd(zmat’zmat)*zmat’y[2:t];

res1=y[2:t]-zmat*thetahat;

sigsq1[r]=res1’res1; /* Residual Sum of Squares for each possible value of qss */

r=r+1;

endo;

idx=minindc(sigsq1); /* Fetch the index where the smallest value of sigsq1 is located */

retp(qss[idx]); /* Returns the threshold parameter estimator */

endp;
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