Juegos Dinámicos
Tema 1: Juegos dinámicos con Información Perfecta

Universidad Carlos III
Juegos Dinámicos

• Juegos en los que un jugador tiene que tomar una decisión tras conocer (parte del) desarrollo del juego, en concreto qué hizo alguno de sus rivales.

• Modelo matemático del juego: forma extensiva

• Ejemplos: ajedrez, parchís, mus.
La Forma Extensiva

La forma extensiva debe definir:

1. el orden en que los jugadores van tomando sus decisiones,
2. la información que tienen en cada momento,
3. las alternativas que tienen a su disposición,
4. el resultado final de cada posible camino que se haya podido seguir.
Tipos de Juegos Dinámicos

1. Juegos con información perfecta.
 Los jugadores están perfectamente informados de lo ocurrido hasta el momento en que juegan.
 Ejemplo: ajedrez

2. Juegos con información imperfecta
 Algún jugador no conoce el resultado de algún movimiento de azar o la acción que ha tomado otro que ha jugado antes.
 Ejemplos: parchís, mus
Juegos Dinámicos con Información Perfecta

• Todos los jugadores conocen lo ocurrido hasta el momento en que juegan

Elementos de la forma extensiva:

1) Árbol: vértice inicial del que salen varias ramas que llegan a otros vértices, de los que pueden salir otras ramas, y así sucesivamente. Los vértices de los que no salen ramas se llaman vértices finales.

2) Asignación de los vértices no finales entre los jugadores: Cada vértice debe ser de algún jugador y ningún vértice puede corresponder a más de uno.

3) Asignación de acciones a cada jugador en cada uno de los vértices que tiene asignados.

4) Asignación de pagos (utilidades): En cada vértice final se asignará un pago a cada jugador.
Ejemplo 1

Consideremos el siguiente juego entre dos jugadores. La Jugadora 1 (Ella) decide primero su acción y, después de observar lo elegido por ella, el Jugador 2 (Él) elige la suya.
Interpretación de la Forma Extensiva

• El primer número en cada vértice final es el pago de Ella, el segundo, el pago de Él. Así, si 1 juega I y 2 opta por I, entonces los pagos son 3 para el Jugador 1 (Ella) y 1 para el Jugador 2 (Él)
• Ella tiene solo un vértice asignado y Él tiene dos.
• Las letras en las ramas nos identifican las acciones que pueden tomar: Ella puede optar entre las acciones I y D, y Él en 2.1 entre I y D y en 2.2 entre i y d.
La Forma Normal del Ejemplo 1

• La Jugadora 1 tiene dos estrategias: I y D. El Jugador 2 tiene dos vértices (2.1 y 2.2), en el primero tiene dos acciones (I y D) y en el segundo otras dos (i y d).

• Las estrategias de 2 son cuatro: (I,i), (I,d), (D,i) y (D,d). La forma normal es la siguiente:

<table>
<thead>
<tr>
<th>J1 \ J2</th>
<th>(I,i)</th>
<th>(I,d)</th>
<th>(D,i)</th>
<th>(D,d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3, 1</td>
<td>3, 1</td>
<td>0, 0</td>
<td>0, 0</td>
</tr>
<tr>
<td>D</td>
<td>0, 0</td>
<td>1, 3</td>
<td>0, 0</td>
<td>1, 3</td>
</tr>
</tbody>
</table>

• La estrategia (I,d), por ejemplo, debe ser leída de la siguiente manera: El Jugador 2 elige I en su conjunto de información 2.1 (es decir, si la Jugadora 1 ha jugado I), y d en su conjunto de información 2.2 (si 1 ha jugado D).
Ejemplo 2

La siguiente figura ilustra la forma extensiva de un juego con información perfecta. Obsérvese que el Jugador 1 juega en dos momentos distintos (la segunda vez, en uno de dos vértices posibles).
La Forma Normal del Ejemplo 2

<table>
<thead>
<tr>
<th>1 \ 2</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U, a, a)</td>
<td>3, 3</td>
<td>3, 3</td>
</tr>
<tr>
<td>(U, a, b)</td>
<td>3, 3</td>
<td>3, 3</td>
</tr>
<tr>
<td>(U, b, a)</td>
<td>3, 3</td>
<td>3, 3</td>
</tr>
<tr>
<td>(U, b, b)</td>
<td>3, 3</td>
<td>3, 3</td>
</tr>
<tr>
<td>(D, a, a)</td>
<td>5, 2</td>
<td>-1, -1</td>
</tr>
<tr>
<td>(D, a, b)</td>
<td>5, 2</td>
<td>2, 5</td>
</tr>
<tr>
<td>(D, b, a)</td>
<td>0, 0</td>
<td>-1, -1</td>
</tr>
<tr>
<td>(D, b, b)</td>
<td>0, 0</td>
<td>2, 5</td>
</tr>
</tbody>
</table>
Estrategia en un Juego Dinámico

- Una estrategia en un juego dinámico es un plan contingente que prescribe qué acción tomará el jugador en cada una de las posibles ocasiones (vértices) en las que le puede tocar mover, incluso en aquellas situaciones en las que no se sigue el plan inicial.

- Obsérvese que la definición de estrategia no requiere que se lleven a cabo todas las acciones en ella. Se realizarán unas acciones u otras según el desarrollo del juego.

- Saber lo que se haría hipotéticamente en situaciones a las que no se llega en el equilibrio nos permite argumentar por qué se llega a un determinado equilibrio.

- En el juego anterior podemos realizar la siguiente simplificación: identificaremos las estrategias \((U,a,a)\), \((U,a,b)\), \((U,b,a)\) y \((U,b,b)\) como una sola estrategia, que llamaremos \((U)\). La razón es que esas cuatro estrategias son totalmente indistinguibles al ofrecer los mismos pagos para ambos jugadores.
De la Forma Extensiva a la Normal

Forma normal: jugadores, estrategias y pagos. Tenemos que definir estos elementos a partir de los elementos de la forma extensiva:

Conjunto de jugadores. El mismo.

Conjunto de estrategias. Para definir el conjunto de estrategias del jugador \(i \) consideremos el conjunto de vértices que pertenecen a ese jugador. Llamémoslos \(i.1, i.2, \ldots, i.n_i \). Sea \(A_{i,k} \) el conjunto de acciones que \(i \) tiene a su disposición en el vértice \(i.k \). Una estrategia del jugador \(i \) será un elemento del producto cartesiano \(A_{i.1} \times A_{i.2} \times \ldots \times A_{i.n_i} \).

Pagos. Los pagos asociados a un determinado perfil de estrategias se obtendrán a partir de los pagos del juego en forma extensiva correspondientes a seguir las acciones que definen las estrategias.
Conceptos de solución

• Dos maneras de identificar el equilibrio:
 1. **Inducción hacia atrás**: comenzar por encontrar los vértices que preceden a los finales y, en cada uno de ellos, determinar la acción que maximiza el pago del jugador en el vértice.
 2. **Equilibrio de Nash perfecto en subjuegos (ENPS)**: El ENPS extiende la definición de equilibrio de Nash para juegos dinámicos.

• ¿Por qué la noción de EN no es adecuada para los juegos dinámicos?
Inducción hacia atrás

- Volvamos al ejemplo 1 y resolvamos el juego por inducción hacia atrás:
 - En el vértice 2.1, el jugador 2 elegirá l, mientras que en el 2.2 elegirá d.
 - Anticipando estas acciones, la jugadora 1 elegirá l. Es decir, 1 elige D y 2 elige (l,d). La solución por inducción hacia atrás es
 \[(l,(l,d))\]

- Compárese con los Equilibrios de Nash en estrategias puras (ver forma normal):
 \[\text{EN} = \{(l,(l,i)), (l,(l,d)), (D,(D,d))\} \]
Equilibrio de Nash Perfecto en Subjuegos (ENPS)

• **Subjuego:** Un subjuego en un juego dinámico de información perfecta consiste en un vértice no final del juego y en todos los vértices siguientes, unidos por las mismas ramas y respetando los pagos finales y la asignación de jugadores.

• **ENPS:** Un perfil de estrategias constituye un ENPS si constituye un EN de cada subjuego.
ENPS del Ejemplo 1

- Hay 3 subjuegos, el juego que comienza en el vértice 1, el juego que comienza en 2.1, y el que comienza en 2.2. Notemos que el juego completo es a su vez un subjuego.

- Dos formas de buscar los ENPS:
 - Ver cuáles de los EN satisfacen la definición de ENPS
 - Construir directamente los ENPS (empezando por los subjuegos que no incluyen otros subjuegos):
 a) en 2.1 EN = \{l\}; en 2.2 EN = \{d\};
 b) en el subjuego que comienza en 1 solo consideramos perfiles de estrategias que contengan lo ya construido en a) y notamos que la mejor respuesta del jugador 1 frente a (l,d) es l.
 \[\text{ENPS} = \{l,(l,d)\} \]

- La inducción hacia atrás y el ENPS seleccionan los mismos equilibrios. Esto es siempre cierto en los juegos con información perfecta.
EN y ENPS

• De los tres equilibrios de Nash en estrategias puras, solo uno es ENPS. Obsérvese que, si la Jugadora 1 elige D, los pagos finales no se alteran por la acción del 2 en su primer vértice: tanto I como D son mejor respuesta en este caso. Sin embargo, si 2 tiene que jugar aquí, lo que importa son los pagos en este momento: solo I es mejor respuesta.

• Esta inconsistencia temporal observada en el ejemplo anterior es lo que se intenta evitar con el equilibrio perfecto en subjuegos.
Tres Conceptos Relacionados

• **Equilibrio.** Un perfil de estrategias (una para cada jugador) que cumple cierta condición (e.g. EN, EPS). Establece una acción para cada vértice de cada jugador.

• **Camino o senda de equilibrio.** Es el camino (vértices y ramas) que se observa si todos los jugadores eligen su estrategia de equilibrio. (E.g.: en el Ejemplo 1, en el EPS la Jugadora 1 elige I y 2.1 elige I).

• **Pagos de equilibrio.** Los pagos finales que se obtienen si todos los jugador siguen su estrategia de equilibrio. (E.g.: en el Ejemplo 1, inducción hacia atrás da como pagos de equilibrio (3,1)).