Chapter 2

Limits and continuity of functions of one variable

2.1 Limits

To determine the behavior of a function f as x approaches a finite value c, we use the concept of limit. We say that the limit of f is L, and write $\lim _{x \rightarrow c} f(x)=L$, if the values of f approaches L when x gets closer to c.
Definition 2.1.1. (Limit when x approach a finite value c). We say that $\lim _{x \rightarrow c} f(x)=L$ if for any small positive ϵ, there is a positive δ such that

$$
|f(x)-L|<\epsilon
$$

whenever $0<|x-c|<\delta$.
We can split the above definition in two parts, using one-sided limits.

Definition 2.1.2.

1. We say that L is the limit of f as x approaches c from the right, $\lim _{x \rightarrow c^{+}} f(x)=L$, if for any small positive ϵ, there is a positive δ such that

$$
|f(x)-L|<\epsilon
$$

whenever $0<x-c<\delta$.
2. We say that L is the limit of f as x approaches c from the left, $\lim _{x \rightarrow c^{-}} f(x)=L$, if for any small positive ϵ, there is a positive δ such that

$$
|f(x)-L|<\epsilon
$$

whenever $0<c-x<\delta$.
Theorem 2.1.3. $\lim _{x \rightarrow c} f(x)=L$ if and only if

$$
\lim _{x \rightarrow c^{+}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{-}} f(x)=L .
$$

We can also wonder about the behavior of the function f when x approaches $+\infty$ or $-\infty$.

Definition 2.1.4. (Limits when x approaches $\pm \infty$)

1. $\lim _{x \rightarrow+\infty} f(x)=L$ if for any small positive ϵ, there is a positive value of x, call it x_{1}, such that

$$
|f(x)-L|<\epsilon
$$

whenever $x>x_{1}$.
2. $\lim _{x \rightarrow-\infty} f(x)=L$ if for any small positive ϵ, there is a negative value of x, call it x_{1}, such that

$$
|f(x)-L|<\epsilon
$$

whenever $x<x_{1}$.
If the absolute values of a function become arbitrarily large as x approaches either a finite value c or $\pm \infty$, then the function has no finite limit L but will approach $-\infty$ or $+\infty$. It is possible to give the formal definitions. For example, we will say that $\lim _{x \rightarrow c} f(x)=+\infty$ if for any large positive number M, there is a positive δ such that

$$
f(x)>M
$$

whenever $0<|x-c|<\delta$. Please, complete the remaining cases.
Note 2.1.5. Note that it could be $c \in D(f)$, so $f(c)$ is well defined, but $\lim _{x \rightarrow c} f(x)$ does not exits or $\lim _{x \rightarrow c} f(x) \neq f(c)$. Consider for instance the function f that is equal to 1 for $x \neq 0$, but $f(0)=0$. Then clearly the limit of f at 0 is $1 \neq f(0)$.
Example 2.1.6. Consider the following limits.

1. $\lim _{x \rightarrow 6} x^{2}-2 x+7=31$.
2. $\lim _{x \rightarrow \pm \infty} x^{2}-2 x+7=\infty$, because the leading term in the polynomial gets arbitrarily large.
3. $\lim _{x \rightarrow+\infty} x^{3}-x^{2}=\infty$, because the leading term in the polynomial gets arbitrarily large for large values of x, but $\lim _{x \rightarrow-\infty} x^{3}-x^{2}=-\infty$ because the leading term in the polynomial gets arbitrarily large in absolute value, and negative.
4. $\lim _{x \rightarrow \pm \infty} \frac{1}{x}=0$, since for x arbitrarily large in absolute value, $1 / x$ is arbitrarily small.
5. $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exists. Actually, the one-sided limits are:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty \\
& \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
\end{aligned}
$$

The right limit is infinity because $1 / x$ becomes arbitrarily large when x is small and positive. The left limit is minus infinity because $1 / x$ becomes arbitrarily large in absolute value and negative, when x is small and negative.
6. $\lim _{x \rightarrow+\infty} x \operatorname{sen} x$ does not exist. As x approaches infinity, sen x oscillates between 1 and -1 . This means that $x \operatorname{sen} x$ changes sign infinitely often when x approaches infinity, whilst taking arbitrarily large absolute values. The graph is shown below.

7. Consider the function $f(x)=\left\{\begin{array}{cl}x^{2}, & \text { if } x \leq 0 ; \\ -x^{2}, & \text { if } 0<x \leq 1 ; \quad \lim _{x \rightarrow 0} f(x)=f(0)=0 \text {, but } \\ x, & \text { if } x>1 .\end{array}\right.$ $\lim _{x \rightarrow 1} f(x)$ does not exist since the one-sided limits are different.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}} x=1, \\
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}}-x^{2}=-1 .
\end{aligned}
$$

8. $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist, because the one-sided limits are different.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{|x|}{x} & =\lim _{x \rightarrow 0^{+}} \frac{x}{x}=1, \\
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x} & \left.=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1 \quad \text { (when } x \text { is negative, }|x|=-x\right) .
\end{aligned}
$$

In the following, $\lim f(x)$ refer to the limit as x approaches $+\infty,-\infty$ or a real number c, but we never mix different type of limits.

2.1.1 Properties of limits

f and g are given functions and we suppose that all the limits below exist; $\lambda \in \mathbb{R}$ denotes an arbitrary scalar.

1. Product by a scalar: $\lim \lambda f(x)=\lambda \lim f(x)$.
2. Sum: $\lim (f(x)+g(x))=\lim f(x)+\lim g(x)$.
3. Product: $\lim f(x) g(x)=(\lim f(x))(\lim g(x))$.
4. Quotient: If $\lim g(x) \neq 0$, then $\lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}$.

Theorem 2.1.7 (Squeeze Theorem). Assume that the functions f, g and h are defined around the point c, except, maybe, for the point c itself, and satisfy the inequalities

$$
g(x) \leq f(x) \leq h(x)
$$

Let $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L$. Then

$$
\lim _{x \rightarrow c} f(x)=L
$$

Example 2.1.8. Show that $\lim _{x \rightarrow 0} x \operatorname{sen}\left(\frac{1}{x}\right)=0$.
Solution: We use the theorem above with $g(x)=-|x|$ and $h(x)=|x|$. Notice that for every $x \neq 0,-1 \leq \operatorname{sen}(1 / x) \leq 1$ thus, when $x>0$

$$
-x \leq x \operatorname{sen}(1 / x) \leq x
$$

and when $x<0$

$$
x \leq x \operatorname{sen}(1 / x) \leq-x
$$

These inequalities mean that $-|x| \leq x \operatorname{sen}(1 / x) \leq|x|$. Since

$$
\lim _{x \rightarrow 0}-|x|=\lim _{x \rightarrow 0}|x|=0
$$

we can use the theorem above to conclude that $\lim _{x \rightarrow 0} x \operatorname{sen} \frac{1}{x}=0$.
2.1.2 Techniques for evaluating $\lim \frac{f(x)}{g(x)}$

1. Use the property of the quotient of limits, if possible.
2. If $\lim f(x)=0$ and $\lim g(x)=0$, try the following:
(a) Factor $f(x)$ and $g(x)$ and reduce $\frac{f(x)}{g(x)}$ to lowest terms.
(b) If $f(x)$ or $g(x)$ involves a square root, then multiply both $f(x)$ and $g(x)$ by the conjugate of the square root.

Example 2.1.9.

$$
\begin{gathered}
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x+3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+3)}{x+3}=\lim _{x \rightarrow 3}(x-3)=0 . \\
\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x}}{x}=\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x}}{x}\left(\frac{1+\sqrt{1+x}}{1+\sqrt{1+x}}\right)=\lim _{x \rightarrow 0} \frac{-x}{x(1+\sqrt{1+x})}=\lim _{x \rightarrow 0} \frac{-1}{1+\sqrt{1+x}}=-\frac{1}{2} .
\end{gathered}
$$

3. If $f(x) \neq 0$ and $\lim g(x)=0$, then either $\lim \frac{f(x)}{g(x)}$ does not exist or $\lim \frac{f(x)}{g(x)}=+\infty$ or $-\infty$.
4. If x approaches $+\infty$ or $-\infty$, divide the numerator and denominator by the highest power of x in any term of the denominator.
Example 2.1.10.

$$
\lim _{x \rightarrow \infty} \frac{x^{3}-2 x}{-x^{4}+2}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-\frac{2}{x^{3}}}{-1+\frac{2}{x^{4}}}=\frac{0-0}{-1+0}=0
$$

2.1.3 Exponential limits

Let the limit

$$
\lim _{x \rightarrow c}[f(x)]^{g(x)}
$$

be an indetermination. This happens if

- $\lim _{x \rightarrow c} f(x)=1$ and $\lim _{x \rightarrow c} g(x)=\infty\left(1^{\infty}\right)$.
- $\lim _{x \rightarrow c} f(x)=0$ and $\lim _{x \rightarrow c} g(x)=0\left(0^{0}\right)$.
- $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=0\left(\infty^{0}\right)$.

Noting that

$$
\lim _{x \rightarrow c}[f(x)]^{g(x)}=\lim _{x \rightarrow c} e^{g(x) \ln f(x)}=e^{\lim _{x \rightarrow c} g(x) \ln f(x)}
$$

all cases are reduced to the indetermination $0 \cdot \infty$, since we have to compute the limit

$$
\lim _{x \rightarrow c} g(x) \ln f(x)
$$

In the first indetermination, 1^{∞}, it often helps to use the identity

$$
\lim _{x \rightarrow c} g(x) \ln f(x)=\lim _{x \rightarrow c} g(x)(f(x)-1)
$$

since when x is close to $0, \ln (1+x) \approx x$, or, $\ln x \approx x-1$ when x is close to 1 .
Example 2.1.11. $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\lim _{x \rightarrow \infty} e^{x \ln \left(1+\frac{1}{x}\right)}=e^{x \frac{1}{x}}=e$.
Example 2.1.12. Let $a, b>0$. Calculate $\lim _{x \rightarrow \infty}\left(\frac{1+a x}{2+b x}\right)^{x}$.
If $a>b$, then the basis function tends to $a / b>1$, thus the limit is ∞. If $a<b$, then the basis function tends to $a / b<1$, thus the limit is 0 . When $a=b$

$$
\lim _{x \rightarrow \infty}\left(\frac{1+a x}{2+a x}\right)^{x}=e^{\lim _{x \rightarrow \infty} x\left(\frac{1+a x}{2+a x}-1\right)}=e^{\lim _{x \rightarrow \infty} \frac{-x}{2+a x}}=e^{-1 / a}
$$

2.1.4 Remarkable limit

Recall that

$$
\lim _{x \rightarrow 0} \frac{\operatorname{sen} x}{x}=1
$$

Example 2.1.13. Evaluate the following limits:

1. $\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{\operatorname{sen} x}{x} \frac{1}{\cos x}=\lim _{x \rightarrow 0} \frac{\operatorname{sen} x}{x} \lim _{x \rightarrow 0} \frac{1}{\cos x}=1 \cdot 1=1$.
2. $\lim _{x \rightarrow 0} \frac{\operatorname{sen} 3 x}{x} \stackrel{\{z=3 x\}}{=} \lim _{z \rightarrow 0} \frac{\operatorname{sen} z}{\frac{z}{3}}=3 \lim _{z \rightarrow 0} \frac{\operatorname{sen} z}{z}=3$.

2.2 Asymptotes

An asymptote is a line that the graph of a function approaches more and more closely until the distance between the curve and the line almost vanishes.

Definition 2.2.1. Let f be a function

1. The line $x=c$ is a vertical asymptote of f if $\lim _{x \rightarrow c^{+}}|f(x)|=\infty$ or $\lim _{x \rightarrow c^{-}}|f(x)|=$ ∞.
2. The line $y=b$ is a horizontal asymptote of f if $\lim _{x \rightarrow+\infty} f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=$ b.
3. The line $y=a x+b$ is an oblique asymptote of f if
(a) $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=a$ and $\lim _{x \rightarrow+\infty}(f(x)-a x)=b$, or
(b) $\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=a$ and $\lim _{x \rightarrow-\infty}(f(x)-a x)=b$.

Notice that a horizontal asymptote is a particular case of oblique asymptote with $a=0$.
Example 2.2.2. Determine the asymptotes of $f(x)=\frac{(1+x)^{4}}{(1-x)^{4}}$.
Solution: Since the denominator vanishes at $x=1$, the domain of f is $\mathbb{R}-\{1\}$. Let us check that $x=1$ is a vertical asymptote of f :

$$
\lim _{x \rightarrow 1^{ \pm}} \frac{(1+x)^{4}}{(1-x)^{4}}=+\infty
$$

On the other hand

$$
\lim _{x \rightarrow+\infty} \frac{(1+x)^{4}}{(1-x)^{4}}=\lim _{x \rightarrow+\infty} \frac{(1 / x+1)^{4}}{(1 / x-1)^{4}}=1
$$

hence $y=1$ is a horizontal asymptote at $+\infty$. In the same way, $y=1$ is a horizontal asymptote at $-\infty$. There is no other oblique asymptotes.
Example 2.2.3. Determine the asymptotes of $f(x)=\frac{3 x^{3}-2}{x^{2}}$.
Solution: The domain of f is $\mathbb{R}-\{0\}$. Let us check that $x=0$ is a vertical asymptote of f.

$$
\lim _{x \rightarrow 0^{ \pm}} \frac{3 x^{3}-2}{x^{2}}=\lim _{x \rightarrow 0^{ \pm}}\left(3 x-\frac{2}{x^{2}}\right)=\lim _{x \rightarrow 0^{ \pm}} 3 x-\lim _{x \rightarrow 0^{ \pm}} \frac{2}{x^{2}}=-\infty .
$$

Thus, $x=0$ is a vertical asymptote of f. On the other hand

$$
\lim _{x \rightarrow \pm \infty} \frac{3 x^{3}-2}{x^{2}}=\lim _{x \rightarrow \pm \infty}\left(3 x-\frac{2}{x^{2}}\right)= \pm \infty
$$

thus, there is no horizontal asymptote. Let us study now oblique asymptotes:

$$
\begin{aligned}
& a=\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \pm \infty} \frac{3 x^{3}-2}{x^{3}}=\lim _{x \rightarrow \pm \infty}\left(3-\frac{2}{x^{3}}\right)=3 \\
& b=\lim _{x \rightarrow \pm \infty}(f(x)-3 x)=\lim _{x \rightarrow \pm \infty}\left(\frac{3 x^{3}-2}{x^{2}}-3 x\right)=\lim _{x \rightarrow \pm \infty}\left(-\frac{2}{x^{2}}\right)=0 .
\end{aligned}
$$

We conclude that $y=3 x$ is an oblique asymptote both at $+\infty$ and $-\infty$.

2.3 Continuity

The easiest limits to evaluate are those involving continuous functions. Intuitively, a function is continuous if one can draw its graph without lifting the pencil from the paper.

Definition 2.3.1. A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous at c if $c \in D(f)$ and

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Hence, f is discontinuous at c if either $f(c)$ is undefined or $\lim _{x \rightarrow c} f(x)$ does not exist or $\lim _{x \rightarrow c} f(x) \neq f(c)$. Moreover, we can define one-sided continuity of f at c,

Definition 2.3.2. A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is right continuous at c, if $c \in D(f)$ and

$$
\lim _{x \rightarrow c^{+}} f(x)=f(c) .
$$

f is left continuous at c, if $c \in D(f)$ and

$$
\lim _{x \rightarrow c^{-}} f(x)=f(c) .
$$

Obviously, a function f is continuous at c when is both, right and left continuous at c.

2.3.1 Properties of continuous functions

Suppose that the functions f and g are both continuous at c. Then the following functions are also continuous at c.

1. Sum. $f+g$.
2. Product by a scalar. $\lambda f, \lambda \in \mathbb{R}$.
3. Product. fg.
4. Quotient. f / g, whenever $g(c) \neq 0$.

2.3.2 Limit and continuity of the composite function

Theorem 2.3.3. Let f, g be functions from \mathbb{R} to \mathbb{R} and let $c \in \mathbb{R}$. If g is continuous at L and $\lim _{x \rightarrow c} f(x)=L$, then

$$
\lim _{x \rightarrow c} g(f(x))=g\left(\lim _{x \rightarrow c} f(x)\right)=g(L)
$$

If the function f is continuous at c, then, calling $L=f(c)$ the result above becomes:
Corollary 2.3.4. Let f be a continuous function at c and g continuous on $f(c)$. Then, the composite function $g \circ f$ is also continuous at c.

Example 2.3.5. Compute the following limits:

- $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}=\ln \left(\lim _{x \rightarrow 0}(1+x)^{1 / x}\right)=\ln e=1$.

Note that the function $\ln (\cdot)$ is continuous at e, then we can apply 2.3.4.

- $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x}=\lim _{z \rightarrow 0} \frac{z}{\frac{\ln (1+z)}{\ln a}}=\ln a\left(\lim _{z \rightarrow 0} \frac{z}{\ln (1+z)}\right)=\ln a$.

We have used the substitution $z=a^{x}-1$, so that $x=\ln (1+z) / \ln a$, and we have used the value of the limit computed before.

2.3.3 Continuity of elementary functions

A function is called elementary if it can be obtained by means of a finite number of arithmetic operations and superpositions involving basic elementary functions. The functions $y=C=$ constant, $y=x^{a}, y=a^{x}, y=\ln x, y=e^{x}, y=\operatorname{sen} x, y=\cos x, y=\tan x$, $y=\arctan x$ are examples of elementary functions. Elementary functions are continuous in their domain.
Example 2.3.6.

1. The function $f(x)=\sqrt{4-x^{2}}$ is the composition of the functions $y=4-x^{2}$ and $f(y)=y^{1 / 2}$, which are elementary, thus f is continuous in its domain, that is, in $D=[-2,+2]$.
2. The function $g(x)=\frac{1}{\sqrt{4-x^{2}}}$ is the composition of function f above and function $g(y)=1 / y$, thus it is elementary and continuous in its domain, $D(g)=(-2,+2)$.

2.3.4 Continuity of the inverse function

A one-to-one function (also named bijectve) does not have to be continuous. For example, the following function

$$
f(x)=\left\{\begin{array}{ll}
1, & \text { si } x=0 ; \\
x, & \text { si } 0<x<1 ; \\
0, & \text { si } x=1
\end{array}\right. \text { is bijective considering that its domain and image are the }
$$ interval $[0,1]$.

It can be shown that neither $f(x)$ is continuous nor $f^{-1}(x)$, which coincidentally happens to be the same f.

This will not be the case should the function $f(x)$ be continuous, as the following theorem proves:

Theorem 2.3.7. Let $f: I \longrightarrow J$ be continuous and bijective Then:
a) f is strictly increasing (or decreasing), and
b) The inverse f^{-1} is a continuous function as well.

ObSERVATION: Obviously, f^{-1} is also strictly increasing (o decreasing), depending on f having the same nature as well.
Example 2.3.8. Prove that $\lim _{x \rightarrow 1} \arctan \left(\frac{x^{2}+x-2}{3 x^{2}-3 x}\right)=\frac{\pi}{4}$.
Solution: The function arctan $=\tan ^{-1}$ is continuous from what we just have seen above. Then applying theorem 2.3.3:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \arctan \left(\frac{x^{2}+x-2}{3 x^{2}-3 x}\right) & =\arctan \left(\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{3 x^{2}-3 x}\right) \\
& =\arctan \left(\lim _{x \rightarrow 1} \frac{(x-1)(x+2)}{3 x(x-1)}\right) \\
& =\arctan \left(\lim _{x \rightarrow 1} \frac{x+2}{3 x}\right) \\
& =\arctan 1 \\
& =\frac{\pi}{4} .
\end{aligned}
$$

2.3.5 Continuity theorems

Continuous functions have interesting properties. We shall say that a function is continuous on the closed interval $[a, b]$ if it is continuous at every point $x \in(a, b)$, is right-continuous at a and left-continuous at b.

Theorem 2.3.9 (Bolzano's Theorem). If f is continuous in $[a, b]$ and $f(a) \cdot f(b)<0$, then there exists some $c \in(a, b)$ such that $f(c)=0$.

Example 2.3.10. Show that the equation $x^{3}+x-1=0$ admits a solution, and find it with an error less than 0.1.

Solution: With $f(x)=x^{3}+x-1$ the problem is to show that there exists c such that $f(c)=0$. We want to apply Bolzano's Theorem. First, f is continuous in \mathbb{R}. Second, we identify a suitable interval $I=[a, b]$. Notice that $f(0)=-1<0$ and $f(1)=1>0$ thus, there is a solution $c \in(0,1)$.

Now, to find an approximate value for c, we use a method of interval-halving as follows: consider the interval $[0.5,1] ; f(0.5)=1 / 8+1 / 2-1<0$ and $f(1)>0$, thus $c \in(0.5,1)$. Choose now the interval $[0.5,0.75] ; f(0.5)<0$ and $f(0.75)=27 / 64+3 / 4-1>0$ thus,
$c \in(0.5,0.75)$. Let now the interval $[0.625,0.75] ; f(0.625) \approx-0.13$ and $f(0.74)>0$ thus, $c \in(0.625,0.75)$. The solution is approximately $c=0.6875$ with a maximum error of 0.0625 .

The previous theorem, known as Bolzano's Theorem can be generalized for every intermediate value between $f(a)$ and $f(b)$, since it is proved in the following theorem.

Theorem 2.3.11 (Intermediate Value Theorem). Let f be a continuous function on the closed interval $[a, b]$. Then, for any intermediate real number k between $f(a)$ and $f(b)$, there is at least a number $x_{k} \in[a, b]$ satisfying $f\left(x_{k}\right)=k$.

Notice: An intermediate value means any real number k with $f(a)<k<f(b)$ or $f(b)<k<f(a)$.

Proof. Consider the function $g(x)=f(x)-k$. Then, $g(a)<0<g(b)$ or $g(b)<0<g(a)$. Applying Bolzano's Theorem to the function g, there is $x_{k} \in[a, b]$ such that $g\left(x_{k}\right)=0$. Similarly, there exists a $x_{k} \in[a, b]$ such that $f\left(x_{k}\right)=k$.

The following result is very useful when you are trying to find the image of a continuous function.

Corollary 2.3.12. Let f be a continuous, non-constant function defined on any interval I (not necessarily closed or bounded). Then, $J=\operatorname{Im}(f)$ is also an interval.

Notice: J does not always satisfy the same properties of the interval I.
Example 1: $f(x)=1 / x$ is continuous on the bounded interval $I=(0,1]$, but $J=$ $\operatorname{Im}(f)=[1, \infty)$ is not bounded.

Example 2: $f(x)=1 / x$ is continuous on the closed interval $I=[1, \infty)$, but $J=\operatorname{Im}(f)=$ $(0,1]$ is not closed.

Nevertheless, if the interval I is compact, ie: it is closed and bounded, then J is also compact.

This last result is called Weierstrass' Theorem, and it is the most important of chapter 2.

Theorem 2.3.13 (Weierstrass' Theorem). If f is continuous in $[a, b]$, then there exist points $c, d \in[a, b]$ such that

$$
f(c) \leq f(x) \leq f(d)
$$

for every $x \in[a, b]$.
The theorem asserts that a continuous function attains over a closed interval a minimum ($m=f(c)$) and a maximum value $(M=f(d))$. The point c is called a global minimum of f on $[a, b]$ and d is called a global maximum of f on $[a, b]$.
Example 2.3.14. Show that the function $f(x)=x^{2}+1$ attains over the closed interval $[-1,2]$ a minimum and a maximum value.

Solution: The graph of f is shown below.

We can see that f is continuous in $[-1,2]$, actually f is continuous in \mathbb{R}, and f attains the minimum value at $x=0, f(0)=1$, and the maximum value at $x=2, f(2)=5$.

Example 2.3.15. The assumptions in the Theorem of Weierstrass are essential.

- The interval is not closed, or not bounded.
- Take $I=(0,1]$ and $f(x)=1 / x ; f$ is continuous in I, but it does not have global maximum.
- Take $I=[0, \infty)$ and $f(x)=1 /(1+x) ; f$ is continuous in I, but it does not have global minimum, since $\lim _{x \rightarrow \infty} f(x)=0$, but $f(x)>0$ is strictly positive for every $x \in I$.
- The function is not continuous. Take $I=[0,1]$ and $f(x)=\left\{\begin{array}{ll}x, & \text { if } 0 \leq x<1 ; \\ 0, & \text { if } x=1 .\end{array} ; f\right.$ has a global minimum at $x=0$, but there is no global maximum since $\lim _{x \rightarrow 1} f(x)=1$ but $f(x)<1$ for every $x \in I$.

2.3.6 Fixed points

Definition 2.3.16. Let $f: I \rightarrow J$. We say that the point $x^{*} \in I$ is a fixed point of f when $f\left(x^{*}\right)=x^{*}$.

Graphically, x^{*} is a fixed point when the graph of $f(x)$ intersects the main diagonal $y=x$.
Note 2.3.17. If we consider the function $g(x)=f(x)-x$, then it is obvious that the fixed points of $f(x)$ corresponds to the zeroes of $g(x)$.
Example 2.3.18. Let's consider the function $f(x)=x^{2}$ on $[0,1]$. Then, obviously, the fixed points are 0 and 1.
Example 2.3.19. Let $f:[a, b] \rightarrow$ be continuous and such that $[a, b] \subset \operatorname{Im}(f)$ Then, f has at least a fixed point. Observe that there are points x_{a} and x_{b} such that $f\left(x_{a}\right)=a$ and $f\left(x_{b}\right)=b$.

If we consider the interval limited by the points x_{a} and x_{b}, we observe that $g(x)=$ $f(x)-x$ satisfies that $g\left(x_{a}\right) \leq 0, g\left(x_{b}\right) \geq 0$, so $g(x)$ has a zero and then $f(x)$ has a fixed point.

Note 2.3.20. It is important to note that, though an increasing or decreasing function on an interval I has an unique root, or none, this result for fixed points remains true only for decreasing functions, but not for increasing ones. Consider the example 1.

2.3.7 Equilibrium of a market

We know that if f and g are defined on an interval $[a, b]$, both functions are continuous, the first one is increasing, the second one decreasing and $f(a)<g(a), f(b)>g(b)$, then, there exists a single point x_{0} such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.

To prove that equality, you have only to observe that the function $g(x)-f(x)$ (or $f(x)-g(x))$ has a zero. If we consider x to be the quantity of a certain commodity, and $f(x), g(x)$, respectively, the price at which this quantity is offered and demanded, we call:

1. x_{0} the quantity of equilibrium for that market,
2. $f\left(x_{0}\right)=p_{0}=g\left(x_{0}\right)$ the price of equilibrium; and
3. the pair $\left(x_{0}, p_{0}\right)$ the equilibrium of that market.

The situation is a bit more complicated if we consider the interval $[0, \infty)$ instead of the interval $[a, b]$. In this case, it is reasonable to assume for the offer function that $f(0)=0$, i.e., that, at a price of zero the offer is null, and that if $x \rightarrow \infty$, then $f(x) \rightarrow \infty$, as the constraints to the production provoke that the price is higher and higher.

For the demand function is also reasonable to argue that if $x \rightarrow \infty$, then $g(x) \rightarrow 0$, as the market will be saturated with such a big production.

With respect to the demand near zero, we have two possibilities:
i) $\lim _{x \rightarrow 0+} g(x)$ is finite; or
ii) $\lim _{x \rightarrow 0+} g(x)=\infty$.

In the case i), if we consider the interval $[a, b]=[0, M]$, where M satisfies that $f(M)>$ $g(M)$, it is clear that we have an equilibrium for that market.

The case ii) is a bit more complicated. In this case, we consider the interval $[a, b]=$ $[m, M]$ where $m>0$ satisfies that $f(m)<g(m)$ and M satisfies, again, that $f(M)>g(M)$; then, it is clear again that we have an equilibrium for that market.

In both cases the equilibrium is unique.

