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(1) Let p(x) = 13−βx be the inverse demand function and C(x) = 16+x+x2 be the cost function

of a monopolistic firm, with β > 0.

(a) Calculate the value of β such that the firm’s profits are maximized at x∗ = 3.

(b) Show that the minimum average cost is obtained at a higher level of production x̃.

(c) If the regulator forces the firm to produce at its minimum average cost, with the value of β found

in part (a), what will be the compensation that the firm will demand?

0.4 points part a); 0.4 points part b); 0.2 points part c).

(a) The profit function is B(x) = (13−βx)x−16−x−x2. Then B′(x) = 13−2βx−1−2x = 12−2(β+1)x

and B′′(x) = −2(β + 1) < 0, i.e., B(x) is a concave function.

Then, x∗ = 3 solves B′(x) = 0, i.e., 12− 2(β + 1)3 = 0 =⇒ β = 1.

(b) As C(x) = 16 + x + x2, the average cost is AC(x) = 16
x + 1 + x, with AC ′(x) = − 16

x2 + 1 and

AC ′′(x) = 32
x3 > 0, i.e., AC is a convex function.

Then x̃ such that AC ′(x̃) = 0 minimizes firm’s average cost: x̃ = 4 > x∗ = 3

(c) Substituting x∗ = 3 and β = 1 into profits, we get B∗ = 2. Substituting x̃ = 4 and β = 1 into

profits, we get B̃ = 0.

So the compensation that the firm will demand will be, at least, 2 monetary units.



(2) Given the implicit function y = f(x), defined by the equation 2xy − ey + x2 = 0 in a neigh-

bourhood of the point x = 1, y = 0, it is asked:

(a) find the tangent line and the second-order Taylor Polynomial of the function f at a = 1.

(b) approximately sketch the graph of the function f near the point x = 1.

(c) approximately sketch the graph of the inverse function of f .

(Hint for part (b) and (c): use f ′(1) < 0, f ′′(1) > 0).

0.4 points part a); 0.2 points part b); 0.4 points part c).

(a) First of all, we notice that (1, 0) is a solution of the equation and the first-order derivative of the

equation with respect to the implicit variable y: 2x − ey, at the point x = 1, y = 0 satisfies the

condition 2 − 1 ̸= 0, so the equation can define an implicit function y = f(x) near the point x =

1, y = 0. Secondly, we calculate the first-order derivative of the equation: 2y+2xy′−y′ey +2x = 0

evaluating at x = 1, y(1) = 0 we obtain: y′(1) = f ′(1) = −2.

Then the equation of the tangent line is: y = P1(x) = 0− 2(x− 1) or y = −2x+ 2.

Analogously, we calculate the second-order derivative of the equation: 2y′ + 2y′ + 2xy′′ − y′′ey −
(y′)2ey + 2 = 0 evaluating at x = 1, y(1) = 0, y′(1) = −2 we obtain: y′′(1) = f ′′(1) = 10.

Therefore, the second-order Taylor Polynomial is: y = P2(x) = 0 − 2(x − 1) + 5(x − 1)2 =

−2(x− 1) + 5(x− 1)2

(b) Using the second-order Taylor Polynomial, the approximate graph of the function f , near the point

x = 1, will be as you can see in the figure underneath.

(c) The graph of the inverse function f−1(x), will exist in a neighbourhood of the point (0, 1).

Using symmetry with respect to the principal diagonal (y = x), the tangent line to the inverse

function at (0, 1) has slope − 1
2 and its equation is y = − 1

2x+1. Therefore, the approximate graph

of f−1(x) can also be seen in the same figure below.



(3) Consider the function f(x) = ln x
3
√
x
, defined on the interval (0,∞) . Then:

(a) find its asymptotes, the intervals where the function f(x) is increasing/decreasing, and its global

extreme points.

(b) find the range and sketch the graph of the function.

(c) state the Weierstrass’ theorem. Now, consider the new function fb(x) as f(x) restricted on the

interval [b,∞), where b > 0. Discuss for which values of b the thesis (or conclusion) of the

Weierstrass’ theorem is satisfied.

0.4 points part a); 0.3 points part b); 0.3 points part c)

(a) First of all, since f(x) is continuous in its domain we only need to look for asymptotes at 0 and ∞.

lim
x→0+

f(x) = −∞
0+ = −∞, then f(x) has a vertical asymptote at x = 0.

lim
x→∞

f(x) = ∞
∞ = (using L’Hopital) = lim

x→∞
1/x

x−2/3/3
= lim

x→∞
3

x1/3 = 0

then f(x) has a horizontal asymptote y = 0 at ∞.

Since,

f ′(x) =
1
x · x1/3 − (lnx)x−2/3/3

x2/3
=

3x−2/3 − (lnx)x−2/3

3x2/3
=

3− lnx

3x4/3
,

we know that x = e3 is the unique critical point.

Calculating f ′(1) > 0, then f ′(x) > 0 if x ∈ (0, e3), and f(x) is increasing on (0, e3].

Calculating f ′(e4) < 0, then f ′(x) < 0 if x ∈ (e3,∞), then f(x) is decreasing on [e3,∞).

Obviously, x = e3 is the global maximizer of f(x) and f(x) has not global minimizer or minimum

point.

(b) Based on the above, the maximum value of the function is f(e3) = 3
e and since lim

x−→0+
f(x) = −∞,

using the Intermediate Value theorem for continuous functions, we can deduce that the range of

f(x) is (−∞, 3
e ].

Therefore, The graph of f(x) will have an appearance, approximately, similar to the one in the

figure underneath.

(c) We have seen that f(x) is increasing on (0, e3], decreasing on [e3,∞) and also, lim
x→∞

f(x) = 0+.

Then, whenever y = 0 belongs to the range of fb(x) the conclusion of the Weierstrass’ theorem will

be satisfied. Bearing in mind that f(1) = 0, we obtain two cases to discuss:

i) if b ≤ 1 =⇒ min(fb) = f(b), max(fb) =
3
e then the conclusion of the Weierstrass’ theorem will

be satisfied.

ii) if b > 1 =⇒ min(fb) does not exist, and the conclusion of the theorem is not satisfied.

Again, have a Look at the graph of the function.



(4) Let f(x) =

{
ea(x−1) , x ≤ 1
b
2x , x > 1

be a piecewise-defined function on R where a < 0, b > 0, it is

asked:

(a) state the Mean Value theorem (or Lagrange) for a function defined on [0, 2].

(b) find the values of a, b for the function f , so the hypothesis or initial conditions of the theorem are

satisfied on [0, 2].

(c) suppose that a = − ln 2 and b = 2. Is the thesis or conclusion of the theorem satisfied for the

function f on [0, 2]?

(Hint for part c: In order to find the number or point c of the conclusion, start finding it in the

interval (1, 2)).

0.2 points part a); 0.6 points part b); 0.2 points part c)

(a) The hypothesis are f is continuous on [0, 2] and derivable on (0, 2).

The thesis or conclusion is that there exists a point c ∈ (0, 2) such that f ′(c) = (f(2)− f(0))/2.

(b) First of all, we need that f(x) is continuous on x = 1. lim
x→−1+

f(x) = b/2; f(1) = lim
x→−1−

f(x) = 1

so, f(x) is continuous at x = 1 if b = 2.

Secondly, supposing f continuous at x = 1, the function will be derivable at x = 1 when:

f ′(1+) = f ′(1−). Then, we obtain:

i)f ′(1+) = lim
x→1+

f ′(x) = lim
x→1+

−b
2x2 = −b

2 = −1;

ii) f ′(1−) = a, since f ′(x) = aea(x−1).

Finally, the Lagrange’s theorem is satisfied when: b = 2, a = −1.

(c) The thesis or conclusion is that there is a number c ∈ (0, 2) such that 2f ′(c) = f(2)− f(0), this is:

i) if c > 1, −2/c2 = 1/2 − eln 2 = 1/2 − 2 = −3/2 then c2 = 4/3 > 1 =⇒ c = 2
√
3

3 > 1, and the

thesis of the theorem is satisfied.

ii) meanwhile, for the case c ≤ 1 there is no need to be studied.



(5) Given the functions f, g : R −→ R, defined by: f(x) = ln(2− x), g(x) = 1 + e−2x, then:

(a) sketch the set of points A delimited by the graph of the functions f(x), g(x) and the vertical

straight lines x = 0, x = 1. Find, if they exist, maximal and minimal elements, the maximum and

the minimum of A.

(b) calculate the area of the given set.

(Hint for part (a): Pareto’s order is defined: (x0, y0) ≤P (x1, y1) ⇐⇒ x0 ≤ x1, y0 ≤ y1).

0.4 points part a); 0.6 points part b)

(a) First of all, we can observe that both functions are positive and increasing on [0, 1], and f(x) <

1 < g(x) on the interval.

Furthermore, the line y = 0 intersect the graph of f(x) when x = 1.

Therefore, the draw of A will be approximately like,

Then, Pareto order describes the set properties:

maximum(A) does not exist, maximal elements(A) = {(x, g(x)) : 0 ≤ x ≤ 1}, minimum(A) does

not exist and minimal elements(A) = {(x, f(x)) : 0 ≤ x ≤ 1}.
(b) First of all, looking at the position of the graphs we know that:

area(A)=
1∫
0

(g(x)− f(x))dx.

Integrating by parts,
∫
f(x)dx =

∫
1 ·f(x)dx = x ln(2−x)−

∫
x (−1)

2−x dx = x ln(2−x)+
∫

x−2+2
2−x dx =

x ln(2− x) +
∫
(−1 + (−2) (−1)

2−x )dx = x ln(2− x)− x− 2 ln(2− x)

then applying Barrow’s Rule we obtain:
1∫
0

f(x)dx = [(x− 2) ln(2− x)− x]10 = −1− (−2 ln 2) = −1 + 2 ln 2.

Secondly, since
∫
g(x)dx =

∫
(1 + e−2x)dx = x− 1

2

∫
(−2)e−2xdx = x− 1

2e
−2x,

then applying Barrow’s Rule we obtain:
1∫
0

g(x)dx = [x− 1
2e

−2x]10 = 1− 1
2e

−2 − (− 1
2 ) = − 1

2e
−2 + 3

2 .

Therefore,

area(A)=
1∫
0

g(x)dx−
1∫
0

f(x)dx = − 1
2e

−2 + 3
2 − (−1 + 2 ln 2) =

= − 1
2e

−2 + 5
2 − 2 ln 2 area units.


