
Chapter 5

Integration

5.1 The indefinite integral

In many respects, the operation of integration that we are studying here is the inverse
operation of derivation.

Definition 5.1.1. The function F is an antiderivative (or primitive) of the function f on
the interval I if F ′(x) = f(x) for all x ∈ I.

Thus, both F1(x) = x3 + 6 and F2(x) = x3 − 2 are antiderivatives of f(x) = 3x2 in any
interval.

Theorem 5.1.2. If F1 and F2 are two arbitrary antiderivatives of f on I, then F1(x) −
F2(x) = const. on I.

Proof. By definition of antiderivative F ′
1 = F ′

2 = f on I, thus (F1 − F2)
′(x) = 0 for

every x ∈ I. Since a function with a null derivative on an interval is constant, we have
F1(x)− F2(x) = const.

Corollary 5.1.3. If F is one of the antiderivatives of f on I, any other antiderivative G
of the function f on I has the form G(x) = F (x) + C, where C is a constant.

Definition 5.1.4. The set of all antiderivatives of the function f on the interval I is called
the indefinite integral of f on I, and it is denoted∫

f(x) dx.

Notice that by Corollary ??,
∫
f(x) dx = F (x)+C, where F is one of the antiderivatives

of f on I, and C is an arbitrary constant. Sometimes the symbol
∫
f(x) dx denotes not the

whole set of antiderivatives but any one of them.

5.1.1 Properties of the Indefinite Integral

1.
∫
F ′(x) dx = F (x) + C;

2. For any functions f, g and constants a, b,
∫
(af(x)+bg(x)) dx = a

∫
f(x) dx+b

∫
g(x) dx.
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5.1.2 Basic Indefinite Integrals

1.

∫
0 dx = C;

2.

∫
1 dx = x+ C;

3.

∫
xa dx =

xa+1

a+ 1
+ C (a ̸= −1);

4.

∫
dx

x
= ln |x|+ C (x ̸= 0);

5.

∫
ax dx =

ax

ln a
+ C (0 < a ̸= 1),

∫
ex dx = ex + C;

6.

∫
sinx dx = − cosx+ C;

7.

∫
cosx dx = sinx+ C;

8.

∫
1

cos2 x
dx = tanx+ C (x ̸= π

2
+ kπ, k integer);

9.

∫
dx√
1− x2

= arcsinx+ C (−1 < x < 1);

10.

∫
dx

1 + x2
= arctanx+ C.

5.1.3 Integration by Change of Variable

Sometimes the task of finding the integral

∫
f(x) dx is simplified by means of a change of

variable x = φ(t). The formula of change of variable in an indefinite integral is∫
f(x) dx

∣∣∣∣
x=φ(t)

=

∫
f(φ(t))φ′(t) dt.

Example 5.1.5. Find

∫
tanx dx.

Solution: Let t = cosx. Then dt = − sinx dx. Hence, by the formula of change of
variable ∫

tanx dx =

∫
sinx

cosx
dx = −

∫
dt

t
= − ln |t|+ C = − ln | cosx|+ C.

Example 5.1.6. Find

∫ √
2x− 1 dx.
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Solution: Let t = 2x− 1. Then dt = 2dx. Hence,∫ √
2x− 1 dx =

1

2

∫ √
t dt =

1

2

∫
t1/2 dt =

1

2

t3/2

3/2
+ C =

1

3
t3/2 + C =

1

3
(2x− 1)3/2 + C.

Example 5.1.7. Find

∫
x
√
2x− 1 dx.

Solution: Let t = 2x − 1. Then dt = 2dx. Moreover, x = (1 + t)/2. Applying the
change of variable formula we get∫

x
√
2x− 1 dx =

1

4

∫
(1 + t)t1/2 dt =

1

4

∫
t1/2 + t3/2 dt =

1

4

(
t3/2

3/2
+

t5/2

5/2

)
+ C

=
1

4
[
2

3
t3/2 +

2

5
t5/2] + C =

1

6
t3/2 +

1

10
t5/2 + C =

1

6
(2x− 1)3/2 +

1

10
(2x− 1)5/2 + C

Example 5.1.8. Find

∫
lnx

x
dx.

Solution: Let t = lnx. Then dt = dx/x and∫
lnx

x
dx =

∫
t dt =

1

2
t2 + C =

1

2
(lnx)2 + C.

Example 5.1.9. Find

∫
xe−x2

dx.

Solution: Let t = x2. Then dt = 2xdx and∫
xe−x2

dx =
1

2

∫
e−t dt = −1

2
e−t + C = −1

2
e−x2

+ C.

5.1.4 Integration by parts

For differentiable functions u and v we have (uv)′ = uv′ + vu′. Taking integrals and given
that

∫
(uv)′(x) dx = u(x)v(x), we have∫

u(x)v′(x) dx = u(x)v(x)−
∫

v(x)u′(x) dx.

This relation is known as the formula of integration by parts. Using the identifications
u′(x) dx = du and v′(x) dx = dv we can write this formula as∫

u dv = uv −
∫

v du.

Example 5.1.10. Find

∫
xex dx.

Solution: Let u = x and dv = ex dx. Then du = dx and v = ex. Hence∫
xex dx = xex −

∫
ex dx = ex(x− 1) + C.
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Example 5.1.11. Find

∫
x2 lnx dx.

Solution: Let u = lnx and dv = x2 dx. Notice that du = dx/x and v = x3/3. Then,
using the formula of integration by parts we get∫

x2 lnx dx = lnx

(
x3

3

)
−
∫

x3

3x
dx = lnx

(
x3

3

)
− 1

3

∫
x2 dx = lnx

(
x3

3

)
− 1

9
x3 + C.

Example 5.1.12. Find

∫
arctanx dx.

Solution: Let u = arctanx and dv = dx. Then du = dx/(1 + x2) and v = x. Hence∫
arctanx dx = x arctanx−

∫
x

1 + x2
dx.

Now, observe that using the change of variable t = x2 we have dt = 2x dx thereby∫
x

1 + x2
dx =

1

2

∫
1

1 + t
dt =

1

2
ln |1 + t|+ C =

1

2
ln (1 + x2) + C.

Plugging this value into the above expression we finally get∫
arctanx dx = x arctanx− 1

2
ln (1 + x2) + C.

Example 5.1.13. Find

∫
x2 sinx dx.

Solution: Let u = x2 and dv = sinx dx. Then du = 2x dx and v = − cosx. Thus∫
x2 sinx dx = −x2 cosx+ 2

∫
x cosx dx.

Applying again integration by parts to the second integral, u = x and dv = cosx dx we
have du = dx and v = sinx, hence∫

x cosx dx = x sinx−
∫

sinx dx = x sinx+ cosx+ C.

Plugging this value into the previous expression we finally get∫
x2 sinx dx = −x2 cosx+ 2x sinx+ 2 cosx+ C.

5.1.5 Integration of Rational Functions

A rational function is of the form
Pn(x)

Qm(x)
, where Pn and Qm are polynomials of degrees n

and m, respectively. If n ≥ m the fraction is improper and can be represented

Pn(x)

Qm(x)
= Pn−m(x) +

Rk(x)

Qm(x)
,

4



where the degree of the polynomial Rk is k < m. Thus, the integration of an improper
fraction can be reduced to the integration of a proper fraction (k < m)∫

Pn(x)

Qm(x)
dx =

∫
Pn−m(x) dx+

∫
Rk(x)

Qm(x)
dx.

Example 5.1.14. ∫
x3 + x2 + x

x2 + 1
dx =

∫
(x+ 1) dx−

∫
1

x2 + 1
dx,

because dividing the polynomials we find

x3 + x2 + x

x2 + 1
= x+ 1− 1

x2 + 1
.

Then ∫
x3 + x2 + x

x2 + 1
dx =

1

2
(x+ 1)2 − arctanx+ C.

Theorem 5.1.15. Suppose that
Pn(x)

Qm(x)
is a proper fraction (n < m) and that

Qm(x) = (x− a)α · · · (x− b)β,

where a, . . . , b are real roots of multiplicity α, . . . , β. Then there are constants Ai . . . Bi,
such that

Pn(x)

Qm(x)
=

Aα

(x− a)α
+

Aα−1

(x− a)α−1
+ · · ·+ A1

x− a

+ · · ·+
Bβ

(x− b)β
+

Bβ−1

(x− b)β−1
+ · · ·+ B1

x− b

Example 5.1.16. An important consequence is that for a proper fraction that satisfies the
condition α = · · · = β = 1, we have∫

Pn(x)

Qm(x)
dx =

∫
A

x− a
dx+ · · ·+

∫
B

x− b
dx

= A ln |x− a|+ · · ·+B ln |x− b|+ C.

The fractions which appear on the right–hand side are partial fractions and the relation
is the decomposition of a proper rational fraction into a sum of partial fractions.

Example 5.1.17. Find

∫
1

x2 − 5x+ 6
dx.

Solution: Notice that x2 − 5x+ 6 = (x− 3)(x− 2). Then

1

(x− 3)(x− 2)
=

A

x− 3
+

B

x− 2
=

A(x− 2) +B(x− 3)

(x− 3)(x− 2)
.

Setting x = 2 we get 1 = −B, whence B = −1 and setting x = 3 we get A = 1. Hence∫
1

x2 − 5x+ 6
dx = ln |x− 3| − ln |x− 2|+ C.
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Each of the partial fractions can be integrated in terms of elementary functions:

Example 5.1.18.∫
A

(x−a)α dx = A
1−α

1
(x−a)α−1 + C, (α > 1)

Example 5.1.19. If x2 + px+ q has no real roots∫
Mx+N

x2 + px+ q
dx =

∫
M

2

2x+ p

x2 + px+ q
+ (N − Mp

2
)

∫
dx

x2 + px+ q

Now computing both integrals separately, we have that for the first term∫
M

2

2x+ p

x2 + px+ q
dx =

M

2
ln(x2 + px+ q)

and for the second term

(N − Mp

2
)

∫
dx

x2 + px+ q
=

2N −Mp

2
√

q − p2

4

∫ √
q − p2

4

x2 + px+ q
dx =

2N −Mp

2
√
q − p2

4

∫ 1√
q− p2

4(
x+ p

2√
q− p2

4

)2

+ 1

dx =
2N −Mp

2
√

q − p2

4

arctan
x+ p

2√
q − p2

4

And finally∫
Mx+N

x2 + px+ q
dx =

M

2
ln(x2 + px+ q) +

2N −Mp

2
√
q − p2

4

arctan
x+ p

2√
q − p2

4

+ C

5.2 The Definite Integral

Definition 5.2.1. The definite integral of a non–negative continuous function f on the
interval I = [a, b] is the area, A, of the region bounded by the graph of f , the horizontal
axis, and the two line segments x = a, x = b. It is denoted∫ b

a
f(x) dx = A.

Example 5.2.2. If f(x) = 1− x, then

∫ 1

0
f(x) dx = 1/2, since the figure under the graph

of f limited by x = 0, x = 1 is a square triangle with area 1/2.

Definition 5.2.3. The definite integral of a non–positive continuous function f on the
interval I = [a, b] is the area with negative sign of the region bounded by the graph of f ,
the horizontal axis, and the two line segments x = a, x = b. Hence∫ b

a
f(x) dx = −A.
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It is straightforward to define the definite integral of a function that change sign in the
interval [a, b]. By way of example, suppose that f is continuous on [a, b] and satisfies f ≥ 0
in [a, c], f ≤ 0 in [c, b]. Then the definite integral of f on [a, b] is the difference of the areas∫ b

a
f(x) dx = A[a,c] −A[c,b] =

∫ c

a
f(x) dx−

∫ b

c
(−f)(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx

(see Property (4) below).

More complex situations can be similarly handled.

Example 5.2.4 (Example ??, continued). If f(x) = 1 − x, then

∫ 2

0
f(x) dx = 0, since

we know

∫ 1

0
f(x) dx = 1/2 and

∫ 2

1
(−f)(x) dx = −1/2. The latter is because the region

bounded by −f between x = 1 and x = 2 is again a square triangle with area 1/2.

5.2.1 Properties of the definite integral

In what follows f and g are continuous functions on [a, b] and α, β ∈ R.

1.

∫ a

a
f(x) dx = 0;

2.

∫ b

a
f(x) dx = −

∫ a

b
f(x) dx;

3.

∫ b

a
αf(x) + βg(x) dx = α

∫ b

a
f(x) dx+ β

∫ b

a
g(x) dx.

4. For any c ∈ [a, b],

∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

5. If f(x) ≥ g(x) in [a, b], then

∫ b

a
f(x) dx ≥

∫ b

a
g(x) dx.

6. If f(x) is an increasing function on [a, b], then f(a) ≤
∫ b
a f(x)dx ≤ f(b).

7. If f(x) is a decreasing function on [a, b], then f(b) ≤
∫ b
a f(x)dx ≤ f(a).

8. If f(x) is a convex function on [a, b], then
∫ b
a f(x)dx ≤ [f(a) + f(b)](b− a)/2.

9. If f(x) is a concave function on [a, b], then [f(a) + f(b)](b− a)/2 ≤
∫ b
a f(x)dx.

5.3 Barrow’s Rule

In this section we show the connection between areas and antiderivatives.
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Definition 5.3.1. Let the function f be continuous on the interval [a, b]. The function

F (x) =

∫ x

a
f(t) dt (a ≤ x ≤ b)

is called an integral with a variable upper limit.

Theorem 5.3.2 (Fundamental Theorem of Integral Calculus). If the function f is contin-

uous on the interval [a, b], then the function F (x) =

∫ x

a
f(t) dt is an antiderivative of f in

[a, b].

Written in other terms, the theorem establishes(∫ x

a
f(t) dt

)′
= f(x).

Theorem 5.3.3 (Barrow’s Rule). If the function f is continuous on the interval [a, b], then∫ b

a
f(x) dx = G(b)−G(a),

holds true, where G is an antiderivative of f in [a, b].

Proof. Let G be an arbitrary antiderivative of f in [a, b]. Then G − F is constant in [a, b]
by Theorem ??, where F (x) =

∫ x
a f(t) dt, because F is also an antiderivative of f . Hence

G(a)− F (a) = G(b)− F (b), or

G(b)−G(a) = F (b)− F (a) =

∫ b

a
f(x) dx−

∫ a

a
f(x) dx =

∫ b

a
f(x) dx.

Most often we will write G(b)−G(a) as G(x)|ba.

Theorem 5.3.4 (Change of variable). Let f be continuous in [a, b], and let x = g(t) be
differentiable and increasing in [α, β], where g(α) = a, g(β) = b and a ≤ g(t) ≤ b. Then∫ b

a
f(x) dx =

∫ β

α
f(g(t))g′(t) dt.

Theorem 5.3.5 (Integration by parts). If f and g have continuous derivatives in [a, b],
then ∫ b

a
f(x)g′(x) dx = f(x)g(x)

∣∣∣b
a
−
∫ b

a
f ′(x)g(x) dx.
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5.3.1 The area of a plane figure

Given a continuous function f , the area of the figure bounded by the curve y = f(x), the
axis OX and the line segments x = a, x = b is

A =

∫ b

a
|f(x)| dx.

Example 5.3.6 (Example ??, continued). The area of the figure limited by y = 1 − x in
the interval [0, 2] is

A =

∫ 2

0
|1− x| dx =

∫ 1

0
(1− x) dx+

∫ 2

1
(x− 1) dx =

1

2
+

1

2
= 1.

Example 5.3.7. The area of the figure limited by the graph of y = lnx and the horizontal
axis and the line segments x = 1/e, x = e is

A =

∫ e

1
e

| lnx| dx.

The logarithm is negative in [1/e, 1] and positive in [1, e]. thus

A =

∫ 1

1
e

(− lnx) dx+

∫ e

1
lnx dx

The integral can be solved using parts u = lnx, dv = dx obtaining∫ 1

1
e

lnx dx = x lnx
∣∣∣1
1
e

− x
∣∣∣1
1
e

= −1 +
2

e
,∫ e

1
lnx dx = x lnx

∣∣∣e
1
− x
∣∣∣e
1
= 1.

Thus, A = −(−1 + 2/e) + 1 = 2(1− 1/e).

Suppose that a plane figure is bounded by the continuous curves y = f(x), y = g(x),
a ≤ x ≤ b, where g(x) ≤ f(x), and two line segments x = a, x = b (the line segments may
degenerate into a point). Then the area of the figure is

A =

∫ b

a
(f(x)− g(x)) dx.

Example 5.3.8. Find the area of the figure bounded by the curves y = x3, y = x2 − x in
the interval [0, 1].

Solution: The curves meet at a single point. Solving the equation x3 = x2 − x, we
find the abscissa of the point, x = 0. Hence one of the curves remains above the other in
the whole interval. To know which, we simply substitute into x3−x2+x an arbitrary value
in the interval; for x = 1/2 we get x3 − x2 + x|x=1/2 = 0.375 > 0, thus x3 is above x2 − x
in [0, 1]. The area is

A =

∫ 1

0
x3 − (x2 − x) dx =

x4

4
− x3

3
+

x2

2

∣∣∣∣1
0

=

(
1

4
− 1

3
+

1

2

)
− 0 =

5

12
.
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Example 5.3.9. Find the area of the figure bounded by the curves y = 2− x2, y = x.

Solution: The curves meet at two points. Solving the equation 2 − x2 = x we find
that the points are x = −2, x = 1. Hence one of the curves remains above the other in the
interval [−2, 1]. To know which, we simply substitute into 2− x2 − x an arbitrary value on
the interval [−2, 1]; for x = 0, (2− x2 − x)|x=0 = 2 > 0, thus y = 2− x2 is above y = x in
[−2, 1]. The area is

A =

∫ 1

−2
(2− x2 − x) dx =

[
2x− x3

3
− x2

2

]1
−2

=

(
2− 1

3
− 1

2

)
−
(
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8

3
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)
=

9
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