Univer	rsidad Carlos III de Madrid	Ejercicio	1	2	3	4	5	6	Total	
Univer		Puntos]
Department of Economics Mathematics I Final Exam June 25 th , 2015 Exam										
time: 2 hours.										
LAST NAME: FIRST NAME:										
ID:	DEGREE:		GROUP:							
(1) Consider the function $f(x) = x \ln x$.										
(a) Draw the graph of the function, obtaining firstly its domain, the intervals where $f(x)$ increases and										
decreases, its asymptotes and image.										
(b) Consider the function $f(x)$ defined just in the interval $[1/e, \infty)$. Draw the graph of the function										
$f^{-1}(x)$, obtaining firstly its domain, image, the intervals where $f^{-1}(x)$ increases and decreases, the										
x-intercepts and y-intercepts and its fixed points.										
Hint 1 : Don't find the analytical expression of $f^{-1}(x)$.										
	Hint 2 : The fixed points of $f(x)$ and $f^{-1}(x)$ are the same.									
(a) 1 punto										
	· ·									
a) The domain of f is the interval $(0,\infty)$. There are no vertical asymptotes, because at $x=0$.										

 $\lim_{x \to 0^+} f(x) = 0 \cdot (-\infty) = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \frac{\infty}{\infty} = L' \text{Hospital's Rule} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$

There are neither horizontal nor oblique asymptotes at ∞ , because $\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} f(x) = \infty$. On the other hand, since $f'(x) = 1 + \ln x$, and $1 + \ln x = 0 \iff \ln x = -1 \iff x = e^{-1} = 1/e$, we notice that f' is increasing on $(0, \infty)$, is negative on (0, 1/e) and positive on $(1/e, \infty)$ then we know that f is decreasing on the interval (0, 1/e] and increasing on $[1/e, \infty)$. Finally, since $f(1/e) = (1/e) \ln(1/e) = -1/e$, $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to 0^+} f(x) = 0$ and the function is continuous on $(0, \infty)$ then its range is $[-1/e, \infty)$.

So, we can conclude after all that the graph on the function f(x) is the first figure:

b) Knowing that the function f(x), is continuous and increasing on [1/e, ∞) and its range [-1/e, ∞) this means that the inverse function f⁻¹(x) is increasing in its domain, the interval [-1/e, ∞), and its range will be [1/e, ∞).
Because the only x-intercept and y-intercept point of the restricted function is (1,0), then

f(1) = 0, and the unique equivalent point of the inverse will be (0, 1), so $f^{-1}(0) = 1$.

Finally, there is only one fixed point for both f and f^{-1} that is x = e, since $f(x) = x \iff \ln x = 1 \iff x = e$. So, the graph of the function $f^{-1}(x)$ will be approximately as you can see in the second figure.

- (2) Let y = f(x) be an implicit function defined by the equation $axy + 2 = 2xe^y + x^2y$, in a neighborhood of the point (1,0) and $a \neq 3$.
 - (a) Depending on the parameter a, calculate the derivative of f(x) at (1,0). What are the values of a, such that the function is increasing or decreasing near x = 1?
 - (b) Depending on the parameter a, find the tangent line of f at (1,0). Give the values of a, when that tangent line is parallel and perpendicular to the angle bisector of the first quadrant (y = x).
 1 point
 - a) Firstly, we compute the first derivative of the equation with respect to x, $ay + axy' = 2e^y + 2xy'e^y + 2xy + x^2y'$ Next we substitute x = 1, y = 0 in order to obtain: $ay' = 2 + 2y' + y' \iff (a - 3)y' = 2 \iff y' = 2/(a - 3)$. Consequently, the implicit function will behave in a neighbourhood of x = 1 increasingly when a > 3 and decreasingly if a < 3.
 - b) The equation of the tangent line is:

y - 0 = (2/(a - 3))(x - 1).Then, that line will be parallel to y = x if $\frac{2}{a-3} = 1 \iff a = 5$. In the same way, that line will be parallel to y = x if $\frac{2}{a-3} = -1 \iff a = 1$

- (3) Let $C(x) = 2x^2 3x + C_0$ be the cost function and p(x) = 197 2x the (inverse) demand function of a monopolistic firm, that produces at least two units.
 - (a) Find the production x_0 that maximizes the profit of the firm.
 - (b) Suppose that x₁ = 2x₀ is the production that minimizes the average cost for the company, find C₀.
 Remark: Justify all your anwers.
 1 point
 - a) The profit function is:
 B(x) = I(x) C(x) = 197x 2x² (2x² 3x + C₀) = -4x² + 200x C₀
 and its critical point x₀ is:
 B'(x₀) = -8x₀ + 200 = 0 ⇔ x₀ = 25.
 Thus, because B''(x) < 0 in its domain, the profit function is strictly concave then the critical point is the unique global maximizer point for the profits.
 - b) Firstly, the average cost function is $\frac{C(x)}{x} = \frac{C_0}{x} 3 + 2x$ and its first order derivative is $(\frac{C(x)}{x})' = -\frac{C_0}{x^2} + 2$ Because $x_1 = 2x_0 = 50$ has to be a critical point of the average cost function: $-\frac{C_0}{50^2} + 2 = 0 \iff C_0 = 2.50^2 = 5.000.$ Then, because $\binom{C(x)}{y'} > 0$ the average cost function is strictly convex in its domain

Then, because $\left(\frac{C(x)}{x}\right)'' > 0$ the average cost function is strictly convex in its domain and the critical point will be the unique global minimizer for the function.

(4) Let a, b be two real numbers, and consider the following piecewise function

$$f(x) = \begin{cases} e^{a+x} & \text{if } x < -3\\ 1 & \text{if } x = -3\\ \sqrt{x+b} & \text{if } x > -3 \end{cases}$$

- (a) Discuss the continuity of the function f with respect to the numbers a, b.
- (b) Discuss the differentiability of the function f with respect to the numbers a, b. 1 point

a) For any value of a, the function is continuous on x < -3. Furthermore, at x = -3, the function is continuous from the left if: lim_{x→-3} f(x) = f(-3) ⇔ e^{a-3} = 1 ⇔ a = 3. The function is continuous on x > -3 if b ≥ -3. And in particular, f is continuous at x = -3 from the right if. lim_{x→-3+} f(x) = f(-3) ⇔ √b-3 = 1 ⇔ b = 4. Consequently, f(x) is continuous for every x when a = 3, b = 4. Finally, we can notice that for those values a = 3, b = 4, the function is continuous for every point in its domain.

b) Obviously, when $x \neq -3$ our function is differentiable in its domain, because the function is an exponential or a square root function and both are differentiable.

At the point x = -3, we need to calculate the one-sided derivatives, knowing that the function is continous at the point when a = 3, b = 4.

 $\begin{aligned} f'_{-}(-3) &= \lim_{x \to -3^{-}} f'(x) = \lim_{x \to -3^{-}} e^{x+3} = e^{0} = 1\\ f'_{+}(-3) &= \lim_{x \to -3^{+}} f'(x) = \lim_{x \to -3^{+}} \frac{1}{2\sqrt{x+4}} = \frac{1}{2}. \end{aligned}$ Then the function will never be differentiable at x = -3.

- (5) Consider the set of points in the plane A bounded by the curves $y = \ln(x+4), y = -e^x$ and the straight lines x = 0, x = 2.
 - (a) Draw the set A and find, if they exist, the maximals, minimals, maximum and minimum points of A.
 - (b) Calculate the area of the region A.
 Hint 1: Pareto order is defined by: (x₀, y₀) ≤_P (x₁, y₁) ⇔ x₀ ≤ x₁ and y₀ ≤ y₁.
 Hint 2: Do not calculate the values either of the logarithms (ln) or of the exponentials (exp) in the solutions.
 1 point
 - a) The function $f(x) = \ln(x+4)$ is positive and increasing on the interval [0,2], and the function $g(x) = -e^x$ is negative and decreasing on the real line, so the set A has a shape which is approximately like this:

Clearly, we can deduce looking at the drawing that

 $\{\text{maximals of } (A)\} = \{\text{maximum of } (A)\} = \{(2, \ln 6)\}$

{minimals of (A)} = { $(x, y) : 0 \le x \le 2, y = -e^x$ }; the minimum of (A) doesn't exist.

b) The required area is below the logarithm function and above the exponential one and inbetween the vertical lines x = 0, x = 2. So, the area is: $\int_{0}^{2} (\ln(x+4) + e^x) dx$ Integrating by parts: $\int \ln(x+4) dx = x \ln(x+4) - \int \frac{x}{x+4} dx = x \ln(x+4) - \int \frac{x+4-4}{x+4} dx = x \ln(x+4) - x + 4 \ln(x+4) = (x+4) \ln(x+4) - x.$

 $\int \ln(x + 1)dx = x \ln(x + 1) + \int \frac{x}{x + 4} dx = x \ln(x + 1) + \int \frac{x}{x + 4} dx = x \ln(x + 4) - x + 4 \ln(x + 4) = (x + 4) \ln(x + 4) - x.$ And applying Barrow's Rule we obtain: $[(x + 4) \ln(x + 4) - x + e^x]_0^2 = 6 \ln 6 - 2 + e^2 - (4 \ln 4 + 1) = 6 \ln 6 + e^2 - 4 \ln 4 - 3 \text{ area units.}$ (6) Given the function $f(x) = \frac{x}{\sqrt{x-1}}$ defined in the interval $(1,\infty)$.

(a) Find the primitive function F(x) of f such that satisfies $F(2) = \frac{8}{3}$. (b) Prove the inequality $\sqrt{x+1} < \frac{x}{\sqrt{x-1}}$ and use it to find a lower bound of the definite integral

$$\int_3^8 \frac{x}{\sqrt{x-1}} dx.$$

1 point

a) Making the change of variable $x - 1 = t^2$, dx = 2tdt, we can deduce that the primitive function of f will be:

 $F(x) = \int \frac{x}{\sqrt{x-1}} dx = \int \frac{1+t^2}{t} 2t dt = 2 \int (1+t^2) dt = 2(t+t^3/3) + C = 2\sqrt{x-1} + \frac{2}{3}\sqrt{(x-1)^3} + C$ Because $\frac{8}{3} = F(2) = \frac{8}{3} + C$, we know that C = 0. So, the answer is $F(x) = 2\sqrt{x-1} + \frac{2}{3}\sqrt{(x-1)^3}$.

b) Multipling the inequality by the denominator we get the equivalent inequation: $\sqrt{x+1}\sqrt{x-1} < x$, squaring both sides we obtain: $(x+1)(x-1) = x^2 - 1 < x^2$ so, we can see that the inequality is satisfied. From that fact we can deduce that $\int_3^8 \sqrt{x+1} dx < \int_3^8 \frac{x}{\sqrt{x-1}} dx$ Thus, because the value of the first integral is: $\int_{3}^{8} \sqrt{x+1} dx = \left[\frac{2}{3}(x+1)^{3/2}\right]_{3}^{8} = \frac{2}{3}(27-8) = \frac{38}{3},$ we can state that $\frac{38}{3} < \int_{3}^{8} \frac{x}{\sqrt{x-1}} dx.$