<u>Universidad Carlos II</u>	II de Madrid	Exercise	1	2	3	4	5	6	Total	
		Points								
Department of Economics		Mathematics I Final Exam					January 16th 2019			
Exam time: 2 hours.										
LAST NAME:	FIRST NAME:									
ID:	DEGREE:	GROUP:								

(1) Consider the function $f(x) = \sqrt{x^2 - x}$. Then:

- (a) find its domain, its asymptotes, the intervals where f(x) increases and decreases, its global maximum and minimum and range (or image).
- (b) study the convexity and concavity of the function and draw the graph of the function and its asymptotes.

0.6 points part a); 0.4 points part b)

a) The domain of the given function is $\{x : x^2 - x = x(x-1) \ge 0\} = (-\infty, 0] \cup [1, \infty)$. Since f is continuous on its domain, which is the union of closed intervals, we only need to study its asymptotes at ∞ and $-\infty$:

i)
$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{\sqrt{x^2 - x}}{\pm \sqrt{x^2}} = \pm \lim_{x \to \pm \infty} \sqrt{1 - \frac{1}{x}} = \pm 1.$$

ii)
$$\lim_{x \to \pm \infty} [f(x) - \pm (x)] = \lim_{x \to \pm \infty} [\sqrt{x^2 - x} - \sqrt{x^2}] = [\text{rationalizing:}]$$

$$= \lim_{x \to \pm \infty} [\sqrt{x^2 - x} - \sqrt{x^2}] [\sqrt{x^2 - x} + \sqrt{x^2}] / [\sqrt{x^2 - x} + \sqrt{x^2}] =$$

$$= \lim_{x \to \pm \infty} \frac{x^2 - x - x^2}{\sqrt{x^2 - x} + \sqrt{x^2}} = -\lim_{x \to \pm \infty} \frac{x}{\sqrt{x^2 - x} + \sqrt{x^2}} =$$

[dividing the numerator and denominator by $x = \sqrt{x^2}$]

$$= -\lim_{x \to \pm \infty} \frac{\pm 1}{\sqrt{1 - 1/x} + 1} = \mp \frac{1}{2};$$

iii) therefore f has an oblique asymptote $y = \pm x \mp \frac{1}{2}$ at $\pm \infty$. In addition, as $f'(x) = \frac{2x-1}{2\sqrt{x^2-x}}$, we can deduce that: f is increasing if $\iff f'(x) > 0 \iff 2x - 1 > 0$; then f is increasing on $[1, \infty)$. Analogously, f is decreasing on $(-\infty, 0]$.

Since f(0) = f(1) = 0 and $f(x) \ge 0$, it is deduced that 0 and 1 are the global minimum points, and because $\lim_{x \to \infty} f(x) = \infty$, it is known that there is no global maximum.

Finally, as f(1) = 0, $f(x) \ge 0$ and $\lim_{x \to \infty} f(x) = \infty$, due to the Intermediate Value Theorem we can deduce that the range of the function will be $[0, \infty)$.

b) Since $f''(x) = \left(\frac{2x-1}{2\sqrt{x^2-x}}\right)' = \frac{4\sqrt{x^2-x}-(2x-1)^2/\sqrt{x^2-x}}{4(x^2-x)} < 0$, and in the domain of the function this inequality is equivalent to:

 $4\sqrt{x^2 - x} < (2x - 1)^2 / \sqrt{x^2 - x} \Longleftrightarrow 4(x^2 - x) < (2x - 1)^2 \Longleftrightarrow 0 < 1.$

Therefore, the function is concave on $(-\infty, 0]$ and on $[1, \infty)$,

and the asymptotes at $\pm \infty$ lay above the graph of the function. The graph of f will have an appearance approximately, similar to:

- (2) Given the implicit function y = f(x), defined by the equation $ye^{-x} y^3 3x = 0$ in a neighbourhood of the point x = 0, y = 1, it is asked:
 - (a) find the tangent line and the second-order Taylor Polynomial of the function at a = 0.
 - (b) sketch the graph of the function f near the point x = 0, y = 1. Sketch the graph of f^{-1} near the point x = 1, y = 0 using the tangent line to the graph of f^{-1} at that point. Justify the convexity or concavity of f and f^{-1} . Hint for part b: consider the symmetry between f and f^{-1} . 0.5 points part a); 0.5 points part b)
 - a) First of all, we calculate the first-order derivative of the function: $y'e^{-x} - ye^{-x} - 3y^2y' - 3 = (y' - y)e^{-x} - 3[y^2y' + 1] = 0$ evaluating at x = 0, y(0) = 1 we obtain y'(0) = f'(0) = -2. Then the equation of the tangent line is: $y = P_1(x) = 1 - 2(x - 0) = 1 - 2x$.

Secondly, we calculate the second-order derivative of the function: $(y'' - y')e^{-x} - (y' - y)e^{-x} - 3[2y(y')^2 + y^2y''] = 0$ evaluating at y(0) = 1, y'(0) = -2 we obtain $y''(0) = f''(0) = -\frac{19}{2}$. Therefore the second-order Taylor Polynomial is: $y = P_2(x) = 1 - 2x - \frac{19}{4}x^2$.

b) Using the second-order Taylor Polynomial, the approximate graph of the function f, near the point

x = 0 will be as you can see on the left-hand side of the figure at the bottom. Furthermore, as $(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = -\frac{1}{2}$, the tangent line of f^{-1} at x = 1 is: $y - 0 = (-\frac{1}{2})(x - 1).$

Since f is concave and decreasing in a neighbourhood of x = 0, by symmetry we know that

 f^{-1} will be concave and decreasing as well, near the point x = 1.

And, you can see the graph of f^{-1} near the point x = 1 on the right-hand side of the figure at the bottom.

- (3) Let $C(x) = 4000 40x + 0.02x^2$ be the cost function and p(x) = 50 0.01x the inverse demand function of a monopolistic firm, being $x \ge 0$ the number of units produced of certain goods. Then:
 - (a) find the price p^* and the quantity x^* in order to obtain the maximum profit.
 - (b) find the marginal revenue at the point x*. Justify that the obtained value approximates, the variation of the revenue function in each case, when we sell one unit more or one unit less than x*. Describe, for both cases, if the approximation is rounded up or down for the variation of revenue. *Hint*: Remember that the revenue function is I(x) = p(x) ⋅ x and I'(x) is the marginal revenue. **0.5 points part a**); **0.5 points part b**)
 - a) First of all, we calculate the profit function. $B(x) = (50 - 0.01x)x - (4000 - 40x + 0.02x^2) = -0.03x^2 + 90x - 4000$ Secondly we calculate the first and second order derivative of B: B'(x) = -0.06x + 90; B''(x) = -0.06 < 0we see that B has a critical point at $x^* = \frac{90}{0.06} = 1500$ and, as B is a concave function, this critical point is the unique global maximizer. Finally, $p^* = p(1500) = 50 - 0.01 \cdot 1500 = 35$
 - b) Since the revenue function is I(x) = (50 0.01x)x, its marginal function is I'(x) = 50 0.02x. Thus I'(1500) = 20.

Applying the mean value theorem, two numbers exist $c^- \in (1499, 1500)$ and $c^+ \in (1500, 1501)$ such that:

i) $I(1500) - I(1499) = I'(c^{-}) \cdot (1500 - 1499) = I'(c^{-}) \approx I'(1500) = 20.$

ii) $I(1501) - I(1500) = I'(c^+) \cdot (1501 - 1500) = I'(c^+) \approx I'(1500) = 20$. So both variations can be approximated by the marginal function at the point. Furthermore, because I''(x) < 0, the revenue function is concave, then the marginal revenue function I'(x) is decreasing and we deduce:

i) the income reduction when we produce one less unit will be:

 $I(1500) - I(1499) = I'(c^{-}) > I'(1500) = 20$, that is greater than 20 monetary units and the approximation is rounded down; and

ii) the income increase when we produce one more unit will be:

 $I(1501) - I(1500) = I'(c^+) < I'(1500) = 20$, that is less than 20 monetary units and the approximation is rounded up.

The following drawing describes the situation, where t(x) is the tangent line of I(x) at x = 1500:

(4) Let $f(x) = \begin{cases} 1 + ax^2 & \text{si } x < -1 \\ abx & \text{si } x \ge -1 \end{cases}$ be a piece-wise defined function in the interval [-3, 1]. Then:

- (a) Calculate a and b such that f(x) satisfies the hypothesis of the Mean Value Theorem (or Lagrange's Theorem).
- (b) For the values a = -1, b = -1, find the intermediate numbers c such that the thesis (or conclusion) of Lagrange's Theorem is satisfied, although the hypothesis is not satisfied. *Hint for parts a) and b):* state Lagrange's Theorem.

0.5 points part a); 0.5 points part b)

a) The hypothesis of the theorem are satisfied when f is continuous in [-3, 1] and derivable in (-3, 1). Then, we need to impose the continuity and differentiability of f at x = -1.

Since $\lim_{x \to -1^-} f(x) = 1 + a$, $f(-1) = \lim_{x \to -1^+} f(x) = -ab$ we can assume that the function will be continuous at the point if: 1 + a = -ab. Moreover, supposing that the function is continuous at x = -1, will be differentiable at the point if: $-2a = f'(-1^-) = f'(-1^+) = ab$. Then the function will be continuous and differentiable at x = -1 when: $1 + a = -ab, -2a = ab \Longrightarrow$ i) if a = 0, the first equation is not satisfied; and

ii) if $a \neq 0$, from the second equation we deduce that b = -2 and a = 1 from the first.

Then Lagrange's Theorem hypothesis is satisfied when a = 1, b = -2. The graph of that function is:

b) If the thesis of Lagrange's Theorem is satisfied, we'll have:

(*) there is a $c \in (-3, 1)$: f(1) - f(-3) = f'(c)(1 - (-3)). Bearing in mind that $a = -1, b = -1 \Longrightarrow f(1) = 1, f(-3) = -8$ therefore, (*) means that 1 - (-8) = f'(c)4. that is: f'(c) = 9/4. i) If -3 < x < -1, then f'(x) = -2x, and $f'(c) = -2c = 9/4 \iff c = -9/8.$ ii) If -1 < x < 1, then $f'(x) = 1 \neq 9/4$; and c = -9/8 is the only number that satisfies Lagrange's Theorem.

- (5) Let $f, g: [0,3] \longrightarrow \mathbb{R}$ be the functions defined by: $f(x) = -e^x, g(x) = \ln(4-x)$ Then:
 - (a) draw approximately the set $A = \{(x, y) : 0 \le x \le 3, f(x) \le y \le g(x)\}$ and find, if they exist, the maximal and minimal elements, the maximum and the minimum of A.
 - (b) calculate the area of the given set. *Hint for part a*: Pareto order is defined as: (x₀, y₀) ≤_P (x₁, y₁) ⇔ x₀ ≤ x₁, y₀ ≤ y₁. **0.6 points part a**); **0.4 points part b**)
 - a) Both f(x) and g(x) are decreasing on their domains, as they have negative derived functions. So, the drawing of A will be, approximately, this way:

with this graph, the Pareto order describes the set in the following way: there is no maximum, $\text{maximals}(A) = \{(x, g(x)) : 0 \le x \le 3\}$. There is no minimum $\text{minimals}(A) = \{(x, f(x)) : 0 \le x \le 3\}$.

b) First of all, we calculate the primitive function of g(x), integrating by parts: $\int 1 \cdot \ln(4-x) dx = \left(\int h'g = hg - \int hg'\right) = x \ln(4-x) - \int x \frac{(-1)}{4-x} dx = x \ln(4-x) - \int \frac{4-x-4}{4-x} dx = x \ln(4-x) - \int \frac{4-x}{4-x} dx - 4 \int \frac{(-1)}{4-x} dx = x \ln(4-x) - x - 4 \ln(4-x) = (x-4) \ln(4-x) - x$ Then applying Barrow's Rule we obtain: $\int_{0}^{3} (g(x) - f(x)) dx = [(x-4) \ln(4-x) - x + e^x]_{0}^{3} = (-3+e^3) - (-4 \ln 4 + 1) = 4(\ln 4 - 1) + e^3 \text{ area units.}$

- (6) Given the function $g(x) = \frac{x}{10 + x^6}$, then:
 - (a) Sketch approximately, the graph of the function $G_1(x) = \int_{-8}^{x} g(t) dt$ defined on the interval [-8, 9], obtaining firstly its increasing and decreasing intervals and global maximum and minimum.
 - (b) Let now G₂ be a function such that G'₂(x) = g(x) and G₂(0) = 0. Find the second-order Taylor Polynomial of G₂(x) centered at a = 0. Use the polynomial to calculate approximately the area bounded by the horizontal axis, the graph of g(x) and the vertical lines x = 0, x = 0.1. Hint for parts a) and b): don't try to find a formula for G₁(x) or G₂(x).
 0.6 points part a); 0.4 points part b)
 - a) Since G'₁(x) = x/10 + x⁶, we know that:
 i) G₁(x) is decreasing on [-8, 0], because it has negative derivative.
 ii) G₁(x) is increasing on [0, 9], because it has positive derivative.
 Thus, its global minimum is attained at x = 0.
 To find its maximum, as g(x) is an odd function, we know that ∫⁸₋₈ g(t)dt = 0. Therefore G₁(-8) = 0 = G₁(8) < G₁(9), because G₁(x) is increasing on [0, 9].
 Thus, its global maximum is attained at x = 9.
 So, the drawing of G₁(x) will be approximately, similar to:

b) The asked area is $\int_0^{0.1} g(t)dt = G_2(0.1)$. Considering $G'_2(x) = g(x)$, we have $G'_2(0) = 0$. And considering $G''_2(x) = g'(x) = (\frac{x}{10 + x^6})' = \frac{10 + x^6 - 6x^6}{(10 + x^6)^2}$, we have $G''_2(0) = \frac{1}{10}$. Therefore, second-order Taylor Polynomial of $G_2(x)$ is: $P_2(x) = \frac{1}{20}x^2$. Then the approximate value of the area will be: $P_2(0.1) = \frac{1}{20}0.1^2 = \frac{1}{2000}$.