WORKSHEET 4: Applications of the Derivative

1. $\left(^{*}\right)$ Calculate the second-order Taylor polynomial at a and find the approximate value of the function using the polynomial at $x=a+0.1$.
a) $f(x)=e^{x}$ at $a=0$
b) $f(x)=\frac{\ln x}{x}$ at $a=1$
2. (*)Given the second-order Taylor polynomial of f at $a=0$, find out if the function has a local maximum or minimum at the point $(0, f(0))$.
a) $P(x)=1+2 x^{2}$
b) $P(x)=1+x+x^{2}$
c) $P(x)=1-2 x^{2}$
3. Find the relative and absolute extrema of f in the given intervals:
a) $\left({ }^{*}\right) f(x)=3 x^{2 / 3}-2 x$ in $[-1,2]$
b) $f(x)=x e^{-x}$ in $\left[\frac{1}{2}, \infty\right),[0, \infty)$ and \mathbb{R}
4. $\left(^{*}\right)$ Calculate the point of the graph of $y=-x^{3}+2 x^{2}+x+2$ where its tangent line has the greatest slope.
5. $\left(^{*}\right)$ The figure A shows the graph of the derivative function of f. Determine the increasing/decreasing and concavity/convexity intervals of f, its local extrema and inflection points.

Figure A

Figure B
6. The figure B shows the graph of the second derivative function of f. Determine concavity and convexity intervals of f and its inflection points. Determine the monotonicity and local extrema of f assuming that $f^{\prime}(-3)=f^{\prime}(0)=0$.
7. $\left(^{*}\right)$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function, and $x>0$. Check the following inequalities graphically:
$f(1)<\frac{1}{2}(f(1-x)+f(1+x))<\frac{1}{2}(f(1-2 x)+f(1+2 x))$
8. $\left.{ }^{*}\right)$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a concave function, and $x>0$. Check the following inequalities graphically: $f(1)>\frac{1}{2}(f(1-x)+f(1+x))>\frac{1}{2}(f(1-2 x)+f(1+2 x))$
9. Let $f:[0, \infty] \rightarrow \mathbb{R}$ be a convex function such that $f^{\prime}(1)=0$
a) Find the local extrema of f.
b) What can be state about the global extrema of f ?
c) Suppose now that $f:[0, n] \rightarrow \mathbb{R}$. What can be stated about the global extrema of f ?
10. (*)Given the total cost function $C(x)=4000+10 x+0.02 x^{2}$ and the demand function $p(x)=100-\frac{x}{100}$, find the unitary price p that obtains the maximum benefit.
11. ${ }^{*}$ (Let $p(x)=x^{2}-x+\frac{1}{3}$ be the sale price of one kilo of plutonium when x kilograms are sold. Taking into account that the firm sells a maximum of 2 kilograms on the market, find the value of x that maximizes the profits of the firm. We can assume that the Government pays all costs of the firm.
12. (*)Let $p(x)=100-\frac{x^{2}}{2}$ be the demand function of a product and $C(x)=48+4 x+3 x^{2}$ its cost function. What is the production x that minimizes the average cost?

