WORKSHEET 2: Limits and Continuity

1. (*)Calculate:
a) $\lim _{x \rightarrow 0} \frac{4 x^{3}+2 x^{2}-x}{5 x^{2}+2 x}$
b) $\lim _{x \rightarrow 2} \frac{x^{3}-x^{2}-x-2}{x-2}$
c) $\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}$
d) $\lim _{x \rightarrow \infty} \frac{x^{2}-\sqrt{x}}{\sqrt{x^{3}+3 x^{4}}}$
e) $\lim _{x \rightarrow \infty} \frac{\operatorname{sen} x}{x}$
f) $\lim _{x \rightarrow-\infty} \frac{x^{2} \cos x+1}{x^{2}+1}$
g) $\lim _{x \rightarrow-\infty} \frac{3 x^{3}+2 x^{2}+x+2}{x^{2}-7 x+1}$
h) $\lim _{x \rightarrow-\infty} \frac{x^{4}-a x^{3}}{x^{2}+1}$
i) $\lim _{x \rightarrow 0} \frac{x^{4}-x^{3}}{x^{2}+b}$
2. Find all discontinuities (if there are any) of the following functions:
a) $\left.{ }^{*}\right) f(x)=\frac{|x-3|}{x-3}$ b) $\left(^{*}\right) f(x)=\left\{\begin{array}{clc}\frac{2 x}{x+1} & \text { if } & x<-1 . \\ e^{1 / x} & \text { if } & -1 \leq x<0 \\ \pi & \text { if } & x=0 \\ 1 / x & \text { if } & 0<x\end{array}\right.$
3. (*)Calculate:
a) $\lim _{x \rightarrow-3^{+}} \frac{x^{2}}{x^{2}-9}$
b) $\lim _{x \rightarrow-3^{-}} \frac{x^{2}}{x^{2}-9}$
c) $\lim _{x \rightarrow 0^{+}} \frac{2}{\operatorname{sen} x}$
d) $\lim _{x \rightarrow 0^{-}}(1-1 / x)^{\frac{1}{x}}$
e) $\lim _{x \rightarrow 0^{-}} \frac{x^{2}-2 x}{x^{3}}$
4. Find every asymptote of the following functions:
$\left(^{*}\right) f(x)=\frac{x^{3}}{x^{2}-1} \quad g(x)=\frac{x^{2}-1}{x}$
$(*) h(x)=\sqrt{x^{2}-1}$
$\left({ }^{*}\right) m(x)=\frac{1}{\ln x}$
$\left.{ }^{*}\right) n(x)=\mathrm{e}^{\frac{1}{x}}$
5. Prove that every odd-degree polynomial has at least one root (zero).
6. (a) $\left(^{*}\right)$ Use the Intermediate Value Theorem to prove that the following functions have a zero in the given interval.
i) $f(x)=x^{2}-4 x+3$ in $[2,4]$;
ii) $f(x)=x^{3}+3 x-2$ in $[0,1]$.
(b) $\left(^{*}\right)$ Use the Bisection Method (applying Bolzano's Theorem repeatedly), to obtain the zero with an error of ± 0.25.
7. $\left(^{*}\right)$ Demonstrate that the equations $x^{4}-11 x+7=0$ and $2^{x}-4 x=0$ have at least two different solutions each.
8. $\left(^{*}\right)$ Prove that the equation $x^{7}+3 x+3=0$ has only one solution. Round the solution to the nearest whole number.
9. Let f and g be continuous functions on $[a, b]$ and $f(a)<g(a), f(b)>g(b)$, prove that $x_{0} \in(a, b)$ exists such that $f\left(x_{0}\right)=g\left(x_{0}\right)$
10. (*) Discuss in the following cases if the functions attain their global and/or local extrema in the given interval:
a) $f(x)=x^{2} \quad x \in[-1,1]$
b) $f(x)=x^{3} \quad x \in[-1,1]$
11. Change the given interval in the previous exercise by $[0, \infty)$ firstly and then by \mathbb{R}.
