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Abstract

Co-integration plays a fundamental role in the econometric analysis of linear relationships

among persistent economic time series. Nonetheless, nonlinearities are often encountered in

modern macroeconometric models that account for more �exible relationships. In a nonlinear

world, however, the concepts order of integration and co-integration are not readily applicable.

The inherent linearity in the order of integration idea invalidates its use to characterize nonlinear

persistent and/or nonstationary processes and this, in turn, implies that co-integration cannot

be directly extended to study nonlinear relationships.

To overcome these hindrances, Berenguer-Rico and Gonzalo (2014) formalized the concept

order of summability of a stochastic process, which generalizes the order of integration idea to

nonlinear time series. In this paper, the order of summability is used to extend co-integration to

non-linear models. Speci�cally, we formalise the idea of co-summability and propose a residual-

based statistic to test for it. The statistic can also be seen as a misspeci�cation testing procedure

and is based on the order of summability of the error term. The performance of the test is studied

via Monte Carlo experiments. Finally, the practical strength of co-summability theory is shown

through two empirical applications. In particular, asymmetric preferences of central bankers and

the environmental Kuznets curve hypothesis are studied through the lens of co-summability.
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1 Introduction

Co-integration theory has received a great deal of attention from economists and econometricians.

Through the idea of cointegration, linear equilibrium relationships between macroeconomic vari-

ables hypothesized by economic theorists were statistically supported from a time series analysis

perspective. More recently, researchers have ventured into the non-linear world to provide richer

descriptions of economic phenomena. However, the ideas of integration and co-integration cannot

be directly used to analyse non-linear equilibrium relationships among persistent variables as these

concepts do not properly apply. To be more precise, the order of integration of nonlinear transforma-

tions of persistent processes may not be well de�ned. This failure of applicability of the de�nition

of order of integration implies that the concept of co-integration cannot be directly extended to

non-linear long run relationships. As already pointed out by Granger (1995), this originates a clear

need for theoretically valid and empirically useful concepts that generalise those of integration and

co-integration.

This paper proposes to use the idea of order of summability formalised by Berenguer-Rico and

Gonzalo (2014). It was conceived to deal both theoretically and empirically with non-linear trans-

formations of heterogeneous and/or persistent processes. By making use of this new concept, co-

integration theory can be generalised through the idea of co-summability to non-linear relationships.

By taking advantage of the order of summability estimator, co-summability can be empirically stud-

ied. To infer if a postulated relationship is co-summable, this paper proposes a residual based test,

therefore, an estimate of the errors is needed. Parametric and non-parametric approaches to esti-

mate non-linear long run relationships are available in the literature. Park and Phillips (1999, 2001)

and Wang and Phillips (2009) develop parametric and non-parametric methods, respectively, from

an integrated processes perspective. Alternatively, Karlsen, Myklebust and Tj�stheim (2007) and

Schienle (2011) analyse non-parametric estimation in a recurrent Markov chains setup. Notwith-

standing, all these studies assume that the regression model speci�es a co-integrating relation,

something that should be tested in practice. There have been some �rather limited�proposals in

this direction �see, for example, Kasparis (2008) or Choi and Saikkonen (2010). The test proposed

in this paper contributes to this literature by giving more insights into the degree of persistence and

heterogeneity of the residuals (hence into the degree of misspeci�cation), while at the same time

delivering reasonable properties in terms of size an power compared to the existing tests.

To show the empirical strength of co-summability theory, the proposed test is put into practice

with two di¤erent empirical applications where non-linear transformations of persistent processes

occur. Speci�cally, asymmetric preferences of central bankers and the environmental Kuznets curve

are analysed. The former hypothesis is translated in the literature into non-linear Taylor rules when

conducting monetary policy �see, for instance, Clarida and Gertler (1997) or Dolado, María-Dolores

and Naveira (2005). These non-linearities and the fact that the variables involved in this type
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of rules are found to be persistent make co-summability appropriate in this context. The latter

hypothesis, the environmental Kuznets curve, postulates an inverted U-shaped relationship between

pollution and economic development, usually measured by CO2 emissions and GDP, respectively

�see Dasgupta et al. (2001) or Brock and Taylor (2005) for an overview. Again, this non-linear

relationship, typically approximated by a polynomial function, jointly with the well documented

persistence of these two measures, make this hypothesis another natural economic context where

co-summability theory rightly �ts. The empirical �ndings provide new insights for the econometric

treatment of these two hypotheses. In the Taylor rule case, the linear speci�cation does not de�ne

a long run relationship �co-summability does not hold�thus suggesting a possible misspeci�cation.

Following the asymmetric preferences of central bankers literature, we �nd that a threshold Taylor

rule is not rejected �co-summability holds. Speci�cally, it is found that the Federal Reserve reacts

very asymmetrically to recessions and expansions. With respect to the environmental Kuznets curve,

favourable evidence is found when variables are included in logarithms and the polynomial function

is of third degree.

The paper is organised as follows. In Section 2, co-summability is formally de�ned and discussed

through two economic examples. Section 3 describes the model to be considered and Section 4

proposes a test for strong co-summability. The performance of the test is studied via simulations.

In Section 5, two empirical exercises are carried out: asymmetric preferences of central bankers and

the environmental Kuznets curve hypothesis are analyzed. Section 6 �nishes with some concluding

remarks. The proofs are collected in the Appendix.

2 Co-summability

The subsequent theory relies on the idea of order of summability of stochastic processes. It was

�rst introduced in a heuristic way by Gonzalo and Pitarakis (2006) and subsequently formalised in

Berenguer-Rico and Gonzalo (2014) �BG hereafter. A slightly simpli�ed version of the de�nition in

BG is used in this paper1.

De�nition 1 : A stochastic process fyt : t 2 Ng is said to be summable of order �, or S(�), if

Sn =
1

n
1
2
+�

nX
t=1

yt = Op(1);

but not op (1) as n!1.
1 In BG, Sn is de�ned as

Sn =
1

n
1
2
+�
L(n)

nX
t=1

(yt �mt) ;

where L(n) is a slowly varying function and mt a deterministic sequence.
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The order of summability, �, gives a summary measure of the stochastic properties �persistence

and evolution of the variance�of yt without relying on a particular data generating process. Hence,

contrary to the order of integration, it is able to characterize nonlinear processes. It generalizes the

idea of order of integration in the sense that any I (d) process, d � 0, is S (d) �see BG for a formal

argument on the relationship between I(d) and S(d). In contrast to the order of integration, the

order of summability can also easily characterize nonlinear processes. As a typical example, consider

the square of a random walk

y2t = y2t�1 + yt�1"t + "
2
t ;

where "t � i:i:d: (0; 1) and y0 = 0. Findining the number d that makes �dy2t to be an I (0) process

poses a number of conceptual di¢ culties. If, instead, the order of summability is used and given

that
1

n2

nX
t=1

y2t  
Z 1

0
W (r)2 dr;

we have y2t � S (1:5). Therefore, the order of summability of y2t can be easily characterized through

the asymptotic behavior of its sum. Other examples, such as cross-products, threshold, logistic or

logarithmic transformations are analyzed in BG; Table 1 summarises them.

Once a generalization of the order of integration for non-linear processes is available, an extension

of co-integration to nonlinear relationships can be made through the concept of co-summability.

De�nition 2 : Two summable stochastic processes, yt � S (�y) and xt � S (�x), are said to be

co-summable if there exists f (xt) � S (�y) such that ut = yt � f(xt) is S(�u), with �u = �y � � and

� > 0. In short, (yt; xt) � CS(�y; �).

Table 1: Examples: I(d) vs S(�)

DGP I (d) S (�) DGP I (d) S (�)

y1t � i:i:d:F 2 D (�) I (?) S ((2� �)=2�) y8t = 1(vt � 
)�t I (?) S (1)

y2t = z + "t I (?) S (1=2) y9t = e��
2
t I (?) S (1=2)

y3t � I (d) I (d) S (d) y10t = 1=(1 + �
2
t ) I (?) S (1=2)

y4t = �t�t I (?) S (1=2) y11t = log(j�tj) I (?) S (1=2)
y5t = �t�

2
t I (?) S (1) y12t = (1 + e

��t)�1 I (?) S (1=2)
y6t = �2t I (?) S (3=2) y13t = �ty12;t�1 + "t I (?) S (� (n))

y7t = ��t ; � = 1; 2::: I (?) S ((1 + �) =2) y14t = �y13;t�1 + "t; � > 1 I (?) S (� (n))

D(�) denotes the domain of attraction of an �-stable law with � 2 (0; 2] ; z � N (0; 1); "t � i:i:d: (0; 1);
�t = �t�1 + "t and �0 = 0; �t � i:i:d: (0; 1); vt � i:i:d: (0; 1); �t � i:i:d: (1; 1). z, "t, �t, vt, and �t are
independent of each other. In this Table, I(d) is understood as the de�nition given by Engle and Granger
(1987), p.252.
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A couple of economic examples, to be analyzed empirically below, will help in motivating the

theoretical and practical need for an extension of the idea of cointegration to nonlinear models and

show that co-summability is able to cover this need.

Example 1 : Central Bankers with Asymmetric Preferences

Consider a central bank with asymmetric preferences with respect to deviations of in�ation or

output from some particular target level. Di¤erent modelisations of this hypothesis based on Taylor

rules can be found in the literature. For instance, Clarida and Gertler (1997) study the following

threshold type of Taylor rule for the Bundesbank

it = �0 + �1~�t1 (~�t > 0) + �2~�t1 (~�t � 0) + �3~yt1 (~�t > 0) + �4~yt1 (~�t � 0) + ut; (1)

where it denotes interest rates, ~�t are deviations from the in�ation target, and ~yt is the output gap.

On the other hand, Dolado, María-Dolores and Naveira (2005), allowing for a non-linear Phillips

curve, derive the following type of optimal monetary policy rule

it = �0 + �1~�t + �2~yt + �3~�t~yt + ut: (2)

In both cases, extending co-integration will be troublesome using the I(d) framework. Even if it

can be said that it, ~�t, and ~yt are I(di), I(d~�), and I(d~y), respectively, the order of integration of

~�t1 (~�t � 0) or ~�t~yt may not be well de�ned. Nevertheless, the generality of the order of summability

makes it suitable to be used in both situations, and hence, co-summability would deliver a well

de�ned long run relationship.

Example 2 : Environmental Kuznets Curve

The environmental Kuznets curve indicates an inverted-U relationship between pollution and

economic development �see Dasgupta et al. (2001) or Brock and Taylor (2005) for an overview. The

usual shape given to this relationship is of a polynomial type. Consider the simplest

pt = �0 + �1yt + �2y
2
t + ut;

where pt is a measure of pollution and yt is a measure of income, typically CO2 and GDP , respec-

tively. Using the standard notion of co-integration in this model will be again problematic. Even

if it is known that yt is I (dy), the order of integration of y2t could not be well de�ned. As it has

been emphasised herein, the order of summability can help to overcome this pitfall and therefore

co-summability provides a framework where properly de�ning this long run relation.
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3 The Model

The co-summable relationship to be analysed in this paper is the one described by the following

model, linear in parameters but possibly non-linear in variables,

yt = �0f(xt) + ut; (3)

where f : R ! R, xt and yt are known by the researcher. Relationship (3) can be considered

to be an approximation to a more general relationship yt = g(xt; �0) + ut, which will be better

than the standard approximation considered in co-integration theory �linear in parameters and

variables. Indeed, if g is such that a Taylor expansion applies, then only considering a linear relation

could unbalance the model if, for instance, a higher order polynomial were a better approximation.

Moreover, model (3) is empirically very rich. To facilitate the exposition, the bivariate case (yt; xt)

will be considered but the extension to a multivariate xt or to additively separable multiple regression

models can be easily adapted.

Consider that the following least squares regression is carried out

yt = �̂nf(xt) + ût, t = 1; :::; n: (4)

Assumption 1

(a) For some �f > 0 and �u � 0,0@ 1

n1=2+�f

[nr]X
t=1

f(xt);
1

n1=2+�u

[nr]X
t=1

ut

1A =) (Df (r) ; Du (r)) ;

where (Df (r) ; Du (r)) is a vector of stochastic processes de�ned on r 2 [0; 1].

(b)

n�f��u
�
�̂n � �0

�
=) D�;

where D� is some random variable.

Assumption 1 is a general condition that will allow us to work under both the null hypothesis

of strong co-summability, SC, Ho : �u = 0, and the alternative of no strong co-summability, NSC,

Ha : �u > 0. This hypotheses framework, along the lines of the KPSS test for co-integration in the

I (d) world, allows us to construct a functional form misspeci�cation test. Under the null hypothesis,

Ho : �u = 0, Assumption 1 implies that

1

n1=2

[nr]X
t=1

ut =) Du (r) and n�f
�
�̂n � �0

�
=) D�:

These conditions will be satis�ed under di¤erent data generating processes describing ut and f(xt).
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Several simple examples in which these assumptions are met are put forward next. The assumptions

in these examples, referring to the error term ut and f (xt), can be made more general as several

authors have shown. For expository and explanatory convenience, we describe these simple cases

next.

3.1 Examples under the null hypothesis

Example 3 : Linear Cointegration

(a) yt = �0xt + ut.

(b) Let Fnt, t = 0; :::; n, such that (ut;Fnt) is a martingale di¤erence sequence with E
�
u2t jFn;t�1

�
=

�2 a:s: for all t = 1; :::; n and sup1�t�n (jutjq jFn;t�1) <1 a:s: for some q > 2.

(c) 0@x[nr]
n1=2

;
1

n1=2

[nr]X
t=1

ut

1A =) (W (r) ; V (r)) ;

where (W (r) ; V (r)) is a vector Brownian motion.

It can be easily seen that conditions in Assumptions 1 are satis�ed in this case. In particular,

�f = 1 and �u = 0, so that,0@ 1

n3=2

[nr]X
t=1

xt;
1

n1=2

[nr]X
t=1

ut

1A =)
�Z r

0
W (r) dr; V (r)

�
:

and

n
�
�̂n � �0

�
=)

R 1
0 W (r) dV (r)R 1
0 W

2 (r) dr
:

Example 4 : Park and Phillips (1999)

(a) yt = �0f(xt) + ut.

(b) Let Fnt, t = 0; :::; n, such that (ut;Fnt) is a martingale di¤erence sequence with E
�
u2t jFn;t�1

�
=

�2 a:s: for all t = 1; :::; n and sup1�t�n (jutjq jFn;t�1) <1 a:s: for some q > 2.

(b) xt = xt�1 + wt with wt =  (L) "t =
P1
k=0  k"t�k, "t � i:i:d:

�
0; �2"

�
,  (1) 6= 0, x0 = Op (1),

�2" <1 and
P1
k=0 k

1=2 j kj <1.

(c) ut is independent of wt.

(d) f(:) is asymptotically homogeneous with asymptotic order v (
p
n) = n�f�1=2 and limit ho-

mogeneous function h (:).

Conditions in Assumptions 1 are satis�ed in this example too. In particular, from Park and

Phillips (1999),

0@ 1

n1=2+�f

[nr]X
t=1

f(xt);
1

n1=2

[nr]X
t=1

ut

1A =)
�Z r

0
h (W (r)) dr; V (r)

�
;
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and

n�f
�
�̂n � �0

�
=)

R 1
0 f (W (r)) dV (r)R 1
0 f

2 (W (r)) dr
:

3.2 Examples under the alternative

Assumption 1 also considers models under the alternative hypothesis, Ha : �u > 0. The following

examples describe two concrete alternatives.

Example 5 : Spurious Regressions (Phillips, 1986)

(a) yt = yt�1 + eyt with eyt � i:i:d: (0; 1) and y0 = 0.

(b) xt = xt�1 + ext with ext � i:i:d: (0; 1) and x0 = 0.

(c) eyt and ext are independent of each other.

Under these conditions0@ 1

n3=2

[nr]X
t=1

xt;
1

n3=2

[nr]X
t=1

yt

1A =)
�Z r

0
Wx (s) ds;

Z r

0
Wy (s) ds

�
;

and �
�̂n � �0

�
=)

R 1
0 Wx (r)Wy (r) drR 1

0 W
2
x (r) dr

:

Hence, conditions in Assumption 1 hold with �f = �u = �y = 1.

Example 6 : Functional Form Misspeci�cation

(a) yt = �0xt + ut

(b) xt = xt�1 + vt

(c) ut = 
0x
2
t + "t

(d) vt � i:i:d: (0; 1) and "t � i:i:d: (0; 1) are independent of each other.

In this case, 0@ 1

n3=2

[nr]X
t=1

xt;
1

n2

[nr]X
t=1

ut

1A =)
�Z r

0
Wx (s) ds; 
0

Z r

0
W 2
x (r) dr

�
;

and

n�1=2
�
�̂n � �0

�
=) 
0

R 1
0 W

3
x (r) drR 1

0 W
2
x (r) dr

:

Hence, conditions in Assumption 1 hold with �f = 1 and �u = 1:5.

4 Testing for Strong Co-summability

In this section, we propose a residual-based test for strong co-summability. Our proposal is based

on the order of summability of the residuals; given their triangular array nature, in this section, we
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modify accordingly the de�nition of order of summability to accomodate them.

De�nition 3 : A triangular array fynt : n 2 N; 1 � t � ng is said to be summable of order �, or

S(�), if

Sn =
1

n
1
2
+�

nX
t=1

ynt; (5)

is Op(1) but not op (1) as n!1.

Proposition 1 : Let ût be the OLS residuals of yt = �0f(xt) + ut.

(a) Under Assumption 1, if �u = 0,

1

n1=2

nX
t=1

ût = Op (1) :

(b) Under Assumption 1, if �u > 0,

1

n1=2+�u

nX
t=1

ût = Op (1) :

Remark: Proposition 1 guarantees the use of the residuals to infer the order of summability of

the error term in the model. In particular, the residuals are S (0) under the null hypothesis, �u = 0,

and S (�u) with �u > 0 under the alternative.

Remark: When a constant term is also estimated, that is, yt = m̂n+ �̂nf(xt)+ ût, where m̂n is

the OLS estimator of the constant term, then the OLS residuals satisfy
Pn
t=1 ût = 0, which implies

that ût cannot be used to infer �u. Partially demeaned residuals

~ut = ût �
1

t

tX
j=1

ût;

can be used instead in that case to infer �u �see BG for details on the partial demeaning procedure.

Proposition 1 motivates a way to test for strong co-summability, Ho : �u = 0. In particular, we

propose to use the order of summability estimator analyzed in BG, which is based on the convergence

rate estimator by McElroy and Politis (2007). The procedure, applied to the residuals, starts from

Sk =
1

k
1
2
+�

kX
t=1

ût;

and needs the following assumption to hold.

Assumption 2. P (Sk = 0) = 0 for all k = 1; 2; 3:::
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Then, following McElory and Politis (2007), the estimator of � is based on

Uk = log
�
S2k
�
= log

24 1

k
1
2
+�

kX
t=1

ût

!235 ;
which can be rewritten in regression model form

Yk = � log k + Uk; k = 1; 2; :::; n; (6)

where � = 1 + 2� and Yk = log
��Pk

t=1 ût

�2�
. For expository convenience, we reproduce here the

proposition in BG that derives the asymptotic distribution of �̂n, the OLS estimator of �.

Proposition 2 : Under Assumption 2, if

1

n

nX
k=1

Uk =) DU and
1

n

nX
k=1

jUkjp = Op (1) ; (7)

for some 1 < p <1 and DU a non-degenerate random variable, then

log n(�̂n � �) =) DU : (8)

Remark: To allow for a constant term in regression (6), that is,

Yk = �+ � log k + Uk;

where � accounts for a scaling � in

Uk = log
�
S2k
�
= log

24 1

k
1
2
+�

1

�

kX
t=1

ût

!235 ;
so that � = 2 log �, BG proposed using

~Yk = � log k + ~Uk; (9)

where ~Yk = (Yk � Y1) and ~Uk = (Uk � U1). In this way, inference on � is free of the nuisance

parameter �.

Remark: By Proposition 2, under the stated assumptions, the order of summability estimator

�̂n =
�
�̂n � 1

�
=2 is consistent and when properly normalized converges to an asymptotic distribu-

tion. The approach in BG does not rely on any particular form of the data generating process; hence,

some resampling technique needs to be used in order to approximate DU and carry out inferences

on the true �. Through simulations, BG showed that the subsampling technique of Politis, Romano
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and Wolf (1999) worked resonably well in many situations of interest.

Next, we consider the application of this procedure to test for strong co-summability, which

implies checking whether conditions (7) in Proposition 2 hold in the case of the residulas, ût. Specif-

ically, the quantity of interest is

1

n

nX
k=1

Uk =
1

n

nX
k=1

log

24 1

k
1
2
+�u

kX
t=1

ût

!235
=
1

n

nX
k=1

log

24 n 1
2
+�u

k
1
2
+�u

1

n
1
2
+�u

kX
t=1

ût

!235
= � (1 + 2�u)

1

n

nX
k=1

log
k

n
+
1

n

nX
k=1

log

24 1

n
1
2
+�u

kX
t=1

ût

!235 :
Under the null hypothesis of strong co-summability, in which �u = 0, for ût = ut�

�
�̂n � �0

�
f (xt),

1

n

nX
k=1

Uk = �
1

n

nX
k=1

log
k

n
+
1

n

nX
k=1

log

24 1p
n

kX
t=1

ut � n�f
�
�̂n � �0

� 1

n1=2+�f

kX
t=1

f (xt)

!235 ;
where, by Assumption 1 above,

1p
n

kX
t=1

ût =
1p
n

kX
t=1

ut � n�f
�
�̂n � �0

� 1

n1=2+�f

kX
t=1

f (xt) (10)

=) Du (r)�D�Df (r) � X (r) :

To derive the asymptotic distribution of n�1
Pn
k=1 Uk, we will use a result by Christopeit (2009),

which is, to the best of our knowledge, the most general result available in the literature that can be

applied to our setup. The application of this result requires the following two assumptions to hold.

Assumption 3: X (r) in (10) has continuous paths and for almost all r possesses a density  r

(with respect to the Lebesgue measure) such that

Z 1

0
 r (x) dr <1 for all x.

Assumption 4: For each n, k, n�1=2
Pk
t=1 ût posseses a density, hnk, such that

sup
n

1

n

nX
k=1

khnkk1 <1.

Proposition 3 : Under Assumption 1 with �u = 0 and Assumptions 2-4,

1

n

nX
k=1

Uk =)
Z 1

0
log
�
X (r)2

�
dr and

1

n

nX
k=1

U2k = Op (1) :
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Remark: By Proposition 3, we can apply Proposition 2 to the least squares residuals and use

log n(�̂n � 1) to construct a test for strong co-summability. Notice that under the null hypothesis,

the relevant statistic is log n(�̂n � 1). Under the alternative hypothesis the appropriate quantity

would be log n(�̂n � �u) where �u = 1 + 2�u > 1. Hence, by considering log n(�̂n � 1) under the

alternative we get a consistent test. Notice, however, that the asymptotic distribution under the

null will be in�uenced by nuisance parameters coming from the estimation error

n�f
�
�̂n � �0

� 1

n1=2+�f

kX
t=1

f (xt) =) D�Df (r) : (11)

A similar feature arouse in Choi and Saikkonen (2010) when using the KPSS statistic to test for

nonlinear cointegration. They proposed using a subsampling scheme to account for these nuisance

parameters. In a similar fashion to Choi and Saikkonen (2010) and following BG, we propose to use

the subsampling methodology of Politis, Romano and Wolf (1999) in order to carry out inferences on

the order of summability of the residuals. We do not formally prove the validity of the subsampling

but show through simulations that the proposal works quite well, even when compared to other

tests for nonlinear cointegration existing in the literature.

In the Monte Carlo experiments, we consider the data generating processes in Table 2. Perfor-

mance is measured by coverage probability of two-sided nominal 95% symmetric intervals. Size and

power are measured as one minus the coverage probability that zero belongs to the corresponding

subsampling con�dence interval. The experiment is based on 10000 replicas and three di¤erent

sample sizes, n = f100, 500, 1000g. A subsample size, b =
p
n, has been chosen. The results are

shown in Table 3.

As it can be seen, the testing procedure is undersized �case SC, for strong co-summability�

in practically all speci�cations being considered, except when autocorrelated errors are studied (a

characteristic feature of the residual-based tests for co-integration). On the other hand, in all NSC

�for no strong co-summability�cases, i.e. under the alternative, power increases as we move away

from the null hypothesis (measured by the order of summability of ut) and the sample size grows.

It is worth noticing the di¤erence between the NCS cases at the rigth and left bottom of Table 2.

The DGPs on the left consider alternative hypotheses in which an additional regressor is missing in

the regression function f (xt). The DGPs on the right consider cases in which the functional form

has been misspeci�ed. From results in Table 3, we see that the test has power to detect both types

of misspeci�cations.

11



Table 2: DGPs: Data Generating Processes

Data Generating Processes
* yt f (xt) * yt f (xt)

SC ln(jxtj) + ut ln(jxtj) SC � = 0:5 ln(jxtj) + et ln(jxtj)
SC vtxt + ut vtxt SC � = 0:8 ln(jxtj) + et ln(jxtj)
SC xt + vt + ut xt NSC � = 1 ln(jxtj) + et ln(jxtj)
SC xt + 1 (vt � 0)xt + ut xt + 1 (vt � 0)xt SC � = 0:5 x2t + et x2t
SC x2t + ut x2t SC � = 0:8 x2t + et x2t
SC

Pt
j=1 xj + ut

Pt
j=1 xj NSC � = 1 x2t + et x2t

* yt f (xt) * yt f (xt)

NSC xt + ln(jwtj) + ut xt NSC xt + "t ln (jxtj)
NSC xt + vtw

2
t + ut xt NSC x2t + "t vtxt

NSC xt + 1 (vt � 0)wt + ut xt NSC xt + "t wt
NSC xt + wt + ut xt NSC xt + "t x2t
NSC xt + w

2
t + ut xt NSC xtwt + "t x2t

NSC xt +
Pt
j=1wj + ut xt NSC xt + "t x3t

SC and NSC denote strong co-summability and no strong co-summability, respectively. xt = xt�1 + "xt with
x0 = 0. wt = wt�1 + "wt with w0 = 0. et = �et�1 + zt. ut, "t, "xt, "wt, zt, and vt are i.i.d. N(0,1) independent
of each other.

Table 3: Testing for Strong Co-summability: Size and Power

Under Strong Co-summability
Ho : �u = 0 n Ho : �u = 0 n

* �f �u 100 500 1000 * �f �u 100 500 1000

SC 1/2 0 0.009 0.008 0.007 SC 1/2 0 0.040 0.036 0.034
SC 1/2 0 0.011 0.013 0.011 SC 1/2 0 0.134 0.130 0.126
SC 1 0 0.008 0.010 0.010 NSC 1/2 1 0.448 0.726 0.814
SC 1 0 0.009 0.011 0.010 SC 3/2 0 0.038 0.042 0.042
SC 3/2 0 0.009 0.009 0.010 SC 3/2 0 0.146 0.153 0.155
SC 2 0 0.010 0.010 0.010 NSC 3/2 1 0.655 0.972 0.995

Under No Co-summability
Ho : �u = 0 n Ho : �u = 0 n

* �f �u 100 500 1000 * �y �f 100 500 1000

NSC 1 1/2 0.146 0.474 0.635 NSC 1 1/2 0.166 0.490 0.682
NSC 1 1 0.213 0.569 0.742 NSC 3/2 1/2 0.946 0.999 1.000
NSC 1 1 0.207 0.612 0.792 NSC 1 1 0.510 0.919 0.979
NSC 1 1 0.511 0.920 0.978 NSC 1 3/2 0.351 0.858 0.953
NSC 1 3/2 0.701 0.981 0.998 NSC 3/2 3/2 0.706 0.994 0.999
NSC 1 2 0.769 0.982 0.997 NSC 1 2 0.448 0.894 0.961
See Table 2 for speci�c details about the DGPs. SC and NCS denote strong co-summability
and no strong co-summability, respectively. Hence, SC represent size while NCS corre-
sponds to power. Performance is measured from coverage probability of two-sided nominal
95% symmetric intervals.
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5 Empirical Application

5.1 Asymmetric preferences of central bankers

Asymmetric preferences of central bankers have been empirically tested in the literature by using

nonlinear Taylor rules. A traditional linear Taylor rule looks like

it = �0 + �1~�t + �3~yt + ut; (12)

where it denotes nominal interest rates and ~�t and ~yt are deviations of in�ation and output from their

targets, respectively. Using equation (12), or some slightly modi�ed version of it, several authors

have tried to quantify the parameters that de�ne the practice of monetary policy in di¤erent countries

�see, for instance, Clarida, Galí and Gertler (1998, 2000).

It is somehow surprising that little attention has been paid to the fact that the variables involved

in the Taylor rule are known to be highly persistent, something that should be taken into account

when long time periods are analysed. There are, however, several works that address this issue, for

instance, Siklos and Wohar (2005), Österholm (2005), and Christensen and Nielsen (2009). The fact

that traditional Taylor rules do not appear to be congruent with the data once persistence is taken

into consideration �usually through integration and co-integration theory�seems to be a common

feature of these studies. This conclusion points to the possibility of an incorrect speci�cation of the

traditional Taylor rule.

On the other hand, although consistent with this conclusion, a stream of the literature has

emphasised the hypothesis of asymmetric preferences of central bankers, which is often translated

into non-linear Taylor rules. Next, the two cases described in Example 1 will be considered. Recall

that, Clarida and Gertler (1997) consider a threshold type of Taylor rule in which the reaction of

the monetary authority is di¤erent when in�ation or output deviates from above, rather than from

below, the target. Speci�cally,

it = �0 + �1~�
(k)
t 1 (vt > 0) + �2~�

(k)
t 1 (vt � 0) + �3~yt1 (vt > 0) + �4~yt1 (vt � 0) + ut; (13)

where ~�(k)t are deviations of the rate of in�ation between periods t and t � k, and vt can be either

~�
(k)
t or ~yt. Alternatively, Dolado, María-Dolores and Naveira (2005) derive a non-linear optimal rule

when non-linearities in the Phillips curve are allowed. The main prediction of this model is that the

optimal rule should contain the interaction between in�ation and output gaps, that is,

it = �0 + �1~�
(k)
t + �2~yt + �3~�

(k)
t ~yt + ut: (14)

Note that if it, ~�
(k)
t , or ~yt are highly persistent, the non-linear nature of these two speci�cations invali-

date the use of standard co-integration theory to analyse the relevance of these models. Nevertheless,
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co-summability can be used given its generality when allowing for persistence and non-linearities

at the same time. Moreover, the linearity in parameters of both equations makes it suitable the

application of the tools to test for co-summability proposed above.

To this end, we use US monthly time series covering the period 1954:07-2013:03, which are

obtained from the Federal Reserve Bank of St. Louis. Speci�cally, we use (i) federal funds rate as

interest rates, (ii) annual (t=t�12 basis; k = 12) percentage rate in the CPI for in�ation, (iii) (logged)

industrial production index for output. Following the usual practice in the literature, to measure

the output gap, we detrend (logged) industrial production using the HP �lter with a coe¢ cient of

14.800. For the in�ation target, we use a �xed 2% level. Figure 1 shows the temporal evolution of

these three measures �it, ~�
(k)
t , and ~yt.

Figure 1: Optimal Rules of Monetary Policy

Variables: Taylor Rule
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Table 4 reports the estimated orders of summability of all the variables contained in equations

(13) and (14) as well as their corresponding subsampling con�dence interval. All the variables have

been partially demeaned to compute their orders of summability. Moreover, to control for a possible

constant term in regression model (6) the �rst observation is subtracted �that is, equation (9) has

been used.
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Table 4: Order of Summability: Estimation and Inference

Variables �̂ IL IU
it 0.813 0.419 1.207

~�
(k)
t 0.862 0.404 1.321
~yt 0.490 0.055 0.925

~�
(k)
t ~yt 0.198 -0.381 0.778

~�
(k)
t 1

�
~�
(k)
t > 0

�
0.814 0.459 1.169

~�
(k)
t 1

�
~�
(k)
t � 0

�
0.697 0.271 1.122

~yt1
�
~�
(k)
t > 0

�
0.155 -0.502 0.813

~yt1
�
~�
(k)
t � 0

�
0.398 -0.232 1.029

~�
(k)
t 1 (~yt > 0) 0.805 0.301 1.309

~�
(k)
t 1 (~yt � 0) 0.725 0.240 1.210
~yt1 (~yt > 0) 0.496 0.129 0.862
~yt1 (~yt � 0) 0.626 0.186 1.065

�̂ denotes the estimated order of summability calculated from re-
gression (10). IL and IU denote the lower and upper bounds of
the corresponding 95% subsampling con�dence intervals. All the
variables have been partially demeaned.

Results in Table 4 indicate that interest rates, it, and in�ation gap, ~�
(k)
t , have a similar order of

summability of approximately 0:8, while the estimated order of summability for the output gap, ~yt,

is approximately 0:5. It is worth emphasising that zero does not belong to any of the subsampling

con�dence intervals of these three time series. This con�rms that persistence has to be properly

addressed when using this dataset. With respect to the non-linear variables, di¤erent results are

found. While the subsampling con�dence intervals for ~�(k)t ~yt, ~yt1
�
~�
(k)
t > 0

�
, and ~yt1

�
~�
(k)
t � 0

�
do

contain zero, all the others do not.

Table 5 collects the parameter estimates of equations (13) and (14) jointly with the results of

testing for strong co-summability associated with each regression. Some aspects are worth empha-

sising. First, the traditional Taylor rule does not specify a strong co-summable relationship �zero

does not belong to the corresponding subsampling con�dence interval. Second, focusing on the non-

linear speci�cations, it can be seen that only a threshold type of Taylor rule in which the Federal

Reserve reacts asymmetrically to output deviations is not rejected �zero belongs to the interval in

this case. Finally, the di¤erence between the parameters associated to ~yt1 (~yt > 0) and ~yt1 (~yt � 0)

is remarkable. This fact clearly re�ects a greater aversion to recessions than to expansions of the

monetary authorities in the US.
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Table 5: Testing for Co-summability

Taylor Rules it it it it
1 3.641 3.606 3.603 3.781

~�
(k)
t 0.957 0.959
~yt 0.744 0.445

~�
(k)
t ~yt 0.173

~�
(k)
t 1

�
~�
(k)
t > 0

�
0.965

~�
(k)
t 1

�
~�
(k)
t � 0

�
0.916

~yt1
�
~�
(k)
t > 0

�
0.974

~yt1
�
~�
(k)
t � 0

�
0.290

~�
(k)
t 1 (~yt > 0) 1.052

~�
(k)
t 1 (~yt � 0) 0.820
~yt1 (~yt > 0) 0.119
~yt1 (~yt � 0) 0.807

�̂û 0.428 0.471 0.437 0.403
IL 0.036 0.087 0.011 -0.005
IU 0.819 0.854 0.863 0.811

�̂û denotes the estimated order of summability of the resid-
uals calculated from regression (10). Residuals have been
partially demeaned. IL and IU denote the lower and upper
bounds of the corresponding 95% subsampling con�dence
intervals.

5.2 Environmental Kuznets Curve

The environmental Kuznets curve �EKC�suggests an inverted U-shaped relationship between pol-

lution and economic development �see Dasgupta et al. (2001), Grossmann and Krueger (1995) or

Brock and Taylor (2005). The empirical literature on the EKC has mainly used a reduced form

approach. Typically, polynomial relationships between pollution and income have been considered,

that is,

pt = �0 + �1yt + �2y
2
t + :::+ �ky

k
t + ut; (15)

where pt is a measure of pollution and yt is a measure of income. Several empirical issues arise

in this setup. A �rst issue is concerned with the measures chosen for pt and yt. While GDP has

been used as a measure of income many measures of pollutants have been used. Commonly used

measures for pt are CO2, NOx, and SO2. Empirical evidence is mixed for di¤erent pollutants. A

second issue relates to the curvature of the EKC. There seems not to be a clear agreement about the

order of the polynomial to be used. Grossman and Krueger (1995) used a cubic speci�cation, while

Holtz-Eakin and Selden (1995) considered the quadratic one. Other authors tend to compare both

speci�cations in practice. A third empirical ambiguity arises as pt and yt are sometimes treated in

levels (Grossman and Krueger, 1995), other times in logarithms (Hong and Wagner, 2008) or both
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cases are compared (Holtz-Eakin and Selden, 1995). Finally, it is surprising that only a few authors

have taken into consideration persistence of the variables involved in the EKC. Some exceptions

include Perman and Stern (2003), Hong and Wagner (2008) and Jalil and Mahmud (2009). When

persistence is taken into consideration, the empirical evidence on the EKC is mixed.

As an illustration, we apply co-summability theory to disentangle some of the empirical features

on the EKC. We use annual GDP and CO2 emissions per capita in the US during the period 1870-

2007. GDP and population are taken from Angus Maddison and CO2 emissions from the Carbon

Dioxide Information Analysis Centre. Figures 2-3 show the evolution of GDP and CO2 emissions

per capita, in levels �co2pcus, gdppcus�and logarithms �lco2pcus, lgdppcus.

Figure 2: Environmental Kuznets Curve Hypothesis

Variables in levels: Environmental Kuznets Curve

0

1000

2000

3000

4000

5000

6000

7000

70 80 90 00 10 20 30 40 50 60 70 80 90 00

CO2PCUS

0

4000

8000

12000

16000

20000

24000

28000

32000

70 80 90 00 10 20 30 40 50 60 70 80 90 00

GDPPCUS

Figure 3: Environmental Kuznets Curve Hypothesis

Variables in Logs: Environmental Kuznets Curve
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Table 6 reports the estimated orders of summability of all the variables contained in (15) for

k = 4. The corresponding subsampling con�dence intervals are provided as well. As expected,

the order of summability of GDP per capita increases as successive powers are taken. In general,

these results show that persistence must be taken into account �zero does not belong to any of the

con�dence intervals.
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Table 6: Order of Summability: Estimation and Inference

Variables �̂ IL IU
co2pc 0.893 0.286 1.500
gdppc 1.424 0.599 2.249
gdppc2 1.779 0.795 2.763
gdppc3 2.090 0.952 3.229
gdppc4 2.391 1.082 3.699
lco2pc 0.705 0.160 1.250
lgdppc 0.876 0.195 1.557
lgdppc2 0.950 0.255 1.645
lgdppc3 1.017 0.270 1.764
lgdppc4 1.112 0.260 1.963

�̂ denotes the estimated order of summability calculated
from regression (10). IL and IU denote the lower and upper
bounds of the corresponding 95% subsampling con�dence
intervals. All the variables have been partially detrended.

Figure 4 plots the relationship between GDP and CO2 emissions per capita in levels and log-

arithms. Although it seems there is a diminishing marginal propensity to pollute, the postulated

inverted U-shape should be more carefully and formally tested.

Figure 4: Environmental Kuznets Curve Hypothesis
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Results to test for strong co-summability are collected in Tables 7 and 8 for levels and logarithms,

respectively. From Table 7, it is clear that co-summability does not hold in any of the speci�cations

considered. Nevertheless, in Table 8, results are somehow more optimistic. Co-summability is

not rejected for the cubic speci�cation, which is compatible with the shape observed in Figure 4.

These results are invariant to the inclusion of a deterministic trend, a usual practice in the literature.

Summarising, from the co-summability results, we recommend to use the logarithmic transformation

and polynomials of third degree when empirically studying parametric reduced forms of the EKC

in the US from this database.
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Table 7: Testing for Co-summability

EKC co2 co2 co2 co2 co2 co2

1 2190.538 1090.780 470.265 749.636 -1040.9460 -391.214
t 54.820 39.204 20.297
gdp 0.149 -0.098 0.520 0.112 1.0190264 0.641
gdp2 -1.249e-005 -4.752e-006 -5.143e-005 -3.441e-005
gdp3 8.248e-010 5.491e-010

�̂û 1.750 0.883 1.447 0.989 1.028 0.923
IL 0.945 0.143 0.483 0.322 0.272 0.229
IU 2.556 1.623 2.411 1.656 1.785 1.617

�̂û denotes the estimated order of summability of the residuals calculated from regression
(10). Residuals have been partially demeaned. IL and IU denote the lower and upper bounds
of the corresponding 95% subsampling con�dence intervals.

Table 8: Testing for Co-summability

EKC lco2 lco2 lco2 lco2 lco2 lco2

1 2.290 10.023 -42.883 -41.941 -280.718 -290.421
t 0.019 0.001 -0.003

lgdp 0.646 -0.359 10.665 10.501 90.013 92.866
lgdp2 -0.551 -0.546 -9.340 -9.623
lgdp3 0.323 0.333

�̂û 1.503 1.351 0.792 0.796 0.240 0.247
IL 0.724 0.529 0.189 0.172 -0.342 -0.305
IU 2.281 2.172 1.395 1.419 0.823 0.801

�̂û denotes the estimated order of summability of the residuals
calculated from regression (10). Residuals have been partially
demeaned. IL and IU denote the lower and upper bounds of the
corresponding 95% subsampling con�dence intervals.

6 Concluding Remarks

Co-integration theory is not designed to deal with situations in which non-linearities and persistence

occur simultaneously. Accordingly, there is a clear need for theoretically valid and empirically useful

concepts that generalise those of integration and co-integration to non-linear environments. To that

end, this paper has made use of the order of summability of stochastic processes to formalize the idea

of co-summability, a generalization of co-integration for nonlinear relationships, and has developed

a simple testing procedure to analyze it in practice.
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7 Appendix

Proof of Proposition 1:

(a) Under Assumptions 1, if �u = 0,

1

n1=2

nX
t=1

ût =
1

n1=2

nX
t=1

�
yt � �̂nf (xt)

�
=

1

n1=2

nX
t=1

�
�0f (xt) + ut � �̂nf (xt)

�
=

1

n1=2

nX
t=1

ut � n
�f
�
�̂n � �0

� 1

n1=2+�f

nX
t=1

f (xt)

= Op (1) :

(b) Under Assumption 1, if �u > 0,

1

n1=2+�u

nX
t=1

ût =
1

n1=2+�u

nX
t=1

�
�0f (xt) + ut � �̂nf (xt)

�
=

1

n1=2+�u

nX
t=1

ut + n
�f��u

�
�̂n � �0

� 1

n1=2+�f

nX
t=1

f (xt)

= Op (1) :

Q.E.D.

Proof of Proposition 3: For ût = ut �
�
�̂n � �0

�
f (xt) with �u = 0, we have

1

n

nX
k=1

Uk =
1

n

nX
k=1

log

24 1

k
1
2

kX
t=1

ût

!235
= � 1

n

nX
k=1

log
k

n
+
1

n

nX
k=1

log

24 1p
n

kX
t=1

ut � n�f
�
�̂n � �0

� 1

n1=2+�f

kX
t=1

f (xt)

!235 :
By Assumption 1,

1p
n

kX
t=1

ût =
1p
n

kX
t=1

ut � n�f
�
�̂n � �0

� 1

n1=2+�f

kX
t=1

f (xt)

=) Du (r)�D�Df (r) � X (r) :

Now, under Assumptions 2-4, Theorem 2.1. in Christopeit (2009) jointly with an extended real

functions argument that follows Remark 2.1 in Pötscher (2004),

1

n

nX
k=1

Uk =)
Z 1

0
log
�
X (r)2

�
dr:
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By similar arguments,
1

n

nX
k=1

U2k =)
Z 1

0
log2

�
X (r)2

�
dr;

hence,
1

n

nX
k=1

U2k = Op (1) :

Q.E.D.
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