Chapter 5

Integration

5.1 The indefinite integral

In many respects, the operation of integration that we are studying here is the inverse
operation of derivation.

Definition 5.1.1. The function F' is an antiderivative (or primitive) of the function f on
the interval I if F'(x) = f(x) for all x € I.

Thus, both Fy(z) = 23 + 6 and Fy(z) = 2> — 2 are antiderivatives of f(x) = 3z? in any
interval.

Theorem 5.1.2. If Fy and F» are two arbitrary antiderivatives of f on I, then Fy(x) —
Fy(x) = const. on I.

Proof. By definition of antiderivative F| = Fj = f on I, thus (F; — F2)'(z) = 0 for
every x € I. Since a function with a null derivative on an interval is constant, we have
Fy(x) — F3(x) = const. O

Corollary 5.1.3. If F' is one of the antiderivatives of f on I, any other antiderivative G
of the function f on I has the form G(x) = F(z) + C, where C is a constant.

Definition 5.1.4. The set of all antiderivatives of the function f on the interval I is called
the indefinite integral of f on I, and it is denoted

/f(a:) dx.

Notice that by Corollary ??, [ f(z)dz = F(x)+C, where F is one of the antiderivatives
of f on I, and C is an arbitrary constant. Sometimes the symbol [ f(x)dz denotes not the
whole set of antiderivatives but any one of them.

5.1.1 Properties of the Indefinite Integral

1. [F'(z)dx = F(x)+ C;

2. For any functions f, g and constants a, b, [(af(z)+bg(z))dz = a [ f(z)dz+b [ g(z) dx.



5.1.2 Basic Indefinite Integrals
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5.1.3 Integration by Change of Variable

Sometimes the task of finding the integral / f(z) dz is simplified by means of a change of

variable = ¢(t). The formula of change of variable in an indefinite integral is

[t@ar = [ rewnsma
z=¢p(t)
Example 5.1.5. Find /tanz:da:.
SOLUTION: Let ¢t = cosz. Then dt = —sinxz dx. Hence, by the formula of change of

variable

i dt
/tanxdx—/smwdx——/t——ln]t]—f—C——ln]cos:r\—i—C.
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Example 5.1.6. Find /\/2:3 — ldx.



SOLUTION: Let t = 22 — 1. Then dt = 2dx. Hence,

1 t3/2

1 1 1 1
/\/a: dzx 2/\/Edt 2/t dt 23/2+C S+ C =21+

Example 5.1.7. Find /m\/2x — 1dzx.

SOLUTION: Let ¢t = 22 — 1. Then dt = 2dx. Moreover, x = (1 + t)/2. Applying the
change of variable formula we get

/\/ﬁd —1/(1+t)t1/2dt—1/t1/2+t3/2dt—1 ﬁJrﬁ Lo
V2% $_4 T4 =1 32 52
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Example 5.1.8. Find /nxdaz.
x

SOLUTION: Let ¢ = Inz. Then dt = dx/x and

1 1 1
Ilmd:z:/tdt: §t2+C= 5(11196)2—!-0.

x
Example 5.1.9. Find /ave_gc2 dx.
SOLUTION: Let t = 2. Then dt = 2zdz and

1 1 1
/xe_x2 dr = B /e_t dt = —ie_t +C = _§€—x2 +C.

5.1.4 Integration by parts

For differentiable functions u and v we have (uv)’ = uv’ + vu’. Taking integrals and given
that [(uv)'(z)dz = u(z)v(z), we have

This relation is known as the formula of integration by parts. Using the identifications
u'(x) de = du and v'(x) dz = dv we can write this formula as

/udv:uv—/vdu.

Example 5.1.10. Find /a:ex dx.

SOLUTION: Let v = x and dv = e* dx. Then du = dx and v = e*. Hence

/xemdx:xez—/emd:c:ex(:z—l)-i-c.
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Example 5.1.11. Find /x2 Inzdz.

SOLUTION: Let u = Inx and dv = 22 dz. Notice that du = dz/z and v = 23/3. Then,
using the formula of integration by parts we get

3 1 3 1
/a: lnmd:r—ln:r( > /dx—lnx(g;))—B/xzdac—lnx<a;)—9:r3+0.

Example 5.1.12. Find /arctanxdm.

SOLUTION: Let u = arctanz and dv = dx. Then du = dx/(1 + z%) and v = z. Hence

T
arctanxr dr = xarctanz — | —— dx.
1+ 22

Now, observe that using the change of variable t = 2% we have dt = 2z dx thereby
1 2
/1+x2 /dt 1n|1+t\+C':§ln(1+:c)+C'.
Plugging this value into the above expression we finally get

1
/arctan:z:da: = rarctanz — 3 In (14 2°%) +C.

Example 5.1.13. Find / r“sinx dx.

SOLUTION: Let u = 22 and dv = sinz dz. Then du = 2x dx and v = — cos z. Thus
/a:2sinxdx = —2%cosz + 2/xcosxd:1c.

Applying again integration by parts to the second integral, u = x and dv = cosz dx we
have du = dx and v = sin z, hence

/xcosxdm =zsinx — /sinxdm = xsinx + cosx + C.
Plugging this value into the previous expression we finally get

/mQSinxdm = —z?cosz + 2xsinz + 2cosz + C.

5.1.5 Integration of Rational Functions

Py ()

Qm(r)’

and m, respectively. If n > m the fraction is improper and can be represented
P,(x) Ry (z)

A rational function is of the form

where P,, and @, are polynomials of degrees n

= Pn—m(x) +



where the degree of the polynomial Ry is & < m. Thus, the integration of an improper
fraction can be reduced to the integration of a proper fraction (k < m)

/ 5;((9;)) do = / Pym(x) dz + / gi((a;)) .

242tz 1

because dividing the polynomials we find

Example 5.1.14.

+a? 4w 1 1
——— ==z — .
2 +1 2 +1
Then 3 )
1
/ % dx = 5(3: +1)? — arctanz + C.
x
Po(z) . :
Theorem 5.1.15. Suppose that O () is a proper fraction (n < m) and that
m(x
Q) = (x—a)* -z~ )",
where a,...,b are real roots of multiplicity c,...,B. Then there are constants A;...DB;,
such that
Po(r) _ Aa A oy
Qm(z) (r—a)* (x—a)*! T —a
Bg Bg_4 B,
SR Framy R ey 2 B

Example 5.1.16. An important consequence is that for a proper fraction that satisfies the
condition « = --- = § = 1, we have

P, (x) A B
dr = dz + - - - d
[anm o= smates [ o5
=Aln|z—a|+---+ Bln|zx —b|+ C.

The fractions which appear on the right—hand side are partial fractions and the relation

is the decomposition of a proper rational fraction into a sum of partial fractions.

1
E le 5.1.17. Find | ———dxz.
xample in /332—53:+6 x

SoLuTION: Notice that 2% — 5z + 6 = (z — 3)(x — 2). Then
1 A B A(x—2)+ B(x—3)

@—3)2-2) 2-3 2-2 (x—3)(z-2)
Setting x = 2 we get 1 = —B, whence B = —1 and setting x = 3 we get A = 1. Hence

1
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Each of the partial fractions can be integrated in terms of elementary functions:
Example 5.1.18.
A
f(;v a)® dx l a (z— a)o‘l_'—c (a>1)
Example 5.1.19. If 22 + pz + ¢ has no real roots
M N M 2 M d
Mr N, 2ﬂf+p+(N_P>/2w
T4 +pr+q 2 x°+px+q 2 T4+ pr+q
Now computing both integrals separately, we have that for the first term
M 2x+p M 9
L A Ol |
52 pria T= n(z* + pr +q)

and for the second term

e Mp)/ da IN — Mp/ \/q—f
2 2tprtq QF a:2+p:v+q

2N — Mp 2N Mp
( arctan

2t

42 2\/q — A/ q
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And finally
Mx+ N M 2N Mp +£
Mr N dx = — In(2? + pr + q) + ————= arctan ——2— 2
2 +px+q 2 /q—— /q——

5.2 The Definite Integral

Definition 5.2.1. The definite integral of a non—negative continuous function f on the
interval I = [a,b] is the area, A, of the region bounded by the graph of f, the horizontal

axis, and the two line segments x = a, x = b. It is denoted

/abﬂ:c)dw:

1
Example 5.2.2. If f(z) =1 — x, then / f(z)dx = 1/2, since the figure under the graph

0
of f limited by z = 0, z = 1 is a square triangle with area 1/2.

Definition 5.2.3. The definite integral of a non—positive continuous function f on the
interval I = [a,b] is the area with negative sign of the region bounded by the graph of f,

the horizontal axis, and the two line segments x = a, x = b. Hence

/abf(x)d:c:—



It is straightforward to define the definite integral of a function that change sign in the
interval [a, b]. By way of example, suppose that f is continuous on [a, b] and satisfies f > 0
in [a,c], f <0in [¢,b]. Then the definite integral of f on [a, b] is the difference of the areas

/abf(a:)dx:A[a,c]—A[c,b]:/acf(x)dx—/ — dg;—/f dm—i—/f ) dx

(see Property (4) below).
More complex situations can be similarly handled.

2
Example 5.2.4 (Example ?7, continued). If f(z) = 1 — z, then / f(z)dx = 0, since
0
1 2
we know / f(z)dx = 1/2 and / (—f)(xz)dx = —1/2. The latter is because the region
0 1
bounded by —f between z = 1 and = = 2 is again a square triangle with area 1/2.

5.2.1 Properties of the definite integral

In what follows f and g are continuous functions on [a,b] and «, 5 € R.

1. /aaf(x)d:v:

./abf(x)dx:—/baf(x)d:c
/abaf(w)+Bg(:ﬂ)dw—a/abf(a:)d:wrﬁ/abg(w)dx
4. For any c € [a,b], /f d:z—/f dx+/f

5. If f(z) > g(x) in [a, ], then/ f(z dm>/ g(x)dx.

a

[\

w

6. If f(z) is an increasing function on [a, ], then f(a) < f f(z)dz < f(b).
7. If f(z) is a decreasing function on [a, b], then f(b) < f f(z)dz < f(a).
8. If f(x) is a convex function on [a, b], then fabf(a:)dx <[f(a)+ f(D)](b—a)/2.

9. If f(x) is a concave function on [a, b], then [f(a) 4+ f(b)](b—a)/2 < f;f(a:)d:c

5.3 Barrow’s Rule

In this section we show the connection between areas and antiderivatives.



Definition 5.3.1. Let the function f be continuous on the interval [a,b]. The function

F(x):/xf(t)dt (a <z <b)

is called an integral with a variable upper limit.

Theorem 5.3.2 (Fundamental Theorem of Integral Calculus). If the function f is contin-
T
uous on the interval [a,b], then the function F(x) = / f(t)dt is an antiderivative of f in

[a, b]. ‘

Written in other terms, the theorem establishes

([ ra) = s,

Theorem 5.3.3 (Barrow’s Rule). If the function f is continuous on the interval [a,b], then

b
/ f(z) dz = G(b) — G(a),

holds true, where G is an antiderivative of f in [a,].

Proof. Let G be an arbitrary antiderivative of f in [a,b]. Then G — F is constant in [a, b]
by Theorem ??, where F(z) = [ f(t) dt, because F is also an antiderivative of f. Hence
G(a) — F(a) = G(b) — F(b), or

b a b
G(b)G(a):F(b)F(a):/ f(x)d:c/ f(:v)dx:/ f(x)dx.

Most often we will write G(b) — G(a) as G(:c)]Z

Theorem 5.3.4 (Change of variable). Let f be continuous in [a,b], and let x = g(t) be
differentiable and increasing in [a, 8], where g(a) = a, g(8) =b and a < g(t) <b. Then

b B
/ f(w) do = / F(a(t))g/ (1) dt.

Theorem 5.3.5 (Integration by parts). If f and g have continuous derivatives in |a,b],
then

b b b
/ f(x)d (x)dx = f(x)g(x) ) —/ f(z)g(z) dx.




5.3.1 The area of a plane figure

Given a continuous function f, the area of the figure bounded by the curve y = f(z), the
axis OX and the line segments z = a, z = b is

/|f )| da.

Example 5.3.6 (Example ?7?, continued). The area of the figure limited by y = 1 — z in
the interval [0, 2] is

2 1 2 1 1
A—/\1—:r\dm—/(1—x)dw+/(m—1)d:r—+—1.
0 0 1 2 2

Example 5.3.7. The area of the figure limited by the graph of ¥ = Inz and the horizontal
axis and the line segments x = 1/e, x = e is

A:/ |In x| dx.
1

The logarithm is negative in [1/e, 1] and positive in [1, e]. thus

1 e
A:/ (—lna:)da:+/ Inx dx
1 1

The integral can be solved using parts © = Inx, dv = dx obtaining
1 1 1 2
/ Inzdz ::):lnrr‘1 —:1:’1 =—-1+4-,
1 1 1 e

e

€
/ Inzdr =xInx
1

1

Thus, A= —(—1+4+2/e)+1=2(1—-1/e).

Suppose that a plane figure is bounded by the continuous curves y = f(z), y = g(z),
a <z <b, where g(z) < f(z), and two line segments z = a, x = b (the line segments may
degenerate into a point). Then the area of the figure is

b
A= [ (@) gt do.
2

Example 5.3.8. Find the area of the figure bounded by the curves y = 23, y = 22 — z in
the interval [0, 1].

3 _ .2

SOLUTION: The curves meet at a single point. Solving the equation x° = z* — x, we

find the abscissa of the point, x = 0. Hence one of the curves remains above the other in
the whole interval. To know which, we simply substitute into 23 — z? + x an arbitrary value

in the interval; for z = 1/2 we get 23 — 22 + l‘|x:1/2 = 0.375 > 0, thus 23 is above 22 — x

in [0, 1]. The area is
1 4 3 21
1 1 1 )
A= 3 _ (2 pVde = T (22 _p=2
/Ox @ —wdr="r-g+5] (17373 12




Example 5.3.9. Find the area of the figure bounded by the curves y = 2 — 22, y = «.

SOLUTION: The curves meet at two points. Solving the equation 2 — 22 = z we find

that the points are © = —2, x = 1. Hence one of the curves remains above the other in the
interval [—2, 1]. To know which, we simply substitute into 2 — 22 — x an arbitrary value on
the interval [—2,1]; for # = 0, (2 — 2? — 2)|,—0 = 2 > 0, thus y = 2 — 2% is above y = z in
[—2,1]. The area is
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