Chapter 2

Limits and continuity of functions of one variable

2.1 Limits

To determine the behavior of a function f as x approaches a finite value c, we use the concept of limit. We say that the limit of f is L, and write $\lim_{x\to c} f(x) = L$, if the values of f approaches L when x gets closer to c.

Definition 2.1.1. (Limit when x approach a finite value c). We say that $\lim_{x\to c} f(x) = L$ if for any small positive ϵ , there is a positive δ such that

$$|f(x) - L| < \epsilon$$

whenever $0 < |x - c| < \delta$.

We can split the above definition in two parts, using one-sided limits.

Definition 2.1.2.

1. We say that L is the limit of f as x approaches c from the right, $\lim_{x\to c^+} f(x) = L$, if for any small positive ϵ , there is a positive δ such that

$$|f(x) - L| < \epsilon$$

whenever $0 < x - c < \delta$.

2. We say that L is the limit of f as x approaches c from the left, $\lim_{x\to c^-} f(x) = L$, if for any small positive ϵ , there is a positive δ such that

$$|f(x) - L| < \epsilon$$

whenever $0 < c - x < \delta$.

Theorem 2.1.3. $\lim_{x\to c} f(x) = L$ if and only if

$$\lim_{x\to c^+} f(x) = L \quad and \quad \lim_{x\to c^-} f(x) = L.$$

We can also wonder about the behavior of the function f when x approaches $+\infty$ or $-\infty$.

Definition 2.1.4. (Limits when x approaches $\pm \infty$)

1. $\lim_{x\to+\infty} f(x) = L$ if for any small positive ϵ , there is a positive value of x, call it x_1 , such that

$$|f(x) - L| < \epsilon$$

whenever $x > x_1$.

2. $\lim_{x\to-\infty} f(x) = L$ if for any small positive ϵ , there is a negative value of x, call it x_1 , such that

$$|f(x) - L| < \epsilon$$

whenever $x < x_1$.

If the absolute values of a function become arbitrarily large as x approaches either a finite value c or $\pm \infty$, then the function has no finite limit L but will approach $-\infty$ or $+\infty$. It is possible to give the formal definitions. For example, we will say that $\lim_{x\to c} f(x) = +\infty$ if for any large positive number M, there is a positive δ such that

$$f(x) > M$$

whenever $0 < |x - c| < \delta$. Please, complete the remaining cases.

Note 2.1.5. Note that it could be $c \in D(f)$, so f(c) is well defined, but $\lim_{x\to c} f(x)$ does not exits or $\lim_{x\to c} f(x) \neq f(c)$. Consider for instance the function f that is equal to 1 for $x \neq 0$, but f(0) = 0. Then clearly the limit of f at 0 is $1 \neq f(0)$.

Example 2.1.6. Consider the following limits.

- 1. $\lim_{x \to 6} x^2 2x + 7 = 31.$
- 2. $\lim_{x \to \pm \infty} x^2 2x + 7 = \infty$, because the leading term in the polynomial gets arbitrarily large.
- 3. $\lim_{x \to +\infty} x^3 x^2 = \infty$, because the leading term in the polynomial gets arbitrarily large for large values of x, but $\lim_{x \to -\infty} x^3 x^2 = -\infty$ because the leading term in the polynomial gets arbitrarily large in absolute value, and negative.
- 4. $\lim_{x \to \pm \infty} \frac{1}{x} = 0$, since for x arbitrarily large in absolute value, 1/x is arbitrarily small.
- 5. $\lim_{x\to 0} \frac{1}{x}$ does not exists. Actually, the one-sided limits are:

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty.$$
$$\lim_{x \to 0^-} \frac{1}{x} = -\infty.$$

The right limit is infinity because 1/x becomes arbitrarily large when x is small and positive. The left limit is minus infinity because 1/x becomes arbitrarily large in absolute value and negative, when x is small and negative.

6. $\lim_{x \to +\infty} x \sec x$ does not exist. As x approaches infinity, $\sec x$ oscillates between 1 and -1. This means that $x \sec x$ changes sign infinitely often when x approaches infinity, whilst taking arbitrarily large absolute values. The graph is shown below.

7. Consider the function $f(x) = \begin{cases} x^2, & \text{if } x \le 0; \\ -x^2, & \text{if } 0 < x \le 1; \\ x, & \text{if } x > 1. \end{cases}$ f(x) = f(0) = 0, but

 $\lim_{x\to 1} f(x)$ does not exist since the one-sided limits are different.

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x = 1,$$
$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} -x^2 = -1$$

8. $\lim_{x \to 0} \frac{|x|}{x}$ does not exist, because the one-sided limits are different.

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1,$$

$$\lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} \frac{-x}{x} = -1 \qquad \text{(when } x \text{ is negative, } |x| = -x\text{)}$$

In the following, $\lim f(x)$ refer to the limit as x approaches $+\infty$, $-\infty$ or a real number c, but we never mix different type of limits.

2.1.1 Properties of limits

f and g are given functions and we suppose that all the limits below exist; $\lambda \in \mathbb{R}$ denotes an arbitrary scalar.

- 1. Product by a scalar: $\lim \lambda f(x) = \lambda \lim f(x)$.
- 2. Sum: $\lim(f(x) + g(x)) = \lim f(x) + \lim g(x)$.

3. Product: $\lim f(x)g(x) = (\lim f(x))(\lim g(x)).$

4. Quotient: If $\lim g(x) \neq 0$, then $\lim \frac{f(x)}{g(x)} = \frac{\lim f(x)}{\lim g(x)}$.

Theorem 2.1.7 (Squeeze Theorem). Assume that the functions f, g and h are defined around the point c, except, maybe, for the point c itself, and satisfy the inequalities

$$g(x) \le f(x) \le h(x).$$

Let $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$. Then

$$\lim_{x \to c} f(x) = L.$$

Example 2.1.8. Show that $\lim_{x \to 0} x \operatorname{sen}\left(\frac{1}{x}\right) = 0.$

SOLUTION: We use the theorem above with g(x) = -|x| and h(x) = |x|. Notice that for every $x \neq 0, -1 \leq \operatorname{sen}(1/x) \leq 1$ thus, when x > 0

$$-x \le x \operatorname{sen}\left(1/x\right) \le x,$$

and when x < 0

$$x \le x \operatorname{sen}\left(1/x\right) \le -x.$$

These inequalities mean that $-|x| \le x \operatorname{sen}(1/x) \le |x|$. Since

$$\lim_{x \to 0} -|x| = \lim_{x \to 0} |x| = 0,$$

we can use the theorem above to conclude that $\lim_{x\to 0} x \sin \frac{1}{x} = 0$.

2.1.2 Techniques for evaluating $\lim \frac{f(x)}{q(x)}$

- 1. Use the property of the quotient of limits, if possible.
- 2. If $\lim f(x) = 0$ and $\lim g(x) = 0$, try the following:
 - (a) Factor f(x) and g(x) and reduce $\frac{f(x)}{g(x)}$ to lowest terms.
 - (b) If f(x) or g(x) involves a square root, then multiply both f(x) and g(x) by the conjugate of the square root.

Example 2.1.9.

$$\lim_{x \to 3} \frac{x^2 - 9}{x + 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x + 3} = \lim_{x \to 3} (x - 3) = 0.$$

$$\lim_{x \to 0} \frac{1 - \sqrt{1 + x}}{x} = \lim_{x \to 0} \frac{1 - \sqrt{1 + x}}{x} \left(\frac{1 + \sqrt{1 + x}}{1 + \sqrt{1 + x}}\right) = \lim_{x \to 0} \frac{-x}{x(1 + \sqrt{1 + x})} = \lim_{x \to 0} \frac{-1}{1 + \sqrt{1 + x}} = -\frac{1}{2}$$

- 3. If $f(x) \neq 0$ and $\lim g(x) = 0$, then either $\lim \frac{f(x)}{g(x)}$ does not exist or $\lim \frac{f(x)}{g(x)} = +\infty$ or $-\infty$.
- 4. If x approaches $+\infty$ or $-\infty$, divide the numerator and denominator by the highest power of x in any term of the denominator.

Example 2.1.10.

$$\lim_{x \to \infty} \frac{x^3 - 2x}{-x^4 + 2} = \lim_{x \to \infty} \frac{\frac{1}{x} - \frac{2}{x^3}}{-1 + \frac{2}{x^4}} = \frac{0 - 0}{-1 + 0} = 0.$$

2.1.3 Exponential limits

Let the limit

$$\lim_{x \to c} [f(x)]^{g(x)}$$

be an indetermination. This happens if

- $\lim_{x\to c} f(x) = 1$ and $\lim_{x\to c} g(x) = \infty$ (1^{∞}) .
- $\lim_{x\to c} f(x) = 0$ and $\lim_{x\to c} g(x) = 0$ (0⁰).
- $\lim_{x\to c} f(x) = \infty$ and $\lim_{x\to c} g(x) = 0$ (∞^0).

Noting that

$$\lim_{x \to c} [f(x)]^{g(x)} = \lim_{x \to c} e^{g(x) \ln f(x)} = e^{\lim_{x \to c} g(x) \ln f(x)},$$

all cases are reduced to the indetermination $0 \cdot \infty$, since we have to compute the limit

$$\lim_{x \to c} g(x) \ln f(x).$$

In the first indetermination, 1^{∞} , it often helps to use the identity

$$\lim_{x \to c} g(x) \ln f(x) = \lim_{x \to c} g(x)(f(x) - 1).$$

since when x is close to 0, $\ln(1+x) \approx x$, or, $\ln x \approx x - 1$ when x is close to 1.

Example 2.1.11.
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to \infty} e^{x \ln\left(1 + \frac{1}{x}\right)} = e^{x \frac{1}{x}} = e.$$

Example 2.1.12. Let a, b > 0. Calculate $\lim_{x\to\infty} \left(\frac{1+ax}{2+bx}\right)^{-1}$.

If a > b, then the basis function tends to a/b > 1, thus the limit is ∞ . If a < b, then the basis function tends to a/b < 1, thus the limit is 0. When a = b

$$\lim_{x \to \infty} \left(\frac{1+ax}{2+ax} \right)^x = e^{\lim_{x \to \infty} x \left(\frac{1+ax}{2+ax} - 1 \right)} = e^{\lim_{x \to \infty} \frac{-x}{2+ax}} = e^{-1/a}.$$

2.1.4 Remarkable limit

Recall that

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1.$$

Example 2.1.13. Evaluate the following limits:

1.
$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1.$$

2.
$$\lim_{x \to 0} \frac{\operatorname{sen} 3x}{x} \stackrel{\{z=3x\}}{=} \lim_{z \to 0} \frac{\operatorname{sen} z}{\frac{z}{3}} = 3 \lim_{z \to 0} \frac{\operatorname{sen} z}{z} = 3.$$

2.2 Asymptotes

An *asymptote* is a line that the graph of a function approaches more and more closely until the distance between the curve and the line almost vanishes.

Definition 2.2.1. Let f be a function

- 1. The line x = c is a vertical asymptote of f if $\lim_{x\to c^+} |f(x)| = \infty$ or $\lim_{x\to c^-} |f(x)| = \infty$.
- 2. The line y = b is a horizontal asymptote of f if $\lim_{x \to +\infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$.
- 3. The line y = ax + b is an oblique asymptote of f if

(a)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = a$$
 and $\lim_{x \to +\infty} (f(x) - ax) = b$, or
(b) $\lim_{x \to -\infty} \frac{f(x)}{x} = a$ and $\lim_{x \to -\infty} (f(x) - ax) = b$.

Notice that a horizontal asymptote is a particular case of oblique asymptote with a = 0. Example 2.2.2. Determine the asymptotes of $f(x) = \frac{(1+x)^4}{(1-x)^4}$.

SOLUTION: Since the denominator vanishes at x = 1, the domain of f is $\mathbb{R} - \{1\}$. Let us check that x = 1 is a vertical asymptote of f:

$$\lim_{x \to 1^{\pm}} \frac{(1+x)^4}{(1-x)^4} = +\infty$$

On the other hand

$$\lim_{x \to +\infty} \frac{(1+x)^4}{(1-x)^4} = \lim_{x \to +\infty} \frac{(1/x+1)^4}{(1/x-1)^4} = 1$$

hence y = 1 is a horizontal asymptote at $+\infty$. In the same way, y = 1 is a horizontal asymptote at $-\infty$. There is no other oblique asymptotes.

Example 2.2.3. Determine the asymptotes of $f(x) = \frac{3x^3 - 2}{x^2}$.

SOLUTION: The domain of f is $\mathbb{R} - \{0\}$. Let us check that x = 0 is a vertical asymptote of f.

$$\lim_{x \to 0^{\pm}} \frac{3x^3 - 2}{x^2} = \lim_{x \to 0^{\pm}} (3x - \frac{2}{x^2}) = \lim_{x \to 0^{\pm}} 3x - \lim_{x \to 0^{\pm}} \frac{2}{x^2} = -\infty.$$

Thus, x = 0 is a vertical asymptote of f. On the other hand

0

$$\lim_{x \to \pm \infty} \frac{3x^3 - 2}{x^2} = \lim_{x \to \pm \infty} (3x - \frac{2}{x^2}) = \pm \infty$$

thus, there is no horizontal asymptote. Let us study now oblique asymptotes:

$$a = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{3x^3 - 2}{x^3} = \lim_{x \to \pm \infty} \left(3 - \frac{2}{x^3}\right) = 3,$$

$$b = \lim_{x \to \pm \infty} (f(x) - 3x) = \lim_{x \to \pm \infty} \left(\frac{3x^3 - 2}{x^2} - 3x\right) = \lim_{x \to \pm \infty} \left(-\frac{2}{x^2}\right) = 0.$$

We conclude that y = 3x is an oblique asymptote both at $+\infty$ and $-\infty$.

2.3 Continuity

The easiest limits to evaluate are those involving continuous functions. Intuitively, a function is continuous if one can draw its graph without lifting the pencil from the paper.

Definition 2.3.1. A function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at c if $c \in D(f)$ and

$$\lim_{x \to c} f(x) = f(c).$$

Hence, f is discontinuous at c if either f(c) is undefined or $\lim_{x\to c} f(x)$ does not exist or $\lim_{x\to c} f(x) \neq f(c)$. Moreover, we can define one-sided continuity of f at c,

Definition 2.3.2. A function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is right continuous at c, if $c \in D(f)$ and

$$\lim_{x \to c^+} f(x) = f(c).$$

f is left continuous at c, if $c \in D(f)$ and

$$\lim_{x \to c^-} f(x) = f(c).$$

Obviously, a function f is continuous at c when is both, right and left continuous at c.

2.3.1 Properties of continuous functions

Suppose that the functions f and g are both continuous at c. Then the following functions are also continuous at c.

- 1. Sum. f + g.
- 2. Product by a scalar. $\lambda f, \lambda \in \mathbb{R}$.
- 3. Product. fg.
- 4. Quotient. f/g, whenever $g(c) \neq 0$.

2.3.2Limit and continuity of the composite function

Theorem 2.3.3. Let f, g be functions from \mathbb{R} to \mathbb{R} and let $c \in \mathbb{R}$. If g is continuous at Land $\lim_{x\to c} f(x) = L$, then

$$\lim_{x\to c}g(f(x))=g(\lim_{x\to c}f(x))=g(L).$$

If the function f is continuous at c, then, calling L = f(c) the result above becomes:

Corollary 2.3.4. Let f be a continuous function at c and g continuous on f(c). Then, the composite function $q \circ f$ is also continuous at c.

Example 2.3.5. Compute the following limits:

•
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{1/x} = \ln\left(\lim_{x \to 0} (1+x)^{1/x}\right) = \ln e = 1.$$

Note that the function $\ln(\cdot)$ is continuous at e, then we can apply 2.3.4.

•
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{z \to 0} \frac{z}{\frac{\ln(1+z)}{\ln a}} = \ln a \left(\lim_{z \to 0} \frac{z}{\ln(1+z)} \right) = \ln a.$$

We have used the substitution $z = a^x - 1$, so that $x = \ln(1+z)/\ln a$, and we have used the value of the limit computed before.

2.3.3Continuity of elementary functions

A function is called *elementary* if it can be obtained by means of a finite number of arithmetic operations and superpositions involving basic elementary functions. The functions $y = C = \text{constant}, \ y = x^a, \ y = a^x, \ y = \ln x, \ y = e^x, \ y = \sin x, \ y = \cos x, \ y = \tan x,$ $y = \arctan x$ are examples of elementary functions. Elementary functions are continuous in their domain.

Example 2.3.6.

- 1. The function $f(x) = \sqrt{4-x^2}$ is the composition of the functions $y = 4 x^2$ and $f(y) = y^{1/2}$, which are elementary, thus f is continuous in its domain, that is, in D = [-2, +2].
- 2. The function $g(x) = \frac{1}{\sqrt{4-x^2}}$ is the composition of function f above and function g(y) = 1/y, thus it is elementary and continuous in its domain, D(g) = (-2, +2).

Continuity of the inverse function 2.3.4

A one-to-one function (also named bijectve) does not have to be continuous. For example, the following function

 $f(x) = \begin{cases} 1, & \text{si } x = 0; \\ x, & \text{si } 0 < x < 1; \\ 0, & \text{si } x = 1. \end{cases}$ is bijective considering that its domain and image are the interval [0, 1

It can be shown that neither f(x) is continuous nor $f^{-1}(x)$, which coincidentally happens to be the same f.

This will not be the case should the function f(x) be continuous, as the following theorem proves:

Theorem 2.3.7. Let $f: I \longrightarrow J$ be continuous and bijective Then:

- a) f is strictly increasing (or decreasing), and
- b) The inverse f^{-1} is a continuous function as well.

OBSERVATION: Obviously, f^{-1} is also strictly increasing (o decreasing), depending on f having the same nature as well.

Example 2.3.8. Prove that $\lim_{x \to 1} \arctan\left(\frac{x^2 + x - 2}{3x^2 - 3x}\right) = \frac{\pi}{4}$.

SOLUTION: The function $\arctan = \tan^{-1}$ is continuous from what we just have seen above. Then applying theorem 2.3.3:

$$\lim_{x \to 1} \arctan\left(\frac{x^2 + x - 2}{3x^2 - 3x}\right) = \arctan\left(\lim_{x \to 1} \frac{x^2 + x - 2}{3x^2 - 3x}\right)$$
$$= \arctan\left(\lim_{x \to 1} \frac{(x - 1)(x + 2)}{3x(x - 1)}\right)$$
$$= \arctan\left(\lim_{x \to 1} \frac{x + 2}{3x}\right)$$
$$= \arctan 1$$
$$= \frac{\pi}{4}.$$

2.3.5 Continuity theorems

Continuous functions have interesting properties. We shall say that a function is continuous on the *closed* interval [a, b] if it is continuous at every point $x \in (a, b)$, is right-continuous at a and left-continuous at b.

Theorem 2.3.9 (Bolzano's Theorem). If f is continuous in [a, b] and $f(a) \cdot f(b) < 0$, then there exists some $c \in (a, b)$ such that f(c) = 0.

Example 2.3.10. Show that the equation $x^3 + x - 1 = 0$ admits a solution, and find it with an error less than 0.1.

SOLUTION: With $f(x) = x^3 + x - 1$ the problem is to show that there exists c such that f(c) = 0. We want to apply Bolzano's Theorem. First, f is continuous in \mathbb{R} . Second, we identify a suitable interval I = [a, b]. Notice that f(0) = -1 < 0 and f(1) = 1 > 0 thus, there is a solution $c \in (0, 1)$.

Now, to find an approximate value for c, we use a method of *interval-halving* as follows: consider the interval [0.5, 1]; f(0.5) = 1/8 + 1/2 - 1 < 0 and f(1) > 0, thus $c \in (0.5, 1)$. Choose now the interval [0.5, 0.75]; f(0.5) < 0 and f(0.75) = 27/64 + 3/4 - 1 > 0 thus,

 $c \in (0.5, 0.75)$. Let now the interval [0.625, 0.75]; $f(0.625) \approx -0.13$ and f(0.74) > 0 thus, $c \in (0.625, 0.75)$. The solution is approximately c = 0.6875 with a maximum error of 0.0625.

The previous theorem, known as Bolzano's Theorem can be generalized for every intermediate value between f(a) and f(b), since it is proved in the following theorem.

Theorem 2.3.11 (Intermediate Value Theorem). Let f be a continuous function on the closed interval [a, b]. Then, for any intermediate real number k between f(a) and f(b), there is at least a number $x_k \in [a, b]$ satisfying $f(x_k) = k$.

Notice: An intermediate value means any real number k with f(a) < k < f(b) or f(b) < k < f(a).

Proof. Consider the function g(x) = f(x) - k. Then, g(a) < 0 < g(b) or g(b) < 0 < g(a). Applying Bolzano's Theorem to the function g, there is $x_k \in [a, b]$ such that $g(x_k) = 0$. Similarly, there exists a $x_k \in [a, b]$ such that $f(x_k) = k$.

The following result is very useful when you are trying to find the image of a continuous function.

Corollary 2.3.12. Let f be a continuous, non-constant function defined on any interval I (not necessarily closed or bounded). Then, J = Im(f) is also an interval.

Notice: J does not always satisfy the same properties of the interval I.

Example 1: f(x) = 1/x is continuous on the bounded interval I = (0, 1], but $J = Im(f) = [1, \infty)$ is not bounded.

Example 2: f(x) = 1/x is continuous on the closed interval $I = [1, \infty)$, but J = Im(f) = (0, 1] is not closed.

Nevertheless, if the interval I is compact, ie: it is closed and bounded, then J is also compact.

This last result is called Weierstrass' Theorem, and it is the most important of chapter 2.

Theorem 2.3.13 (Weierstrass' Theorem). If f is continuous in [a, b], then there exist points $c, d \in [a, b]$ such that

$$f(c) \le f(x) \le f(d)$$

for every $x \in [a, b]$.

The theorem asserts that a continuous function attains over a closed interval a minimum (m = f(c)) and a maximum value (M = f(d)). The point c is called a global minimum of f on [a, b] and d is called a global maximum of f on [a, b].

Example 2.3.14. Show that the function $f(x) = x^2 + 1$ attains over the closed interval [-1, 2] a minimum and a maximum value.

SOLUTION: The graph of f is shown below.

We can see that f is continuous in [-1, 2], actually f is continuous in \mathbb{R} , and f attains the minimum value at x = 0, f(0) = 1, and the maximum value at x = 2, f(2) = 5.

Example 2.3.15. The assumptions in the Theorem of Weierstrass are essential.

- The interval is not closed, or not bounded.
 - Take I = (0, 1] and f(x) = 1/x; f is continuous in I, but it does not have global maximum.
 - Take $I = [0, \infty)$ and f(x) = 1/(1+x); f is continuous in I, but it does not have global minimum, since $\lim_{x\to\infty} f(x) = 0$, but f(x) > 0 is strictly positive for every $x \in I$.

• The function is not continuous. Take I = [0,1] and $f(x) = \begin{cases} x, & \text{if } 0 \le x < 1; \\ 0, & \text{if } x = 1. \end{cases}$; f has a global minimum at x = 0, but there is no global maximum since $\lim_{x \to 1} f(x) = 1$ but f(x) < 1 for every $x \in I$.

2.3.6 Fixed points

Definition 2.3.16. Let $f: I \to J$. We say that the point $x^* \in I$ is a fixed point of f when $f(x^*) = x^*$.

Graphically, x^* is a fixed point when the graph of f(x) intersects the main diagonal y = x.

Note 2.3.17. If we consider the function g(x) = f(x) - x, then it is obvious that the fixed points of f(x) corresponds to the zeroes of g(x).

Example 2.3.18. Let's consider the function $f(x) = x^2$ on [0, 1]. Then, obviously, the fixed points are 0 and 1.

Example 2.3.19. Let $f : [a, b] \to be$ continuous and such that $[a, b] \subset \text{Im}(f)$ Then, f has at least a fixed point. Observe that there are points x_a and x_b such that $f(x_a) = a$ and $f(x_b) = b$.

If we consider the interval limited by the points x_a and x_b , we observe that g(x) = f(x) - x satisfies that $g(x_a) \le 0, g(x_b) \ge 0$, so g(x) has a zero and then f(x) has a fixed point.

Note 2.3.20. It is important to note that, though an increasing or decreasing function on an interval I has an unique root, or none, this result for fixed points remains true only for decreasing functions, but not for increasing ones. Consider the example 1.

2.3.7 Equilibrium of a market

We know that if f and g are defined on an interval [a, b], both functions are continuous, the first one is increasing, the second one decreasing and f(a) < g(a), f(b) > g(b), then, there exists a single point x_0 such that $f(x_0) = g(x_0)$.

To prove that equality, you have only to observe that the function g(x) - f(x) (or f(x) - g(x)) has a zero. If we consider x to be the quantity of a certain commodity, and f(x), g(x), respectively, the price at which this quantity is offered and demanded, we call:

- 1. x_0 the quantity of equilibrium for that market,
- 2. $f(x_0) = p_0 = g(x_0)$ the price of equilibrium; and
- 3. the pair (x_0, p_0) the equilibrium of that market.

The situation is a bit more complicated if we consider the interval $[0, \infty)$ instead of the interval [a, b]. In this case, it is reasonable to assume for the offer function that f(0) = 0, i.e., that, at a price of zero the offer is null, and that if $x \to \infty$, then $f(x) \to \infty$, as the constraints to the production provoke that the price is higher and higher.

For the demand function is also reasonable to argue that if $x \to \infty$, then $g(x) \to 0$, as the market will be saturated with such a big production.

With respect to the demand near zero, we have two possibilities:

- i) $\lim_{x \to 0+} g(x)$ is finite; or
- ii) $\lim_{x \to 0+} g(x) = \infty$.

In the case i), if we consider the interval [a, b] = [0, M], where M satisfies that f(M) > g(M), it is clear that we have an equilibrium for that market.

The case ii) is a bit more complicated. In this case, we consider the interval [a, b] = [m, M] where m > 0 satisfies that f(m) < g(m) and M satisfies, again, that f(M) > g(M); then, it is clear again that we have an equilibrium for that market.

In both cases the equilibrium is unique.