Endogenous Income

The consumption-leisure model
Modifying consumer’s problem

• For the moment, assume there is no additional exogenous income

• Consumer’s income is the market value of her initial endowment, \((\bar{x}, \bar{y})\)

• Given market prices \(p_x\) and \(p_y\), the consumer’s budget constraint is

\[
xp_x + yp_y \leq \bar{x}p_x + \bar{y}p_y
\]
Budget constraint

\[\bar{y} + \frac{x p_x}{p_y} \]

\[\bar{y} \]

\[\bar{x} \]

\[\bar{x} + \frac{\bar{y} p_y}{p_x} \]
Changes in prices

An increase in p_x
Changes in prices

An increase in p_y
Changes in prices

• The impact of price changes in the consumer’s budget set is now more subtle: the increase of a price may make the consumer “relatively richer” if she is “relatively rich” in that good (i.e., if her endowment of this good is large)

• Notice that, independently of market prices, the endowment is always a feasible bundle (consumer always can avoid trade and consume her own endowment)
Consumer Demand

• Assume \(u(x, y) \) derivable and the system

\[
x p_x + y p_y = x p_x + y p_y
\]

\[
MRS(x, y) = \frac{p_x}{p_y}
\]

yields an interior solution to the consumer’s problem

\(\tilde{x}(p_x, p_y), \tilde{y}(p_x, p_y) \)

• That is,

\[
\tilde{x}(p_x, p_y) = x^*(p_x, p_y, x p_x + y p_y)
\]

\[
\tilde{y}(p_x, p_y) = y^*(p_x, p_y, x p_x + y p_y)
\]

where the functions on the RHS are the ordinary demands.
Consumer Demand: example

\[u(x, y) = x\sqrt{y}; \quad (\bar{x}, \bar{y}) = (2,1) \]

Calculate ordinary demands:

\[x^*(p_x, p_y, I) = \frac{2I}{3p_x} \]
\[y^*(p_x, p_y, I) = \frac{I}{3p_y} \]

Hence,

\[\bar{x}(p_x, p_y) = \frac{2(2p_x + p_y)}{3p_x} = \frac{4 + 2p_y}{3p_x} \]
\[\bar{y}(p_x, p_y) = \frac{2p_x + p_y}{3p_y} = \frac{1 + 2p_x}{3p_y} \]
Income and substitution effects

- Study the effect of an increase in p_x for utility function $u(x, y)$ and endowment (\bar{x}, \bar{y})
Income and substitution effects

• Substitution effect is negative

\[SE = x_B - x_A < 0 \]

• Income effect is positive

\[IE = x_C - x_B > 0 \]

• In this case, income effect is larger than substitution effect, so the total effect is positive: an increase in \(p_x \) leads the consumer to increase its consumption of both goods

\[TE = SE + IE = x_C - x_A > 0 \]
Income and substitution effects

Suppose an increase in p_x.

The substitution effect is the same as in the case with exogenous income.

The income effect of a price increase now involves two components:

1. It makes the consumer poorer as it becomes more expensive buying the optimal amount of the good (%primary_language:en%ordinary income effect), and

2. It modifies the value of the consumer’s endowment (%primary_language:en%endowment effect).

The sign of the (total) income effect depends on whether the consumer is a net seller (negative) or a net buyer (positive) of the good whose price has increased.
Income and substitution effects

Total effect = substitution effect + ordinary income effect + endowment effect
= substitution effect + (total) income effect

Formally,

\[
\frac{\partial x}{\partial p_x} = \frac{\partial x^*}{\partial p_x} \bigg|_{u=cte} - x \frac{\partial x^*}{\partial I} + \bar{x} \frac{\partial x^*}{\partial I}
\]

\[
= \frac{\partial x^*}{\partial p_x} \bigg|_{u=cte} - \frac{\partial x^*}{\partial I}(x - \bar{x})
\]
Income and substitution effects

• When is the total income effect positive (the consumer is richer)?

If the good is normal and the consumer is a net seller of the good

\[-\frac{\partial x^*}{\partial I}(x - \bar{x}) > 0 \quad if \quad \frac{\partial x^*}{\partial I} > 0 \quad and \quad x - \bar{x} < 0\]

• In any case, notice that positive income effect (“richer consumer”) does not mean more consumption: we have to take into account the substitution effect
Income and substitution effects

Exogenous income

Endogenous income
The consumption-leisure model.
Labor supply

• Two goods: leisure (x-axis) and consumption (y-axis)
 - *Leisure*, denoted by \(h \) and measured in hours. The wage per hour (or price of leisure) is denoted by \(w \).
 - *Consumption*, denoted by \(c \) and measured in euros. The price of \(c \) is therefore \(p_c = 1 \).

• Initial endowment is \((M,H) \), where:
 - \(M \) : initial exogenous wealth (or non-labor income).
 - \(H \) : number of hours available for leisure and work.
The consumption-leisure model.
Labor supply

• Budget set (recall $p_c = 1$)

$$c + hw \leq wH + M$$

- hw: expenditure on leisure
- $wH + M$: monetary value of initial endowment

[Diagram of budget line with slope $-w$ and intercepts at M and H.]
The consumption-leisure model.
Labor supply

- Solve the problem as usual, but watch out for additional constraints

\[
\begin{align*}
\text{Max}_{c,h} & \quad u(c,h) \\
\text{st} & \quad c + hw \leq wH + M \\
& \quad 0 \leq h \leq H \\
& \quad c \geq 0
\end{align*}
\]
The consumption-leisure model.
Labor supply. *Example*

\[\max_{c,h} \quad c + 2 \ln h\]

\[s.t.\quad c + wh = 16w + 4\]
\[0 \leq h \leq 16\]
\[c \geq 0\]

Interior solution requires

\[MRS(h, c) = w \iff \frac{2}{h} = w \Rightarrow h(w) = \frac{2}{w}\]

And

\[h(w) = \frac{2}{w} \geq 0 \iff \forall w > 0\]
\[h(w) = \frac{2}{w} \leq 16 \iff w \geq \frac{1}{8}\]
The consumption-leisure model. Labor supply. Example

Therefore,

\[h(w) = \begin{cases} 16 & \text{if } w < 1/8 \\ \frac{2}{w} & \text{if } w \geq 1/8 \end{cases} \]

\[c(w) = \begin{cases} 4 & \text{if } w < 1/8 \\ 2 + 16w & \text{if } w \geq 1/8 \end{cases} \]
The consumption-leisure model.

Labor supply. *Example*

And labor supply

\[l(w) = H - h(w) = \begin{cases}
0 & \text{if } w < 1/8 \\
16 - \frac{2}{w} & \text{if } w \geq 1/8
\end{cases} \]
The consumption-leisure model. Labor supply. *Effect of changes in wages*

- Assume $w' < w$

- For interior solutions, the consumer is a net supplier of leisure

- Total income effect: if leisure is a normal good, $\frac{\partial h}{\partial I} > 0$, TIE is positive, leading the consumer to demand less leisure (or supply more labor)

\[
-w \frac{\partial h}{\partial I} (l - H) > 0
\]

- Substitution effect: is always non-positive. Since leisure is cheaper, this effect leads the consumer to demand more leisure (or supply less labor)

- Total effect is ambiguous (it depends on the shape of the utility function)
The consumption-leisure model. Labor supply. *Effect of changes in wages*
The consumption-leisure model.
Labor supply. *Effect of changes in wages*
The consumption-leisure model.

Labor supply. *Effect of changes in wages*

For \(w \in (0,10) \), SE dominates (leisure is more expensive and consumer offers more labor)

For \(w \in (10,20) \), TIE dominates (consumer is richer and does not need to work as much as before)
Application: a tax on labor income

- Impose $t \in [0,1]$
- The new budget constraint is

 $$c + (1-t)wh \leq (1-t)wH + M$$

- The tax is equivalent to a reduction of wage: its impact on leisure consumption (or labor supply) is ambiguous

- Its impact on welfare is unambiguous. Of course, tax policies have other objectives we are not considering here.
Application: a tax on labor income

\[
\begin{align*}
\text{(1-}t)wH + M \\
wH + M \\
c^* \\
M
\end{align*}
\]
Application: a tax on labor income

- Alternative: a non-labor income tax T.
- The new budget constraint is
 \[c + wh \leq wH + (M - T) \]
- If both goods are normal, then the introduction of T reduces their demands (increases labor supply, in particular)
Application: a tax on labor income
Application: a tax on labor income

• Exercise: what if $T = tw(H-h^*)$?

• Hint: is (c^*, h^*) optimal for T?