WORKSHEET 4 : Differentiation II

1. Compute the following limits:

a)(*)
$$\lim_{x \to \infty} (1+x)^{1/x}$$
 b) $\lim_{x \to 0^+} x \ln x$ c)(*) $\lim_{x \to \infty} x^{1/x}$
d)(*) $\lim_{x \to 1^+} \left(\frac{1}{\ln x} - \frac{2}{x-1}\right)$ e) $\lim_{x \to \infty} x \tan(1/x)$ f) $\lim_{x \to 0} \frac{\arcsin x - \arctan x}{x}$
g) $\lim_{x \to 1/2} (4x^2 - 1) \tan(\pi x)$

- a) $\lim_{x\to\infty} (1+x)^{1/x} = 1$. Analogously, part c). b) $\lim_{x\to0^+} x \ln x = 0$
- d) $\lim_{x \to 1^+} \frac{1}{\ln x} \frac{2}{x-1} = -\infty$
- 2. Compute the asymptotes of the following functions:

a)(*)
$$f(x) = \frac{2x^3 - 3x^2 - 8x + 4}{x^2 - 4}$$
 b) $f(x) = \frac{x^3}{x^3 + x^2 + x + 1}$ c)(*) $f(x) = 2x + e^{-x}$
d) $f(x) = \frac{\sin x}{x}$ e)(*) $f(x) = \frac{x - 2}{\sqrt{4x^2 + 1}}$ f) $f(x) = \frac{3x^2 - x + 2\sin x}{x - 7}$
g)(*) $f(x) = \frac{e^x}{x}$ h)(*) $f(x) = xe^{1/x}$ i)(*) $f(x) = \frac{x}{e^x - 1}$

a) Vertical asymptotes in x = 2 and in x = -2.

On the other hand, the oblique asymptote in ∞ and in $-\infty$ is y = 2x - 3.

c) y = 2x is the oblique asymptote in ∞ .

c) y = 2x is the oblique asymptote in ∞ . e) $\lim_{x \to \infty} \frac{x-2}{\sqrt{4x^2+1}} = \frac{1}{2}, \lim_{x \to -\infty} \frac{x-2}{\sqrt{4x^2+1}} = -\frac{1}{2}$. There are no more asymptotes. g) $\lim_{x \to 0^+} \frac{e^x}{x} = \infty, \lim_{x \to 0^-} \frac{e^x}{x} = -\infty$, and there are no more vertical asymptotes. On the other hand, y = 0 is horizontal asymptote in $-\infty$, and there are no horizontal, nor oblique asymptote in ∞ .

h) $\lim_{x\to 0^+} xe^{1/x} = \infty$, and there are no more vertical asymptotes. On the other hand, y = x + 1 is the oblique asymptote in ∞ , and also in $-\infty$.

i) There is no vertical asymptote.

On the other hand, y = 0 is the horizontal asymptote in ∞ . Finally, the line y = -x is the oblique asymptote in $-\infty$.

3. (*)Find the Taylor polynomium of order 2 in a and, using that polynomium, compute the approximate value of the function on x = a + 0.1.

a)
$$f(x) = e^x$$
 in $a = 0$ b) $f(x) = \sin x$ in $a = 0$ c) $f(x) = \frac{\ln x}{x}$ in $a = 1$

a) $P(x) = 1 + x + x^2/2$, so $f(0.1) \approx 1.105$

b)
$$P(x) = x$$
, so $f(0.1) \approx 0.1$

c)
$$P(x) = (x-1) - 3\frac{(x-1)^2}{2}$$
, so $f(1.1) \approx 0.085$

4. (*)Given the Taylor polynomium of order 2 in a = 0 of f, determine if the function has a local maximum or minimum at the point (0, f(0)).

a)
$$P(x) = 1 + 2x^2$$
 b) $P(x) = 1 + x + x^2$ c) $P(x) = 1 - 2x^2$

- a) f has a local minimum at the point (0, f(0)).
- b) f has not a local maximum or minimum at the point (0, f(0)).
- c) f has a local maximum at the point (0, f(0)).
- 5. Compute the (absolute and local) maxima and minima of f in the given intervals:

a)(*)
$$f(x) = 3x^{2/3} - 2x$$
 in $[-1, 2]$.
b) $f(x) = xe^{-x}$ in $[1/2, \infty)$, $[0, \infty)$ and $I\!R$.
a)

- i) f obtains a local minimum in x=0 and a local maximum in x=1.
- ii) f obtains its absolute minimum in x = 0.
- iii) f obtains its absolute maximum in x = -1.
- 6. (*)Compute in which point the slope of the tangent line to the graph of the function $f(x) = -x^3 + 2x^2 + x + 2$ takes its maximum value.
 - $x = \frac{2}{3}$
- 7. The first (*) and second drawings show the graphs of the derivatives of different functions f. Determine the increasing/decreasing, concavity/convexity intervals of f, and its local extreme and inflection points.

a) f is increasing in $(-\infty, 1]$ and in $[5, \infty)$.

f is decreasing in [1, 5].

So, f obtains a local maximum in 1 and a local minimum in 5. On the other hand,

f is convex in [2,3], [4,6] and in $[7,\infty)$;

f is concave in $(-\infty,2]$, [3,4] and in [6,7].

- So f has inflection points in 2, 3, 4, 6 y 7.
- b) f is increasing in $(-\infty, -1]$ and in $[2, \infty)$.

f is decreasing in [0, 2].

Finally, f is constant in [-1, 0].

Therefore, f reaches a relative maximum at all the points of the interval [-1, 0].

Analogously f reaches a relative minimum at all the points of the interval (-1, 0) and at the point 2. On the other hand,

f is convex in $[1,\infty)$;

f is concave in $(-\infty, -1]$ and in [0, 1].

Therefore, f has an inflection point at 1.

8. The following drawing shows the graph of the second derivative of f. Determine the convexity intervals of f and the inflection points. Determine where the function is increasing and decreasing and the relative extrema of f assuming that f'(-3) = f'(0) = 0.

f is convex in $[-2, \infty)$. f is concave in $(-\infty, -2]$.

Therefore, f has an inflection point in x=-2.

Furthermore, f is increasing in $(-\infty, -3]$. Analogously, f is decreasing in [-3, 0].

In the same way, f is increasing in $[0, \infty)$.

Therefore, f has a local maximum at x=-3 and a local minimum at x=0.

9. Let $f(x) = \begin{cases} x^{\alpha} \text{ if } 0 \le x \le 1 \\ x^{\beta} \text{ if } 1 \le x \end{cases}$ Discuss, depending on the values of $\alpha \neq \beta$, when f is concave or convex.

f will be convex in $[0, \infty)$ when $1 < \alpha \leq \beta$.

Analogously, f will be concave in $[0, \infty)$ when $0 < \beta \le \alpha < 1$.

10. (*)Let $f : \mathbb{R} \to \mathbb{R}$ convex, and let x > 0. Check graphically the following inequalities:

$$f(1) < \frac{1}{2} \left(f(1-x) + f(1+x) \right) < \frac{1}{2} \left(f(1-2x) + f(1+2x) \right)$$

11. (*)Let $f : \mathbb{R} \to \mathbb{R}$ concave, and let x > 0. Check graphically the following inequalities:

$$f(1) > \frac{1}{2} \left(f(1-x) + f(1+x) \right) > \frac{1}{2} \left(f(1-2x) + f(1+2x) \right)$$

12. (*)Let $f:[0,\infty) \to \mathbb{R}$, convex, such that f'(1) = 0.

- a) Find the local extrema of f.
- b) What can be said of the global extrema of f?
- c) Consider now $f:[0,n] \to \mathbb{R}$. What can be said of the global extrema of f?
- a) and b): 1 is a local and global minimum of f
- Moreover, it cannot exist a global maximizer of f, since $\lim f(x) = \infty$.

c) In that case, in addition to what we said about minimizers, we can guarantee that it will exist a global maximizer, that will be the point 0 (if $f(n) \le f(0)$) or the point n (if $f(0) \le f(n)$).

13. (*)Let $f:[0,\infty) \to \mathbb{R}$, concave, such that f'(1) = 0.

- a) Find the local extrema of f.
- b) What can be said of the global extrema of f?
- c) Consider now $f:[0,n] \to \mathbb{R}$. What can be said of the global extrema of f?
- The same as the previous problem, changing maximum for minimum and viceversa.

14. Study and graph the following functions:

a)
$$f(x) = x + \cos x$$
 b) $f(x) = \frac{e^{2x}}{e^x - 1}$ c) $f(x) = \frac{x}{\ln x}$ d) $f(x) = \sqrt{|x - 4|}$

Solution:

a) f(x) is always increasing and the only root of this function is on the interval $\left(-\frac{\pi}{2},0\right)$. Finally:

- f(x) is convex in the intervals like $(\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi)$, where $k = \dots, -1, 0, 1, \dots$
- f(x) is concave in the intervals like $\left(-\frac{\pi}{2}+2k\pi,\frac{\pi}{2}+2k\pi\right)$, where k=...,-1,0,1,...

And, consequently, the inflection points of f(x) are like $\frac{\pi}{2} + k\pi$, where k = ..., -1, 0, 1, ...

15. (*)Given the cost function $C(x) = 4000 + 10x + 0.02x^2$ and the demand function p(x) = 100 - (x/100), find the price p per unit that gives the maximum benefit.

$$p = 85.$$

16. (*)Let $p(x) = x^2 - x + 1/3$ be the sale price of 1 kilo of plutonium when x units are sold. Taking into account that the firm sells in the market a maximum of 2 kilos, find the value of x that maximizes the profits of the firm. We can assume that the Government pays all the costs of the firm.

The maximum is reached at the point x=2.

- 17. (*)Let $p(x) = 100 x^2/2$ be the demand function of a product and $C(x) = 48 + 4x + 3x^2$ its cost function. What is the production x that minimizes the average cost? And if there exists a maximum production x^2 ? x = 4 on the first case, $x = \min(4, x^2)$ on the second case.
- 18. A firm that has a cost function $c(x) = x^2 + 1$ faces a demand given by the function $p(x) = \begin{cases} 10 & \text{si } 0 \le x \le 1 \\ 1 & \text{si } 1 < x \le 10 \end{cases}$. Find the production that gives the maximum profit.
- 19. (*)A manufacturer sells 5000 units per month for 100 euros per unit and he believes that his sales would increase by 500 units for each 5 euros of decrease on the unitary price.

a) Find the demand, revenues and marginal revenues functions.

b) If the cost of production of x units is C(x) = 1000 + 0.12x, find the marginal profit function.

The demand function is p(x) = 150 - 0'01x.

$$I(x) = 150x - 0'01x^2, I'(x) = 150 - 0'02x.$$

b)
$$B'(x) = 149'88 - 0'02x$$
.