WORKSHEET 1: The real line. Functions

1. Solve the following inequalities, determine the set of real numbers that satisfies them. Represent its solution using a real line.
a)(*) $|9-2 x|<1$
b) $(*)-5|x+3|<4 x-5$
c) $\left(^{*}\right) \frac{|x|}{3}+2<|x|$
d) $\left.{ }^{*}\right) 1<|3-2 x|$
e) $(*) \frac{\left(x^{2}-16\right)(x-1)}{x-3} \geq 0$
f) $|x-3|+|x+3|<10$
2. $\left({ }^{*}\right)$ Interpret the previous inequalities a), b), c) and d) geometrically using functions.
a) $y=|9-2 x|$; $y=1$
b) $y=-5|x+3| ; y=4 x-5$
c) $y=\frac{|x|}{3}+2 ; y=|x|$
d) $y=1$; $y=|3-2 x|$
3. Discuss if the following inequalities are satisfied:
a) $\left(^{*}\right)|x+y| \leq|x|+|y|$
b) $\left({ }^{*}\right)|x|+|y| \leq|x+y|$
c) $\left({ }^{*}\right)|x-y| \leq|x|+|y|$
d) $(*)|x|-|y| \leq|x-y|$
4. Discuss if the following implications are true or false.
a) $x<y \Rightarrow x^{2}<y^{2}$
b) $|x|<|y| \Rightarrow x^{2}<y^{2}$
c) $x^{2}<y^{2} \Rightarrow x<y$
d) $x^{2}<y^{2} \Rightarrow|x|<|y|$
5. Obtain for the following sets of real numbers, $A \subset \mathbb{R}$, their maximum and minimum elements whenever they exist. Calculate them for $\alpha=-1, \alpha=0$ and $\alpha=1$
a) $A=\left\{x: e^{x} \leq \alpha\right\}$
b) $A=\left\{x: e^{x} \geq \alpha\right\}$
c) $A=\{x: \ln x \leq \alpha\}$
d) $A=\{x: \ln x \geq \alpha\}$
6. (*)Given the functions $f(x)=1 / x$ and $g(x)=x^{2}-1$.
a) Find their domain and range.
b) Calculate $f(g(2))$ and $g(f(2))$.
c) Obtain the functions $f(g(x))$ and $g(f(x))$.
7. Review the graphs of the following functions: a) $\left.\left(^{*}\right) f(x)=x^{2} \quad \mathrm{~b}\right)\left({ }^{*}\right) f(x)=e^{x} \quad$ c) $\left({ }^{*}\right) f(x)=\ln x$

In each case sketch the graph transformations of the previous ones, interpreting geometrically the results.
i) $g(x)=f(x+1)$
ii) $h(x)=-2 f(x)$
iii) $p(x)=f(3 x)$
iv) $s(x)=f(x)+1$
v) $r(x)=|f(x)|$
vi) $m(x)=f(|x|)$
$8 .(*)$ Find the domain and the range of the following functions:
a) $f(x)=\ln (1+|x|)$
b) $g(x)=2-\sqrt{1-x^{2}}$
c) $h(x)=e^{\sqrt{1-x^{2}}}$
9. $\left.{ }^{*}\right)$ Let $f, g: I \rightarrow \mathbb{R}$ be two increasing functions. Discuss if the following statements are true or false.
a) $f+g: I \rightarrow \mathbb{R}$ is an increasing function.
b) $f \cdot g: I \rightarrow \mathbb{R}$ is an increasing function.
10. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be monotonic functions. Discuss if the composition $g \circ f$ is increasing or decreasing depending on the monotonicity of f and g. (There are four diferent cases)
11. Find the intervals I, J for the following functions so that they are bijective. For example $(f: I \rightarrow J)$
a) $f(x)=x^{2}$
b) $g(x)=\ln |x|$
c) $h(x)=e^{-x^{2}}$
12. Determine if the following functions are even, odd or neither:
a) $f(x)=\frac{x^{2}}{x^{2}+1}$
b) $g(x)=\frac{x^{3}}{x^{4}+1}$
c) $h(x)=\frac{x^{3}}{x^{5}+1}$
13. (*)Calculate the inverse function:

$$
f(x)=\left(x^{3}-5\right)^{5}, \quad g(x)=(\sqrt[3]{x-5})^{5}
$$

14. Let f be an even function and g an odd one. Prove that:

$$
\begin{array}{lll}
|g| \text { is even; } & f \circ g \text { is even; } & g \circ f \text { is even; } \\
f \cdot g \text { is odd; } & g^{k} \text { is even (if } k \text { is even); } & g^{k} \text { is odd (if } k \text { is odd) }
\end{array}
$$

