Question	1		2	3	4	5	6	Grade
Points								
		Exam grade		e Clas	Class grade		rade	

Universidad Carlos III de Madrid

Departamento de Economía

Final exam, Mathematics I

June 16, 2009

LAST NAMES:		NAME:		
DNI:	Title:	Group:		

1. Given function $f(x) = e^{x+1} - 2$, we ask:

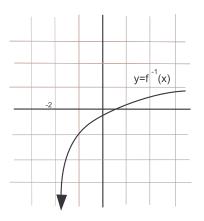
a) Find the inverse function of f(x) and represent it (the inverse function). In other words, find the domain, the range (image), the axes cuting points, and the increasing/decreasing interval of f^{-1} .

b) Represent the graph of function g(x) = |f(x)|. In other words, find the domain, the range (image), the axes cuting points and the increasing(decreasing intervals of g.

1 point

a) In order to find the inverse function, we set the equation $y = f^{-1}(x)$, which will satisfy: $e^{y+1} - 2 = f(y) = ff^{-1}(x) = x$, so taht $x+2 = e^{y+1}$, and then $\ln(x+2) = y+1$; hence $f^{-1}(x) = y = \ln(x+2)-1$. To represent f^{-1} , it is enough to notice that f is increasing, has a horizontal asymptote y = -2 at $-\infty$, that $\lim_{x \to \infty} f(x) = \infty$, and that it cuts the axes at the following points: horizontal axis at point (ln2-1,0); vertical axis at point (0,e-2).

By symmetry, the domain of f^{-1} is the interval $(-2, \infty)$, the image is \mathbb{R} , the axes cuting points are: horizontal axis at point (e - 2, 0); vertical axis at point (0, ln2 - 1), f^{-1} is increasing in all its domain. The sketch of the graph of $f^{-1}(x)$ is:

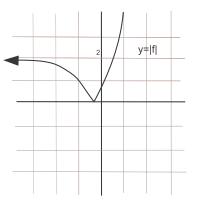


Remark: We can also study the graph of f^{-1} directly observing $f^{-1}(x) = \ln(x+2) - 1$, instead of using symmetry.

b) As it is obvious, the domain of g is \mathbb{R} . Regarding the image of g, it is clear that it is included in the interval $[0, \infty)$.

On the other hand, since $g(\ln 2 - 1) = 0$, $\lim_{x \to \infty} g(x) = \infty$, and g is continuous, we infer that $Im(g) = [0, \infty)$.

The axis cutting points are the same as the function f. In other words, (ln2 - 1, 0) and (0, e - 2). Finaly, f is decreasing in the interval $(-\infty, \ln 2 - 1)$ and increasing in the interval $(\ln 2 - 1, \infty)$. Hence, the graph of g is, more or less:



2. Let a, b be real numbers, and consider the function defined by

$$f(x) = \begin{cases} |x+a|, & x < 2\\ b, & x = 2\\ -x^2 + 6x, & x > 2 \end{cases}$$

- a) Study, according to the values of a and b, the continuity of f in the interval [1,3].
- b) State the theorem by Weierstrass and, assyming that a = -10, determine, depending on the values of b, when are true the hypotheses and the thesis (assumptions and conclusion, respectively) of that theorem for function f in the interval [0, 2].
 - 1 point
- a) In order for f to be continuous at 2^+ it is necessary and sufficiente that b = 8. Now, in order for f to be continuous at 2^- , it is necessary and sufficient that |2 + a| = 8; or, equivalently, that a = 6 or a = -10.
- b) If b = 8, the conditions and conclusions of the theorem, by the previous item. If b > 8, the conditions are not fulfilled (by the previous item), and the conclusion is not fulfilled either, since

 $\lim_{x \to 2^{-}} f(x) = 8, f(2) = b > 8, \text{ hence } \inf\{f(x) : x \in [0, 2]\} = 8 \neq f(x)$

because f(x) is decreasing in [0, 2).

Now, if b < 8, the conditions are not met (by the previous item), but the conclusion is indeed satisfied, since

 $\max\{f(x): x \in [0,2]\} = f(0), \min\{f(x): x \in [0,2]\} = f(2).$

3. Let $f(x) = xe^{-x}$. Regarding f, we ask:

- a) Find when it is increasing/decreasing, find the local and/or global extrema, and its asymptotes
- b) Find when it is concave or convex, find its inflexion points, and sketch a graph of it.
 - 1 point
- a) Deriving the function, we get that $f'(x) = e^{-x} xe^{-x} = (1-x)e^{-x}$. Then, $f'(x) = 0 \iff e^{-x} = xe^{-x} \iff x = 1$. Since f'(0) = 1, f'(2) < 0, we get:

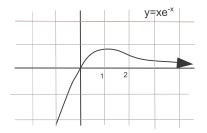
f is increasing in $(-\infty, 1)$ and decreasing in $(1, \infty)$; x = 1 is a local and global maximum of f. On the other hand, since $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} e^{-x} = \infty$, f does not have either horizontal or oblique asymptotes at $-\infty$.

Nevertheless, since $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{x}{e^x} = ($ by L'Hopital's rule $) = \lim_{x\to\infty} \frac{1}{e^x} = \frac{1}{\infty} = 0$, f has horizontal asymptote y = 0 at ∞ .

Finaly, since the function is continuous, it does not have a vertical asymptote.

b) $f''(x) = -e^{-x} + (1-x)e^{-x}(-1) = (x-2)e^{-x}$. Hence:

f is concave in interval $(-\infty, 2)$ and convex in $(2, \infty)$. The only inflexion point if found in x = 2. Adding that f(0) = 0, f is negative at negative points, and potitive at positive points, the sketch of f is



- 4. Let $C(x) = 30 + 100x + 0.'3x^2$ be the cost function of a monopoly, where $x \ge 0$ is the number of units produced of a given good. The inverse demand function (or unit price) is p(x) = 500 0'7x. We ask:
 - a) Prove that the benefits function is concave. From that, determine the quantity x that maximizes benefits.
 - b) Prove taht the mean cost function is convex. From that, determine the quantity x that minimizes mean cost.
 - 1 point
 - a) The benefits function is: $B(x) = p(x)x C(x) = 500x 0'7x^2 (30 + 100x + 0'3x^2) =$ = $-x^2 + 400x - 30$, so that B''(x) = -2 < 0. Hence B(x) is concave, and the critical point is the unique, global, maximizing pointl Now: $B'(x) = -2x + 400 = 0 \Longrightarrow x = \frac{400}{2} = 200$ which is acceptable, since it is positive. Its selling price is p(200) = 500 - (0'7).200 = 360 > 0.
 - b) The mean cost function is convex, since $C_{med}(x) = \frac{C(x)}{x} = \frac{30}{x} + 100 + 0'3x$ and $C''_{med}(x) = \frac{60}{x^3} > 0$. Hence, the cricial point is the unique global minimizing point. Now $C'_{med}(x) = -\frac{30}{x^2} + 0'3 = 0 \implies x = 10$. So, at that point, we have the minimum of the mean cost function.

- 5. Given $f(x) = x \ln(0'25x)$, defined in the interval $(0, \infty)$, we ask:
 - a) Analyze when a given primitive F of f is increasing/decreasing, and when it is concave/convex. Also, analyze the existence of local and/or global extrema for F.
 - b) Find the primitive F of f which satisfies F(4) = 0.
 Remark: it is not necessary to know the form of F(x) in order to answer item a)
 1 point
 - a) First of all, we need F'. But F'(x) = f(x) = x ln(0'25x) Then F is increasing when F' is positive, which occurs when 0'25x > 1, in other words, in the interval (4,∞). By the same token, F is decreasing when F' is negative, which occurs in the interval (0, 4). Hence, F reaches a global and local minimum at x = 4.
 b) First of all using the method of integration by parts, we find the equation of a representative
 - b) First of all, using the method of integration by parts, we find the equation of a representative primitive of f:

 $\int f(x)dx = \int x \ln(0'25x)dx = \frac{x^2}{2} \ln(0'25x) - \int \frac{x^2}{2} \frac{0'25}{0'25x}dx = \int \frac{x}{2} dx = \frac{x^2}{2} \ln(0'25x) - \frac{x^2}{4} + C$ Now, we find the primitive that satisfies F(4) = 0, and for that, we set $8 \ln(1) - 4 + C = F(4) = 0 \implies C = 4$. Hence, $F(x) = \frac{x^2}{2} \ln(0'25x) - \frac{x^2}{4} + 4$.

- 6. Consider the set $A = \{(x, y) : x 3 \le y \le -x^2 + 3x\}$. We ask:
 - a) Find the area of the set A.
 - b) Using Pareto ordering, determine the set of maximal and minimal points of A, as well as its maximum and minimum points, if they exist.
 Hint: do the graph of A.

```
1 point
```

- a) Since the parable $y = -x^2 + 3x$ cuts the line y = x 3 at points x = -1, x = 3, and it is concave, it is above that line in the interval [-1,3]. Hence, the area of A is: $\int_{-1}^{3} ((-x^2 + 3x) - (x - 3))dx = \int_{-1}^{3} (-x^2 + 2x + 3)dx = [(-\frac{1}{3})x^3 + x^2 + 3x]_{-1}^3 = (-9 + 9 + 9) - (\frac{1}{3} + 1 - 3) = 9 - (-\frac{5}{3}) = \frac{32}{3}.$
- b) The parable reaches a maximum at x = ³/₂. This follows, since with f(x) = -x² + 3x we have f '(x) = -2x + 3 = 0 ⇔ x = ³/₂, and the parable is decreasing in the interval [³/₂, 3]. Since the points (x, y) of the set A satisfy x ≤ 3, we infer that Maximals(A) = {(x, y) : y = -x² + 3x, ³/₂ ≤ x ≤ 3} ⇒. There is no maximum point for A. On the other hand, since the parable y = -x² + 3x and the line y = x 3 are increasing in

the interval $[-1, \frac{3}{2}]$, and the points (x, y) of A satisfy $x \ge -1$, we infer that Minimals(A) =; Minimum(A) = (-1, -4).

Remark: the set A has the following graph:

