Public Goons: An Example

Puristic Goods and Extennalitteb: An Example
Ann ane Bob share an apartment. Centre heating is provided tree of charge.

Their preferences for room tamperture (x) and income (y) are represented b utility functions

$$
u_{i}(x, y)=y-\alpha_{i}\left(t_{i}-x\right)^{2}
$$

where $t_{A}=25, \alpha_{A}=3 / 2$

$$
t_{B}=20, \alpha_{B}=1
$$

Thus, Re aportmentis temperature is a public cod to An and Bob.

At whid temperature should
 be set in apartment's thermostat?

Let us try idetity"good out cos". To begin,
Let us set in tempeatury to som intermediate value $t \in\left[t_{B}, t_{A}\right]$,

$$
\text { egg., } x=21^{\circ}
$$

Is this temperature Porto optimal?
Since

$$
M \Omega s_{i}(x, y)=2 \alpha_{i}\left(t_{i}-x\right)_{1}
$$

we have

$$
\begin{aligned}
& \operatorname{MrS}_{A}(21, y)=75-3(21)=12 \\
& \operatorname{MRS} S_{B}(21, y)=40-2(21)=-2
\end{aligned}
$$

How to intuprete Duse numbers?

Ann proposus to incrase the temposture b) 10, and offus Bob S euros as compensation

Would Bob eceopt?

$$
\begin{aligned}
& u_{B}\left(\bar{y}_{B}, 21\right)=\bar{y}_{B}-(20-21)^{2}=\bar{y}_{B}-1 \\
& u_{B}\left(\bar{y}_{B}+5,22\right)=\bar{y}_{3}+5-(20-22)^{2}=\bar{y}_{3}+1
\end{aligned}
$$

$A_{n n}$?

$$
\begin{aligned}
& u_{A}\left(\bar{y}_{A}, 21\right)=\bar{y}_{A}-\frac{3}{2}(25-21)^{2}=\bar{y}_{A}-24 \\
& u_{A}\left(\bar{y}_{A}-5,22\right)=\bar{y}_{A}-5-\frac{3}{2}(25-22)^{2}=\bar{y}_{A}-18.5
\end{aligned}
$$

B.Th ar befter off!

Note $\operatorname{MRS}_{A}(21)+\operatorname{MRS}_{3}(21)=12-2=10>0$

Rey should rais, Re timpereture so long es

$$
\operatorname{MrS}_{A}(x)+\operatorname{MrS}_{B}(x)>0
$$

Likawir, if $\operatorname{Mns} A(x)+\operatorname{Mns}(\beta)<0$, Rey can botl improve by reducif in tampesture (are acord some compensetions).

Po refuires:

$$
\begin{array}{lc}
\text { Mires: } & \operatorname{MrS}_{A}(x)+\operatorname{MRS}_{B}(x)=0 \\
& 75-3 x+40-2 x=0 \\
i . e ., & x^{n}=\frac{115}{S}=\frac{23^{\circ}}{2}
\end{array}
$$

... but how is ie aportmentis temperature deeded?
And how to solve Dis problem?
BARGAINING
Set $x^{\prime}=23^{\circ}$. Bargain over
A gains to b have.
Assume Ann owns ie pera rent ad has the right to set in tempsuture.

Absent interactions:

$$
\bar{x}=25^{\circ} ; \bar{u}_{A}=\bar{y}_{A}, \bar{u}_{B}=\bar{y}_{B}-25 .
$$

Sadly, for $x=23$,

$$
\begin{aligned}
u_{A}+u_{B}= & \bar{y}_{A}-\frac{3}{2}(25-23)^{2} \\
& +\bar{y}_{B}-(20-23)^{2} \\
= & \bar{y}_{A}+\bar{y}_{B}-15>\bar{y}_{A}+\bar{y}_{B}-25=\bar{u}_{A}+\bar{u}_{B}
\end{aligned}
$$

A manket Sowtion
Assum instae Ω t startie from Ann's idied tamperztum $\left(25^{\circ}\right)$, a moredt is created whereb $A_{n n} \rightarrow \bar{y}_{3}-21$ Bob sinppl (dine) rictts" to bor Ω temperature.

P: price of loworip the tamperature I degree.
$\begin{gathered}\text { Ann } \\ r a x \\ m\end{gathered} \quad y_{s}+p \leftarrow \frac{3}{2} r^{2} \quad \Rightarrow \quad r_{n}(p)=\frac{p}{3}$
B.b $\operatorname{mix}_{r} \bar{y}_{3}-p r-(20-25-r)^{2} \Rightarrow r_{B}(p)=S-\frac{p}{2}$

Markat Clesing: $\frac{p}{3}=5-\frac{p}{2} \Longleftrightarrow p^{*}=6 ; r^{*}=2$.
Marect Outcom: $x^{*}=23^{\circ} ; \quad y_{\Delta}^{*}=\bar{y}_{A}+12, u_{A}^{*}=\bar{y}_{\Delta}+c$.

$$
b_{B}=\bar{y}_{B}-12, \quad u_{B}=\bar{y}_{B}-21 .
$$

Exasciss:
(1) If ther is another apartmontis residint, Conrad, whor prerres paramatars are $\alpha_{c}=1, t_{c}=22$, what is λ aportmont's uptal temperture?
(2) If the cost of mantaining the temperture at x degrees is $\quad C(x)=2 x$, what is λ apartmont's upt.el temperture?
(3) Whet would be ite temperture if Ann, B.b and Connd uste, 2 the thermatet is set et ine medion tomperature?

Restourant Exarple (Excruse 2.7)
(1) Séparare Cherks

$$
\max _{x \geq-} \quad \bar{y}_{i}-p x+\ln x\{
$$

$$
\text { F.O.C. }-p+\frac{1}{x}=0 \Rightarrow x_{i}(p)=\frac{1}{p}, n x_{i}(p)=\frac{n}{p}
$$

(2) Cmmon Eavalcs Divided Check.

$$
\begin{aligned}
& \quad \operatorname{mox} \bar{y}_{i}-\frac{p}{n}\left(\sum_{j \neq i} x_{j}+x_{i}\right)+\ln x_{i} \\
& -\frac{p}{n}+\frac{1}{x_{i}}=0 \Rightarrow \tilde{x}_{i}(p)=\frac{n}{p} \quad n \tilde{x}_{i}(p)=\frac{n^{2}}{p}
\end{aligned}
$$

Hes, morn food is consumed uner tis schem!

