WORKSHEET 3: Differentiation of functions of one variable

- 1. Find all points where the graph of the following functions have a horizontal tangent line.

- a) $f(x) = x^3 + 1$ b) $f(x) = 1/x^2$ c) $f(x) = x + \sin x$ d) $f(x) = \sqrt{x 1}$ e) $f(x) = e^x x$ f) $f(x) = \sin x + \cos x$
- **2.** (*)Prove that the tangent lines to the graphs of y = x and y = 1/x at their intersection points are perpendicular to each other.
- 3. In which point is the tangent line to the curve $y^2 = 3x$ parallel to the straight line y = 2x?
- **4.** (*)Calculate the intersection point with the x-axis of the tangent line to the graph of $f(x) = x^2$ at the point (1,1).
- **5.** Calculate the value of a so that the tangent to the graph of $f(x) = \frac{a}{x} + 1$ at the point (1, f(1)) intersects the horizontal axis at x = 3.
- **6.** Calculate the angle of intersection of the curves $y = \frac{1}{2}(x^2 1)$ and $y = \frac{1}{2}(x^3 x)$.
- 7. (*)Given $f(x) = 2[\ln(1+g^2(x))]^2$, use g(1) = g'(1) = -1, to find f'(1).
- **8.** (*)Knowing that $a^b = e^{b \ln a}$, calculate the derived function of $f(x) = x^{\sin x}$ and $g(x) = (\sqrt{x})^x$.
- **9.** (*)Let $f(x) = \ln(1+x^2)$ and $g(x) = e^{2x} + e^{3x}$ be two real functions. Calculate h(x) = f(g(x)), v(x) = g(f(x)), v(x) = g(f(x)),h'(0) and v'(0).
- **10.** Let $f: [-2,2] \to [-2,2]$ be a continuous and bijective function.
 - a) Suppose that f(0) = 0 and $f'(0) = \alpha$, $\alpha \neq 0$. Find $(f^{-1})'(0)$.
 - b) Suppose now that f(0) = 1 and $f'(0) = \alpha$, $\alpha \neq 0$. Find $(f^{-1})'(1)$.
 - c) Finally, suppose that f(1) = 0 and $f'(1) = \alpha$, $\alpha \neq 0$. Find $(f^{-1})'(0)$.
- 11. (*) Supposing that the following equations define y as an implicit, differentiable function of x, find y' at the given points:
 - a) $x^3 + y^3 = 2xy$ b) $x^2 + y^2 = 25$
 - at (1,1). at (3,4), (0,5) y (5,0)
- **12.** (*) Find a and b so that the function $f(x) = \begin{cases} 3x+2 & \text{if } x \geq 1 \\ ax^2+bx-1 & \text{if } x < 1 \end{cases}$ is differentiable everywhere.
- 13. Apply the Mean Value Theorem (Lagrange's Theorem) to f in the given interval and find the x-coordinate values of the points that satisfy the thesis of the theorem.
 - a) $f(x) = x^2$ in [-2, 1]c) $f(x) = x^{\frac{2}{3}}$ in [0, 1]

- b) $f(x) = -2 \sin x$ in $[-\pi, \pi]$ d) $f(x) = 2 \sin x + \sin 2x$ en $[0, \pi]$
- **14.** (*)Let $f(x) = x^3 3x + 3$, $f: [-3,2] \to \mathbb{R}$. Find the global extrema.
- **15.** Calculate the following limits:
 - a)(*) $\lim_{x \to \infty} (1+x)^{1/x}$ b) $\lim_{x \to 0^+} x \ln x$ c)(*) $\lim_{x \to \infty} x^{1/x}$ d)(*) $\lim_{x \to 1^+} \left(\frac{1}{\ln x} \frac{2}{x-1} \right)$
- **16.** Find all the asymptotes of the following functions:
 - a)(*) $f(x) = \frac{2x^3 3x^2 8x + 4}{x^2 4}$ b) $f(x) = \frac{x^3}{x^3 + x^2 + x + 1}$ c)(*) $f(x) = 2x + e^{-x}$ d) $f(x) = \frac{\sec x}{x}$ e)(*) $f(x) = \frac{x 2}{\sqrt{4x^2 + 1}}$ f) $f(x) = \frac{3x^2 x + 2 \sec x}{x 7}$ g)(*) $f(x) = \frac{e^x}{x}$ h)(*) $f(x) = xe^{1/x}$ i)(*) $f(x) = \frac{x}{e^x 1}$