WORKSHEET 4: Applications of the Derivative

1. (*)Calculate the second-order Taylor polynomial at a and find the approximate value of the function using the polynomial at x = a + 0.1.

a)
$$f(x) = e^x$$
 at $a = 0$ b) $f(x) = \frac{\ln x}{x}$ at $a = 1$

2. (*)Given the second-order Taylor polynomial of f at a = 0, find out if the function has a local maximum or minimum at the point (0, f(0)).

a)
$$P(x) = 1 + 2x^2$$
 b) $P(x) = 1 + x + x^2$ c) $P(x) = 1 - 2x^2$

3. Find the relative and absolute extrema of f in the given intervals:

a)(*)
$$f(x) = 3x^{2/3} - 2x$$
 in $[-1, 2]$ b) $f(x) = xe^{-x}$ in $[\frac{1}{2}, \infty)$, $[0, \infty)$ and \mathbb{R}

4. (*)Calculate the point of the graph of $y = -x^3 + 2x^2 + x + 2$ where its tangent line has the greatest slope.

5. (*) The figure A shows the graph of the derivative function of f. Determine the increasing/decreasing and concavity/convexity intervals of f, its local extrema and inflection points.

- **6.** The figure B shows the graph of the second derivative function of f. Determine concavity and convexity intervals of f and its inflection points. Determine the monotonicity and local extrema of f assuming that f'(-3) = f'(0) = 0.
- **7.** (*)Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function, and x > 0. Check the following inequalities graphically: $f(1) < \frac{1}{2} (f(1-x) + f(1+x)) < \frac{1}{2} (f(1-2x) + f(1+2x))$
- **8.** (*)Let $f : \mathbb{R} \to \mathbb{R}$ be a concave function, and x > 0. Check the following inequalities graphically: $f(1) > \frac{1}{2} (f(1-x) + f(1+x)) > \frac{1}{2} (f(1-2x) + f(1+2x))$
- **9.** Let $f: [0, \infty] \to \mathbb{R}$ be a convex function such that f'(1) = 0
 - a) Find the local extrema of f.
 - b) What can be state about the global extrema of f?
 - c) Suppose now that $f:[0,n] \to \mathbb{R}$. What can be stated about the global extrema of f?
- **10.** (*)Given the total cost function $C(x) = 4000 + 10x + 0.02x^2$ and the demand function $p(x) = 100 \frac{x}{100}$, find the unitary price p that obtains the maximum benefit.
- **11.** (*)Let $p(x) = x^2 x + \frac{1}{3}$ be the sale price of one kilo of plutonium when x kilograms are sold. Taking into account that the firm sells a maximum of 2 kilograms on the market, find the value of x that maximizes the profits of the firm. We can assume that the Government pays all costs of the firm.
- **12.** (*)Let $p(x) = 100 \frac{x^2}{2}$ be the demand function of a product and $C(x) = 48 + 4x + 3x^2$ its cost function. What is the production x that minimizes the average cost?