HOJA 1: Introducción

1. Para cada una de las desigualdades que siguen, determinar el conjunto de números reales que las satisfacen. Dibujar dicho conjunto.

a)(*)
$$|9-2x| < 1$$
 b)(*) $-5|x+3| < 4x-5$ c)(*) $\frac{|x|}{3} + 2 < |x|$ d)(*) $1 < |3-2x|$

e)(*)
$$\frac{(x^2-16)(x-1)}{x-3} \ge 0$$
 f) $|x-x|$

e)(*)
$$\frac{(x^2-16)(x-1)}{x-3} \ge 0$$
 f) $|x-3|+|x+3| < 10$ g) $|x-3|+|x+3| < \alpha$, $\alpha \in \mathbb{R}$ h) $|\frac{x-1}{x}|-1 \ge 0$

- a) Sol: (4,5)
- b)Sol: $(-\infty, -20) \cup (-10/9, \infty)$.
- c) *Sol* : $(-\infty, -3)$ | $J(3, \infty)$.
- d) $Sol: (-\infty, 1) \cup (2, \infty)$.
- e)Sol: $(-\infty, -4] \cup [1, 3) \cup [4, \infty)$.
- f) Sol.: (-5,5).
- g) Si $\alpha \le 6$, la solución es el conjunto vacío; si $\alpha > 6$, la solución es $(-\alpha/2, \alpha/2)$.
- h) Sol.: $(-\infty,0) \cup (0,\frac{1}{2}]$.
- 2. (*)Interpreta geométricamente las desigualdades a), b), c) y d) mediante las funciones

a)
$$y = |9 - 2x|$$
; $y = 1$ b) $y = -5|x + 3|$; $y = 4x - 5$

c)
$$y = \frac{|x|}{3} + 2$$
; $y = |x|$ d) $y = 1$; $y = |3 - 2x|$

d)
$$y = 1$$
; $y = |3 - 2x|$

3. Discutir si se cumplen las desigualdades siguientes :

$$|b|(*)|x| + |y| \le |x + y|$$

a)
$$(*)|x + y| \le |x| + |y|$$
 b) $(*)|x| + |y| \le |x + y|$ g) $(*)|x - y| \le |x| + |y|$

$$c)(*) |x - y| \le |x| - |y|$$

c)(*)
$$|x - y| \le |x| - |y|$$
 d)(*) $|x| - |y| \le |x - y|$ h)(*) $|x| + |y| \le |x - y|$

h)(*)
$$|x| + |y| \le |x - y|$$

e)(*)
$$||x| - |y|| \le |x| + |y|$$
 f) $|x| + |y| \le ||x| - |y||$ i) $||x| - |y|| \le |x| - |y|$

f)
$$|x| + |y| \le ||x| - |y||$$

i)
$$||x| - |y|| \le |x| - |y|$$

- a) Siempre es cierta.
- b) Solo se cumple si $x, y \in [0, \infty)$ o si $x, y \in (-\infty, 0]$.
- c) Solo se cumple si $0 \le y \le x$ ó $x \le y \le 0$.
- d) Se cumple siempre.
- e) Se cumple siempre.
- f) Solo se cumple si x = 0 ó y = 0.
- g) Se cumple siempre.
- h) Solo se cumple cuando x e y tienen distinto signo.
- i) Solo se cumple si $|y| \le |x|$.
- 4. Discutir la verdad o falsedad de las siguientes afirmaciones

a)
$$x < y \Rightarrow x^2 < y^2$$
 b) $|x| < |y| \Rightarrow x^2 < y^2$

c)
$$x^2 < y^2 \Rightarrow x < y$$
 d) $x^2 < y^2 \Rightarrow |x| < |y|$

- a) Si $y \le 0$, siempre es falsa; si $0 \le x$, siempre es cierta; en el resto de los casos, depende.
- b) y d) siempre son ciertas.
- c) Si y < 0, siempre es falsa; si 0 < y, siempre es cierta; si y = 0, es imposible.
- **5.** Obtener para los conjuntos $A \subset \mathbb{R}$ que se definen a continuación, el máximo y el mínimo, si los hubiera, para $\alpha = -1$, $\alpha = 0$ y $\alpha = 1$

a) $A = \{x : senx = \alpha\}$ b) $A = \{x : cos x = \alpha\}$ c) $A = \{x : e^x \le \alpha\}$

$$c) A = \{x : e^x \le \alpha\}$$

d)
$$A = \{x : e^x \ge \alpha\}$$
 e) $A = \{x : \ln x \le \alpha\}$ f) $A = \{x : \ln x \ge \alpha\}$

f)
$$A = \{x : \ln x \ge \alpha\}$$

a) A no tiene ni máximo ni mínimo.

- b) A no tiene ni máximo ni mínimo.
- c) si $\alpha = -1$ o si $\alpha = 0 \Rightarrow A$ no tiene ni máximo ni mínimo; si $\alpha = 1 \Rightarrow A$ no tiene mínimo, pero max(A)=0.
- d) si $\alpha = -1$ o si $\alpha = 0 \Rightarrow A$ no tiene ni máximo ni mínimo; si $\alpha = 1 \Rightarrow A$ no tiene máximo, pero min(A)=0.
 - e) si $\alpha = -1, \alpha = 0$ o si $\alpha = 1 \Rightarrow A$ no tiene mínimo, pero max(A)= e^{-1} , 1, e, respectivamente.
 - f) si $\alpha = -1, \alpha = 0$ o si $\alpha = 1 \Rightarrow A$ no tiene máximo, pero min(A)= $e^{-1}, 1, e$, respectivamente.
- **6.** (*)En $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ se define la siguiente relación: $(a,b) \le (c,d)$ si y sólo si $a \le c$ y $b \le d$. Comprobar que " \le " es una relación de orden parcial. Sean $A = \{(x,y) \in \mathbb{R}^2 \mid x+y \le 1\}$, $B = \{(x,y) \in \mathbb{R}^2 \mid |x| \le 1; |y| \le 1\}$, $C = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le 4 x^2\}$

$$D = \{(x,y) \in \mathbb{R}^2 | x^2 - 9 \le y \le 0\} \text{ y } E = \{(x,y) \in \mathbb{R}^2 : |x| \le y \le 6 - x^2\}.$$

Obtener para los conjuntos anteriores, si los hubiera, el máximo y el mínimo, los maximales y los minimales.

- a) maximales (A)= $\{(x,y) : x + y = 1\}$.
- b) maximales (B)=Máximo (B)= $\{(1,1)\}$; minimales (B)=Mínimo (B)= $\{(-1,-1)\}$.
- c) maximales (C)= $\{(x,y): y = 4 x^2, 0 \le x \le 2\}$; min imales (C) = Minimo(C) = $\{(-2,0)\}$.
- d) maximales (D)=Máximo (D)= $\{(3,0)\}$; minimales (D)= $\{(x,y): y = x^2 9, -3 \le x \le 0\}$.
- 7. (*)Sean f(x) = 1/x y $g(x) = x^2 1$.
 - a) Hallar el dominio y la imagen de estas funciones.
 - b) Hallar f(g(2)) y g(f(2)).
 - c) Hallar f(g(x)) y g(f(x)).
 - a) Dom (f)= $(-\infty,0) \cup (0,\infty) = \text{Im}(f)$. $Dom(g) = \mathbb{R}$, $\text{Im}(g) = [-1,\infty)$.
 - c) $f(g(x)) = \frac{1}{x^2-1} y g(f(x)) = \frac{1}{x^2} 1$.
- **8.** (*)Hallar el dominio y la imagen de las siguientes funciones:
 - a)f(x) = ln(senx) $b)g(x) = ln(sen^2x)$
 - c) $h(x) = ln\sqrt{-x^2 + 4x 3}$
 - a) Dom $(f) = \{x : sen x > 0\} = \bigcup_{k = 7} (2k\pi, (2k+1)\pi); Im(f) = (-\infty, 0]$
 - b) Dom $(f) = \{x : senx \neq 0\} = \bigcup_{k=0}^{k=0} (k\pi, (k+1)\pi); Im(f) = (-\infty, 0]$
 - c) $Dom(f) = \{x : -x^2 + 4x 3 > 0\} = \{x : x^2 4x + 3 = (x 3)(x 1) < 0\} = (1, 3);$ $Im(f) = (-\infty, 0].$
- **9.** Repasar las gráficas de las funciones:

a)(*)
$$f(x) = x^2$$
 b)(*) $f(x) = e^x$ c)(*) $f(x) = lnx$ d) $f(x) = senx$

En cada caso dibujar las gráficas de las funciones siguientes a partir de las anteriores, interpretando geométricamente los resultados.

$$i)g(x) = f(x+1)$$
 $ii)h(x) = -2f(x)$ $iii)p(x) = f(3x)$
 $iv)s(x) = f(x) + 1$ $v)r(x) = |f(x)|$ $vi)m(x) = f(|x|)$

- i) Trasladar la gráfica una unidad a la izquierda.
- ii) Estirar la gráfica verticalmente (2f(x)) y, luego, hacer una reflexión respecto al eje horizontal (-2f(x)).
- iii) Comprimir verticalmente la gráfica.

- iv) Trasladar verticalmente la gráfica una unidad hacia arriba.
- v) Mantener invariante la parte de la gráfica que queda encima del eje horizontal, y obtener la parte simétrica respecto al
- eje horizontal de la parte de gráfica que queda debajo de este eje.
- vi) Mantener invariante la parte de la gráfica que queda a la derecha del eje vertical, suprimir la parte izquierda de la gráfica y

sustituirla por la simétrica de la parte que queda a la derecha del eje vertical.

- **10.** (*)Sean $f, g: I \to \mathbb{R}$ funciones crecientes. Discutir la verdad o falsedad de las siguiente afirmaciones
 - a) $f + g : I \to \mathbb{R}$ es una función creciente
 - b) $f \cdot g : I \to \mathbb{R}$ es una función creciente
 - c) $f g : I \to \mathbb{R}$ es una función creciente si ambas funciones son positivas
 - d) $f g : I \to \mathbb{R}$ es una función creciente si ambas funciones son negativas
 - a) Obvio.
 - b) Si f, g positivas: obvio.
 - c) Falso.
 - d) Falso.
- **11.** Sean $f, g : \mathbb{R} \to \mathbb{R}$ funciones monótonas. Discutir cuando será $g \circ f$ creciente o decreciente dependiendo del comportamiento de $f \circ g$ (en total cuatro casos).
 - a) gof será creciente si ambas son crecientes o decrecientes.
 - b) gof será decreciente si una de ellas es decreciente y la otra es creciente.
- **12.** Para cada una de las siguientes funciones, por ejemplo f, hallar los intervalos I, J para que $f: I \rightarrow J$ sea biyectiva.
 - a) $f(x) = x^2$; b) $g(x) = \ln|x|$; c) h(x) = sen(x); d) $i(x) = e^{-x^2}$.
 - c) $h: [-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi] \rightarrow [-1, 1]$ d) $i: (-\infty, 0] \rightarrow (0, 1], i: [0, \infty) \rightarrow (0, 1].$
- **13** (*)Calcula la función inversa de las siguientes funciones:

$$f(x) = (x^3 - 5)^5$$
, $g(x) = (\sqrt[3]{x - 5})^5$ $h(x) = \ln(\frac{x - 1}{x - 2})$; $i(x) = \frac{3x - 1}{x - 3}$;

$$j(x) = \begin{cases} x+3 & -3 \le x \le 0 \\ -2x & 0 < x \le 3 \end{cases}$$

a)
$$f^{-1}(x) = \sqrt[3]{5 + \sqrt[5]{x}}$$
.

b)
$$g^{-1}(x) = 5 + x^{3/5} = 5 + (\sqrt[5]{x})^3$$
.

c)
$$h^{-1}(x) = \frac{2e^{x}-1}{e^{x}-1}$$
 d) $i^{-1}(x) = i(x)$ e) $j^{-1}(x) =\begin{cases} x-3 & 0 \le x \le 3\\ -x/2 & -6 \le x < 0 \end{cases}$

14. Determinar si las siguientes funciones son pares, impares o ninguno de los dos casos:

a)
$$f(x) = cos5x$$
 b) $g(x) = sen2x$ c) $h(x) = cos5xsen2x$ d) $k(x) = \frac{x^2}{x^2+1}$

e)
$$l(x) = \frac{x^3}{x^4+1}$$
 f) $m(x) = \frac{x^3}{x^5+1}$ g) $n(x) = \frac{arctgx}{x}$

- a) Par.
- b) Impar.
- c) Impar.
- d) Par.

- e) Impar.
- f) Ni par ni impar.
- g) Par.
- **15.** Sea *f* una función par y *g* una función impar. Demuestra que:

$$|g|$$
 es par; $f \circ g$ es par; $g \circ f$ es par;

$$g \circ f$$
 es par;

$$f \cdot g$$
 es impar; g^k es par (si k es par); g^k es impar (si k es impar)

$$g^k$$
 es impar (si k es impar)

16. Determinar cuáles de las siguientes funciones son periódicas, y calcular su periodo.

$$f(x) = sen4x \ g(x) = tg(\frac{x}{3}) \ l(x) = sen(3x + 2)$$

- a) f(x) tiene período $2\pi/4$.
- b) g(x) tiene período 3π .
- c) l(x) tiene perído $2\pi/3$.
- **17.** Sea f una función cualquiera y g una función periódica. ¿Es posible afirmar que $f \circ g$ y $g \circ f$ sean periódicas?

Justifica que
$$f(x) = \frac{tg^2 3x + ln(tg3x)}{1 + tg3x}$$
 es periódica.

fog es una función periódica.

Por otra parte, gof no tiene por qué ser periódica.