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Summary

This paper explores the conditions under which cointegration at
the micro level implies cointegration at the macro level and vice
versa. The aggregation conditions considered in this paper are
in terms of common factors assumptions rather than the repre-
sentative agent assumption, thereby allowing for a certain kind
of heterogeneity among agents.
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1. Introduction

Many economic theories are designed at the micro level and tested
at the macro level. In a world of I(1) variables, these economic
theories will produce cointegration (by the transversality con-
ditions) at the micro level, but this micro cointegration may not go
through to the macro level. When this happens, rejection of macro
cointegration does not automatically imply the rejection of a par-
ticular economic theory that has been designed for a representative
agent. In fact, when cointegration is not preserved during the
aggregation process, we will not even get consistent estimators of
the macro parameters, making the macro model useless. One of the
objectives of this paper is to show under which assumptions cointeg-
ration goes through the aggregation process, and then see which
economic theories could be rejected or not using macro data.

Earlier literature suggests that the equality of the cointegrating
vectors at the micro level is the only plausible condition for
cointegration to be invariant under aggregation (see Lippi, 1988).
This is not necessarily correct as the following simple example,
with only two groups of agents and three variables, shows:

xlt 1 O x2t 1 0\
<y1¢> =<1 1>ft+I(0) and <y2z =<2 1)ft+1(0)7 @
2y 01 2y 0 2
where f, is I(1). The cointegrating vectors at the micro level for
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group 1 and 2 are «,=(1, —1,1) and a,=(1, —0-5, —0-25) respect-
ively. These two micro cointegrating vectors are linearly indepen-
dent and the aggregate variables are still cointegrated, as can be
seen from their common factor representation,

x, 2 0
<y¢> :<3 2>ﬂ+1(0)- @
z, 0 3

Notice that the macro cointegrating vector, a = (1, —2/3, 4/9), is not
even a linear combination of the micro cointegrating vectors, «,
and a,.

This example shows that micro cointegration can go through to
the macro level with heterogeneous individuals. In general, when
the micro cointegrating vectors are not equal, what is needed for
cointegration to be preserved in the aggregation process is
“enough” extra cointegration in the full system formed by all the
variables. In the above example this is ensured by the fact that f, is
the same for both groups of agents. Section 2 of this paper shows
when the standard condition of the equality of the cointegrating
vectors at the micro level is a necessary and sufficient condition in
order to have cointegration at the macro level.

Most of the aggregation literature only considers the direction
from micro to macro but not the other direction. Sometimes it is
this second direction that is relevant from the empirical point of
view. In many situations we can only rely on macro data. Micro
data is either not available, or when it is, it contains measurement
errors. In these cases it is important to study which kind of
constraints the macro behaviour imposes on the micro behaviour,
especially under which conditions macro cointegration implies
micro cointegration.

Using the common factor representation that every cointegrated
system has, it is straightforward to construct examples where the
variables are cointegrated at one level of aggregation but not at
the other.

This paper is organized as follows. Section 2 provides conditions
under which cointegration at the micro level implies cointegration
at the macro level. It also shows when the equality of the micro
cointegrating vectors is necessary and sufficient for that impli-
cation to hold. Section 3 considers the other direction, presenting
conditions for cointegration at the macro level to imply cointeg-
ration at the micro level. Section 4 is the conclusion. The proof of
the theorems is given in the Appendix.
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2. From micro to macro

Suppose that x, is a series that has to be differenced (integer) d
times to achieve a stationary series. x, is then denoted I(d) and thus
a stationary series is I(0). For simplicity only d<1 will be con-
sidered here. A set of I(1) variables x,=(x,, ...,x,) 1s said to be
cointegrated with rank r, if there exists a matrlx oc such that a' 2,
is 1(0). This concept is discussed in Granger (1986) and in Engle and
Granger (1991).

Suppose that there are n micro-units (groups of agents or
commodities, regions, sectors of an economy,...) and that the
same p variables are measured in each, giving the variables
X3,J=1, ...,n and k=1, ...,p. Denote by x; ,=(x;, ...,x;,)" the
p X1 vector of variables for the j-th micro-unit. The aggregated
variables are defined as

Z X = <ij1,t,.. Z th>'=(Slxt,...,prt)’.
i=1

These aggregated variables, Sx, as well as the individual ones,
x; , are assumed to be I(1).

"All the results in this paper are stated in terms of the following
two representations of the vector x; ,: the Wold’s representation,

Ax;_,=C(L)s;_,=C\Ds;_,+AC\(L),_, 3)

J

where L is the lag operator and ¢, is a vector white noise process;
and the factor representation,

x; A f +I10),

j—it J

(4)
pXxX1l pXs; s;x1

with f;, a vector of non-cointegrated random walks. The vector x;_,
1s comtegrated with rank r; if and only if rank {C(D)}=p—r;
or, equivalently, s,=p—r,.

Conditions for mlcro comtegratlon to imply macro cointegration
involve constraints on A, and/or f;,. Many of these conditions do
not have any clear meamng or 1nterpretat10n The next theorem
presents a set of sufficient conditions that have a straightforward
interpretation. These conditions depend on how much cointeg-
ration is in the system, and/or how similar the cointegrating

vectors, ;, are.
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THEOREM 1: Cointegration at the micro level implies cointegration
at the macro level if any of the next three conditions are satisfied:

(1) The amount of cointegration (q) among the different micro-units
is such that

(n><p)—<er) —g<p. 6))
j=1
(2) The intersection of the null spaces spanned (SP) by A';is not
empty,
() SP{N(A’))} # 9 (6)
j=1 :

(8) A mixture of conditions (1) and (2).

This theorem is a generalization of proposition 2—a in Gonzalo
(1989) and of fact 2 in Lippi (1989).
Condition (1) can be stated in two different equivalent ways:

(1') The number of unit roots or common I(1) factors in the full
system is less than p,
(1”) the variables in the j-th micro-unit admit the factor
representation
x; ,=P,Sx,+1(0), @)
where the rank (P)=r;.

Notice that condition (1) is automatically satisfied when there
are more variables than micro-units, p > n, and the rank of cointeg-
ration in every micro-unit is p — 1. A much more interesting case is
when all the I(1) common factors are the same.

fi =1

sx1

In this situation the amount of cointegration in the whole system is
R=n(p—s)+(ns—s) and because s is always less than p, condition
1), (nxp)— R<p, is satisfied.

An example of equal common I(1) is found in those consumption
theories (see Deaton, 1992) where everyone (y,) gets a share of the
aggregate income (y), together with an idiosyncratic and transi-
tory shock,

Ay, =Ae,+u,—u;, , and Ay,=¢, <))

A simpler version of (8) is
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Yi=Ai¥p With ) A=1. )
j=1

Following with the consumption-income example, we conclude
that cointegration of these two variables at the individual level
implies cointegration between total consumption and total income,
if the individual incomes are cointegrated with rank n—1, no
matter what the individual marginal propensities to consume are.

In a more general framework, we can assume, as Blanchard and
Quah (1989), that there are two kinds of shocks in the economy:
some that have a permanent effect (maybe supply shocks) in the
system and others that only have a transitory effect (maybe
demand shocks). Condition (1) holds if the number of permanent
shocks in the whole system is less than the number of variables in
each micro-unit.

One implication of condition (1), and in general of this paper, is
that the search for common (1) factors of the full system becomes
very important, to see if we can aggregate in terms of cointeg-
ration. Approximations to these common factors can be found from
the error correction model of the appropriated system, as discussed
in Stock and Watson (1988) and Gonzalo and Granger (1991).

Condition (2) says that if there exists at least one cointegrating
vector that is equal for all the micro-units, then cointegration goes
through the aggregation process. This condition was initially
stated in Lippi (1989), and the next theorem shows when this is the
only plausible way to get cointegration at the aggregate level.

THEOREM 2: The existence of at least one common cointegration
vector in all the micro-units is a necessary and sufficient condition for
micro-cointegration to imply macro-cointegration if any of the next
three conditions are satisfied:

(4) The vector (¢,_, . ..,&,_,) is a vector white noise process with full
rank covariance matrix.

(6) The long-run covariance (V) of (e,_,, ...,&,_,) has full rank.

(6) The common factors f,,, ...,f,, in (4) are not cointegrated.

Notice that condition (4) implies condition (5) and (5) and (6) are
equivalent.

Many models commonly used in the simultaneous equation
panel data literature (see Hsiao, 1986) satisfy the above conditions.
For instance, it can be proved that the following specification,

R % (10)

iy =Mjpt Wy + Bt €k j=1
k=1,...,p,
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where all the components are independent of each other, uncorre-
lated across time and

E(n,n) =0 if t=s, 0 otherwise;

E(uj, u) =07 if j=1, 0 otherwise;

E@By Bn)= af,:k if k=m, 0 otherwise;

E(e, €;,) = 02, if (j, k)= (i, m), 0 otherwise;

satisfies conditions (4), (5) and (6). A particular case of (10) is when
¢;_, are independent across micro-units. In this case the covariance
matrix ¥ is block diagonal, and because the ¢; , are non-degener-
ate white noise processes, it has full rank.

Going back to the consumption-income example, if the model for
the individual incomes, instead of (8), is

ijt=lj8t+uﬂ_9juﬂ_l’ 01'#1’ (11)

with (u,,,...,u,,) a vector white noise, then by Theorem 2, condition
(8), cointegration between consumption and income at the indi-
vidual level implies cointegration between total consumption and
total income if, and only if, all the individuals have the same
marginal propensity to consume. Therefore, if the process for the
individual incomes is (11), and at least two consumers have
different marginal propensity to consume, we will never get coin-
tegration at the aggregate level. It is in this sense that Theorem 2
could be interpreted as an impossibility result for aggregation.

Another interpretation of Theorem 2, in the same impossibility
vein, is that if any of conditions (4), (5) or (6) are satisfied, then it is
enough to have only one micro-unit that is not cointegrated in
order for there not to be cointegration at the macro level.

A case where the conditions of Theorem 2 are not satisfied is
example (1). This is why, in that example, there is micro and macro
cointegration with non-equal micro cointegrating vectors.

3. From macro to micro

Adding up the individual Wold and factor representations, (3) and
(4), we get the equivalent representations for the aggregate Sx,:

ASx,=C,(De, ,+ ...+ C,(De, ,+ (I— L)) 12)
and

Sx,= Af,+....+ A f,+10). (13)
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The vector Sx, is cointegrated if and only if there exists an ax’p such
that !

a' C(De,_,+....+a" C,(I)e,_,=(I—L)I0) (14)
or, equivalently, if and only if
oA f,t... .. +a' A, f,,=1(0). (15)

Cointegration at the macro level imposes certain constraints on
the micro behaviour, as Granger (1992) shows, but they are not
strong enough to ensure micro cointegration. For that we need to
impose some extra conditions. Some of them are discussed in this
section.

THEOREM 3: Cointegration at the macro level (with rank r) implies
cointegration at the micro level if any of the conditions (4), (5) or (6) of
Theorem 2 are satisfied. In this case, there are r cointegration vectors
common to all the micro-units.

Everything that has been said about Theorem 2 applies here.

There are situations where the long-run covariance matrix (¥)
ofe_,,...,e,_,) does not have full rank, and macro cointegration
still implies micro cointegration. These are situations where there
is enough cointegration in the system to ensure that all the
I(1)ness comes from a number of common factors less than the
number of variables in each micro-unit. This is summarized in the
next theorem.

THEOREM 4: Let §= R —r be the number of cointegrating vectors in
the whole system that are linearly independent of the macro cointe-
grating vectors. Then, macro cointegration with rank r implies micro
cointegration if

(nxp)—r—q<p. (16)

This theorem is the counterpart of condition (1) in Theorem 1. The
reason it has been stated here again is to emphasize that in going
from the macro level to the micro level the conditions are much
stronger than for the other direction. The § in (16) in general will
be much bigger than the g in (5).

An interesting subcase of this theorem is when the extra cointeg-
ration (q) comes specifically from the variable space (k=1, ...,p).
Denote x_,,=(xy;,, -+, Xn1)’» the n X1 vector of micro-units for the
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k-th variable, and suppose this vector has rank of cointegration r,,
then it admits the following factor representation:

X_p.= B, g +10), (17)
nx1l nXxs, s X1

with s,=n—r, and g, 1(1).

COROLLARY 1: Macro cointegration (with rank r) implies micro
cointegration if

(nxp)—r— 3 ry<p 18)
k=1

Notice that this corollary is automatically satisfied if r,=n—1, and
it is not satisfied if r,=n—2. So, in order to get micro cointegration
from macro cointegration we need a large amount of cointegration
in the variable space across micro-units.

In the consumption-income example, what Corollary 1 requires
is that the income of all individuals is cointegrated, and also that
their consumption is cointegrated, with rank n—1. In Section 2,
from micro to macro, only cointegration of the individual incomes
was required.

4. Conclusions

This paper shows that to preserve cointegration in the aggregation
(disaggregation) process, the representative agent assumption,
used in most of the macro theories, is not necessary. We can still
allow for certain heterogeneity among the agents or sectors,
although not too much. What is required is that the I(1)ness of the
system come from a small number of non-cointegrated I(1) factors,
or that all the micro-units share at least one cointegrating vector.
These conditions are easily tested (see Johansen, 1988; Stock &
Watson, 1988; Gonzalo & Granger, 1991). Whether they are still too
strong to be satisfied in practice or not is something that has to be
analysed empirically, case by case.
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Appendix

Proor oF THEOREM 1: Condition (1) implies that there exists the
following factor representation for the full system:

x_ppeenxy_ ) =H, .., H) w, +10),
pPXs pXs sx1
(A1)

p
where s=(n x p)— ( Z rj> —qg<p, and w, is a vector of
j=1
non-cointegrated random walks. Adding up (A.1), we get

D P
Sx,= Y % ,= ( Y H, ) w, + 1(0). (A.2)
j=1

j=1pxs
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So there exists anrocx'p such that

D
ro)c(’p(Z Hj>=0, r=p-—s (A.3)

j=1pxs

and therefore Sx, is cointegrated.

Condition (2) implies that there exists a vectorrocx’p such that
' A;=0,j=1,...,n. (A4)
Therefore, from (15), Sx, is cointegrated,

o' Sx,=0+ o’ 1(0) = I(0). (A.5)
Q.E.D.

Proor oF THEOREM 2: It is sufficient to prove this theorem only for
condition (6).

Micro cointegration, (4), implies macro cointegration if there
exists an rocx’p such that

A fy, .. F AL, 1 1(0) (A.6)
s X1 s, %1
where s;<p,j=1,...,n. If (f,, ..., f,) are not cointegrated, the only
way (A.6) holds is if (A.4) is satisfied. This implies that all the

micro-units share r cointegrating vectors.

Q.E.D.

Proor oF THEOREM 3: It is sufficient to prove this theorem only for
condition (5).
The vector Sx, is cointegrated if and only if

2 Cy(De,_,+...+a'Cy(De,_,=(1—L)IO). (A7)

The fact that¢; ,isa white noise process does not imply that the

whole vector (¢, _, ..., &,_,) is a vector white noise. But it is always
possible to find a vector white noise process u, such that

€1 p e &n_ ) =Ly, (A.8)
The long-run covariance matrix of (¢',_,,...,¢',_ )" is

¥=¢(I) Var(u) o(I)". (A.9)
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Multiplying (A.7) by (¢’ ,, ..., &', )" and taking expectations in both
sides, at frequency zero, we get

@C,...,a'CI))¥Y=0 (A.10)
Therefore, if ¥ has full rank, (A.10) holds if and only if (A.4) is

satisfied. This implies that all the micro-units share r cointegrating
vectors.

Q.E.D.
Proor orF THEOREM 4: See proof of Theorem 1.
Q.E.D.
ProorF oF COROLLARY 1: From (17) we can write
X_=A(g p..,8 ) +1(0), (A.11)

. P

where dim (A4,)=p X {}. (n—ry} and dim (g,)=n—r,. Adding up
k=1

(A.11), we get

Sx,= ) xj_,t=(ffl+ .+ A, -8 ) +10). (A.12)

j=1
Macro cointegration (with rank r) implies

-+ &,) =Fuw,+1(0)
sx1 (A.13)

D
with s= ) (n—r,)—r. Then, if s<p, from (A.11) we get
k=1
cointegration at the micro level.
Q.E.D.



