
Chapter 2

Limits and continuity of functions
of one variable

2.1 Limits

To determine the behavior of a function f as x approaches a finite value c, we use the
concept of limit. We say that the limit of f is L, and write limx→c f(x) = L, if the values
of f approaches L when x gets closer to c.

Definition 2.1.1. (Limit when x approach a finite value c). We say that limx→c f(x) = L
if for any small positive ϵ, there is a positive δ such that

|f(x)− L| < ϵ

whenever 0 < |x− c| < δ.

We can split the above definition in two parts, using one–sided limits.

Definition 2.1.2.

1. We say that L is the limit of f as x approaches c from the right, limx→c+ f(x) = L,
if for any small positive ϵ, there is a positive δ such that

|f(x)− L| < ϵ

whenever 0 < x− c < δ.

2. We say that L is the limit of f as x approaches c from the left, limx→c− f(x) = L, if
for any small positive ϵ, there is a positive δ such that

|f(x)− L| < ϵ

whenever 0 < c− x < δ.

Theorem 2.1.3. limx→c f(x) = L if and only if

lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.
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We can also wonder about the behavior of the function f when x approaches +∞ or
−∞.

Definition 2.1.4. (Limits when x approaches ±∞)

1. limx→+∞ f(x) = L if for any small positive ϵ, there is a positive value of x, call it x1,
such that

|f(x)− L| < ϵ

whenever x > x1.

2. limx→−∞ f(x) = L if for any small positive ϵ, there is a negative value of x, call it x1,
such that

|f(x)− L| < ϵ

whenever x < x1.

If the absolute values of a function become arbitrarily large as x approaches either a
finite value c or ±∞, then the function has no finite limit L but will approach −∞ or +∞.
It is possible to give the formal definitions. For example, we will say that limx→c f(x) = +∞
if for any large positive number M , there is a positive δ such that

f(x) > M

whenever 0 < |x− c| < δ. Please, complete the remaining cases.

Note 2.1.5. Note that it could be c ∈ D(f), so f(c) is well defined, but limx→c f(x) does
not exits or limx→c f(x) ̸= f(c). Consider for instance the function f that is equal to 1 for
x ̸= 0, but f(0) = 0. Then clearly the limit of f at 0 is 1 ̸= f(0).

Example 2.1.6. Consider the following limits.

1. lim
x→6

x2 − 2x+ 7 = 31.

2. lim
x→±∞

x2 − 2x+ 7 = ∞, because the leading term in the polynomial gets arbitrarily

large.

3. lim
x→+∞

x3 − x2 = ∞, because the leading term in the polynomial gets arbitrarily large

for large values of x, but lim
x→−∞

x3 − x2 = −∞ because the leading term in the poly-

nomial gets arbitrarily large in absolute value, and negative.

4. lim
x→±∞

1

x
= 0, since for x arbitrarily large in absolute value, 1/x is arbitrarily small.

5. lim
x→0

1

x
does not exists. Actually, the one–sided limits are:

lim
x→0+

1

x
= +∞.

lim
x→0−

1

x
= −∞.

2



The right limit is infinity because 1/x becomes arbitrarily large when x is small and
positive. The left limit is minus infinity because 1/x becomes arbitrarily large in
absolute value and negative, when x is small and negative.

6. lim
x→+∞

x senx does not exist. As x approaches infinity, senx oscillates between 1 and

−1. This means that x senx changes sign infinitely often when x approaches infinity,
whilst taking arbitrarily large absolute values. The graph is shown below.
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7. Consider the function f(x) =


x2, if x ≤ 0;
−x2, if 0 < x ≤ 1;
x, if x > 1.

limx→0 f(x) = f(0) = 0, but

limx→1 f(x) does not exist since the one–sided limits are different.

lim
x→1+

f(x) = lim
x→1+

x = 1,

lim
x→1−

f(x) = lim
x→1−

−x2 = −1.

8. lim
x→0

|x|
x

does not exist, because the one–sided limits are different.

lim
x→0+

|x|
x

= lim
x→0+

x

x
= 1,

lim
x→0−

|x|
x

= lim
x→0−

−x

x
= −1 (when x is negative, |x| = −x).

In the following, lim f(x) refer to the limit as x approaches +∞, −∞ or a real number
c, but we never mix different type of limits.

2.1.1 Properties of limits

f and g are given functions and we suppose that all the limits below exist; λ ∈ R denotes
an arbitrary scalar.

1. Product by a scalar: limλf(x) = λ lim f(x).

2. Sum: lim(f(x) + g(x)) = lim f(x) + lim g(x).
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3. Product: lim f(x)g(x) = (lim f(x))(lim g(x)).

4. Quotient: If lim g(x) ̸= 0, then lim
f(x)

g(x)
=

lim f(x)

lim g(x)
.

Theorem 2.1.7 (Squeeze Theorem). Assume that the functions f , g and h are defined
around the point c, except, maybe, for the point c itself, and satisfy the inequalities

g(x) ≤ f(x) ≤ h(x).

Let limx→c g(x) = limx→c h(x) = L. Then

lim
x→c

f(x) = L.

Example 2.1.8. Show that lim
x→0

x sen

(
1

x

)
= 0.

Solution: We use the theorem above with g(x) = −|x| and h(x) = |x|. Notice that for
every x ̸= 0, −1 ≤ sen (1/x) ≤ 1 thus, when x > 0

−x ≤ x sen (1/x) ≤ x,

and when x < 0
x ≤ x sen (1/x) ≤ −x.

These inequalities mean that −|x| ≤ x sen (1/x) ≤ |x|. Since

lim
x→0

−|x| = lim
x→0

|x| = 0,

we can use the theorem above to conclude that limx→0 x sen
1
x = 0.

2.1.2 Techniques for evaluating lim
f(x)

g(x)

1. Use the property of the quotient of limits, if possible.

2. If lim f(x) = 0 and lim g(x) = 0, try the following:

(a) Factor f(x) and g(x) and reduce f(x)
g(x) to lowest terms.

(b) If f(x) or g(x) involves a square root, then multiply both f(x) and g(x) by the
conjugate of the square root.

Example 2.1.9.

lim
x→3

x2 − 9

x+ 3
= lim

x→3

(x− 3)(x+ 3)

x+ 3
= lim

x→3
(x− 3) = 0.

lim
x→0

1−
√
1 + x

x
= lim

x→0

1−
√
1 + x

x

(
1 +

√
1 + x

1 +
√
1 + x

)
= lim

x→0

−x

x(1 +
√
1 + x)

= lim
x→0

−1

1 +
√
1 + x

= −1

2
.
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3. If f(x) ̸= 0 and lim g(x) = 0, then either lim f(x)
g(x) does not exist or lim f(x)

g(x) = +∞ or
−∞.

4. If x approaches +∞ or −∞, divide the numerator and denominator by the highest
power of x in any term of the denominator.

Example 2.1.10.

lim
x→∞

x3 − 2x

−x4 + 2
= lim

x→∞

1
x − 2

x3

−1 + 2
x4

=
0− 0

−1 + 0
= 0.

2.1.3 Exponential limits

Let the limit
lim
x→c

[f(x)]g(x)

be an indetermination. This happens if

� limx→c f(x) = 1 and limx→c g(x) = ∞ (1∞).

� limx→c f(x) = 0 and limx→c g(x) = 0 (00).

� limx→c f(x) = ∞ and limx→c g(x) = 0 (∞0).

Noting that
lim
x→c

[f(x)]g(x) = lim
x→c

eg(x) ln f(x) = elimx→c g(x) ln f(x),

all cases are reduced to the indetermination 0 · ∞, since we have to compute the limit

lim
x→c

g(x) ln f(x).

In the first indetermination, 1∞, it often helps to use the identity

lim
x→c

g(x) ln f(x) = lim
x→c

g(x)(f(x)− 1).

since when x is close to 0, ln(1 + x) ≈ x, or, lnx ≈ x− 1 when x is close to 1.

Example 2.1.11. limx→∞
(
1 + 1

x

)x
= limx→∞ ex ln (1+ 1

x) = ex
1
x = e.

Example 2.1.12. Let a, b > 0. Calculate limx→∞

(
1+ax
2+bx

)x
.

If a > b, then the basis function tends to a/b > 1, thus the limit is ∞. If a < b, then
the basis function tends to a/b < 1, thus the limit is 0. When a = b

lim
x→∞

(
1 + ax

2 + ax

)x

= elimx→∞ x( 1+ax
2+ax

−1) = elimx→∞
−x

2+ax = e−1/a.

2.1.4 Remarkable limit

Recall that
lim
x→0

senx

x
= 1.

Example 2.1.13. Evaluate the following limits:

1. lim
x→0

tanx

x
= lim

x→0

senx

x

1

cosx
= lim

x→0

senx

x
lim
x→0

1

cosx
= 1 · 1 = 1.
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2. lim
x→0

sen 3x

x

{z=3x}
= lim

z→0

sen z
z
3

= 3 lim
z→0

sen z

z
= 3.

2.2 Asymptotes

An asymptote is a line that the graph of a function approaches more and more closely until
the distance between the curve and the line almost vanishes.

Definition 2.2.1. Let f be a function

1. The line x = c is a vertical asymptote of f if limx→c+ |f(x)| = ∞ or limx→c− |f(x)| =
∞.

2. The line y = b is a horizontal asymptote of f if limx→+∞ f(x) = b or limx→−∞ f(x) =
b.

3. The line y = ax+ b is an oblique asymptote of f if

(a) lim
x→+∞

f(x)

x
= a and lim

x→+∞
(f(x)− ax) = b, or

(b) lim
x→−∞

f(x)

x
= a and lim

x→−∞
(f(x)− ax) = b.

Notice that a horizontal asymptote is a particular case of oblique asymptote with a = 0.

Example 2.2.2. Determine the asymptotes of f(x) =
(1 + x)4

(1− x)4
.

Solution: Since the denominator vanishes at x = 1, the domain of f is R − {1}. Let
us check that x = 1 is a vertical asymptote of f :

lim
x→1±

(1 + x)4

(1− x)4
= +∞

On the other hand

lim
x→+∞

(1 + x)4

(1− x)4
= lim

x→+∞

(1/x+ 1)4

(1/x− 1)4
= 1

hence y = 1 is a horizontal asymptote at +∞. In the same way, y = 1 is a horizontal
asymptote at −∞. There is no other oblique asymptotes.

Example 2.2.3. Determine the asymptotes of f(x) =
3x3 − 2

x2
.

Solution: The domain of f is R−{0}. Let us check that x = 0 is a vertical asymptote
of f .

lim
x→0±

3x3 − 2

x2
= lim

x→0±
(3x− 2

x2
) = lim

x→0±
3x− lim

x→0±

2

x2
= −∞.

Thus, x = 0 is a vertical asymptote of f . On the other hand

lim
x→±∞

3x3 − 2

x2
= lim

x→±∞
(3x− 2

x2
) = ±∞
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thus, there is no horizontal asymptote. Let us study now oblique asymptotes:

a = lim
x→±∞

f(x)

x
= lim

x→±∞

3x3 − 2

x3
= lim

x→±∞

(
3− 2

x3

)
= 3,

b = lim
x→±∞

(f(x)− 3x) = lim
x→±∞

(
3x3 − 2

x2
− 3x

)
= lim

x→±∞

(
− 2

x2

)
= 0.

We conclude that y = 3x is an oblique asymptote both at +∞ and −∞.

2.3 Continuity

The easiest limits to evaluate are those involving continuous functions. Intuitively, a func-
tion is continuous if one can draw its graph without lifting the pencil from the paper.

Definition 2.3.1. A function f : R −→ R is continuous at c if c ∈ D(f) and

lim
x→c

f(x) = f(c).

Hence, f is discontinuous at c if either f(c) is undefined or limx→c f(x) does not exist
or limx→c f(x) ̸= f(c). Moreover, we can define one-sided continuity of f at c,

Definition 2.3.2. A function f : R −→ R is right continuous at c, if c ∈ D(f) and

lim
x→c+

f(x) = f(c).

f is left continuous at c, if c ∈ D(f) and

lim
x→c−

f(x) = f(c).

Obviously, a function f is continuous at c when is both, right and left continuous at c.

2.3.1 Properties of continuous functions

Suppose that the functions f and g are both continuous at c. Then the following functions
are also continuous at c.

1. Sum. f + g.

2. Product by a scalar. λf , λ ∈ R.

3. Product. fg.

4. Quotient. f/g, whenever g(c) ̸= 0.
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2.3.2 Limit and continuity of the composite function

Theorem 2.3.3. Let f, g be functions from R to R and let c ∈ R. If g is continuous at L
and limx→c f(x) = L, then

lim
x→c

g(f(x)) = g(lim
x→c

f(x)) = g(L).

If the function f is continuous at c, then, calling L = f(c) the result above becomes:

Corollary 2.3.4. Let f be a continuous function at c and g continuous on f(c). Then ,
the composite function g ◦ f is also continuous at c.

Example 2.3.5. Compute the following limits:

� lim
x→0

ln (1 + x)

x
= lim

x→0
ln (1 + x)1/x = ln

(
lim
x→0

(1 + x)1/x
)
= ln e = 1.

Note that the function ln (·) is continuous at e, then we can apply 2.3.4.

� lim
x→0

ax − 1

x
= lim

z→0

z
ln (1+z)

ln a

= ln a

(
lim
z→0

z

ln (1 + z)

)
= ln a.

We have used the substitution z = ax − 1, so that x = ln (1 + z)/ ln a, and we have
used the value of the limit computed before.

2.3.3 Continuity of elementary functions

A function is called elementary if it can be obtained by means of a finite number of arith-
metic operations and superpositions involving basic elementary functions. The functions
y = C = constant, y = xa, y = ax, y = lnx, y = ex, y = senx, y = cosx, y = tanx,
y = arctanx are examples of elementary functions. Elementary functions are continuous in
their domain.

Example 2.3.6.

1. The function f(x) =
√
4− x2 is the composition of the functions y = 4 − x2 and

f(y) = y1/2, which are elementary, thus f is continuous in its domain, that is, in
D = [−2,+2].

2. The function g(x) = 1√
4−x2

is the composition of function f above and function

g(y) = 1/y, thus it is elementary and continuous in its domain, D(g) = (−2,+2).

2.3.4 Continuity of the inverse function

A one-to-one function (also named bijectve) does not have to be continuous. For example,
the following function

f(x) =


1, si x = 0;
x, si 0 < x < 1;
0, si x = 1.

is bijective considering that its domain and image are the

interval [0, 1].
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It can be shown that neither f(x) is continuous nor f−1(x), which coincidentally happens
to be the same f .

This will not be the case should the function f(x) be continuous, as the following theorem
proves:

Theorem 2.3.7. Let f : I −→ J be continuous and bijective Then:

a) f is strictly increasing (or decreasing), and

b) The inverse f−1 is a continuous function as well.

Observation: Obviously, f−1 is also strictly increasing (o decreasing), depending on
f having the same nature as well.

Example 2.3.8. Prove that lim
x→1

arctan

(
x2 + x− 2

3x2 − 3x

)
=

π

4
.

Solution: The function arctan = tan−1 is continuous from what we just have seen
above. Then applying theorem 2.3.3:

lim
x→1

arctan

(
x2 + x− 2

3x2 − 3x

)
= arctan

(
lim
x→1

x2 + x− 2

3x2 − 3x

)
= arctan

(
lim
x→1

(x− 1)(x+ 2)

3x(x− 1)

)
= arctan

(
lim
x→1

x+ 2

3x

)
= arctan 1

=
π

4
.

2.3.5 Continuity theorems

Continuous functions have interesting properties. We shall say that a function is continuous
on the closed interval [a, b] if it is continuous at every point x ∈ (a, b), is right-continuous
at a and left-continuous at b.

Theorem 2.3.9 (Bolzano’s Theorem). If f is continuous in [a, b] and f(a) · f(b) < 0, then
there exists some c ∈ (a, b) such that f(c) = 0.

Example 2.3.10. Show that the equation x3 + x − 1 = 0 admits a solution, and find it
with an error less than 0.1.

Solution: With f(x) = x3+x− 1 the problem is to show that there exists c such that
f(c) = 0. We want to apply Bolzano’s Theorem. First, f is continuous in R. Second, we
identify a suitable interval I = [a, b]. Notice that f(0) = −1 < 0 and f(1) = 1 > 0 thus,
there is a solution c ∈ (0, 1).

Now, to find an approximate value for c, we use a method of interval–halving as follows:
consider the interval [0.5, 1]; f(0.5) = 1/8 + 1/2 − 1 < 0 and f(1) > 0, thus c ∈ (0.5, 1).
Choose now the interval [0.5, 0.75]; f(0.5) < 0 and f(0.75) = 27/64 + 3/4 − 1 > 0 thus,

9



c ∈ (0.5, 0.75). Let now the interval [0.625, 0.75]; f(0.625) ≈ −0.13 and f(0.74) > 0 thus,
c ∈ (0.625, 0.75). The solution is approximately c = 0.6875 with a maximum error of 0.0625.

The previous theorem, known as Bolzano’s Theorem can be generalized for every inter-
mediate value between f(a) and f(b), since it is proved in the following theorem.

Theorem 2.3.11 (Intermediate Value Theorem). Let f be a continuous function on the
closed interval [a, b]. Then, for any intermediate real number k between f(a) and f(b), there
is at least a number xk ∈ [a, b] satisfying f(xk) = k.

Notice: An intermediate value means any real number k with f(a) < k < f(b) or
f(b) < k < f(a).

Proof. Consider the function g(x) = f(x) − k. Then, g(a) < 0 < g(b) or g(b) < 0 < g(a).
Applying Bolzano’s Theorem to the function g, there is xk ∈ [a, b] such that g(xk) = 0.
Similarly, there exists a xk ∈ [a, b] such that f(xk) = k.

The following result is very useful when you are trying to find the image of a continuous
function.

Corollary 2.3.12. Let f be a continuous, non-constant function defined on any interval I
(not necessarily closed or bounded). Then, J = Im(f) is also an interval.

Notice: J does not always satisfy the same properties of the interval I.

Example 1: f(x) = 1/x is continuous on the bounded interval I = (0, 1], but J =
Im(f) = [1,∞) is not bounded.

Example 2: f(x) = 1/x is continuous on the closed interval I = [1,∞), but J = Im(f) =
(0, 1] is not closed.

Nevertheless, if the interval I is compact, ie: it is closed and bounded, then J is also
compact.

This last result is called Weierstrass’ Theorem, and it is the most important of chapter
2.

Theorem 2.3.13 (Weierstrass’ Theorem). If f is continuous in [a, b] , then there exist
points c, d ∈ [a, b] such that

f(c) ≤ f(x) ≤ f(d)

for every x ∈ [a, b].

The theorem asserts that a continuous function attains over a closed interval a minimum
(m = f(c)) and a maximum value (M = f(d)). The point c is called a global minimum of
f on [a, b] and d is called a global maximum of f on [a, b].

Example 2.3.14. Show that the function f(x) = x2 + 1 attains over the closed interval
[−1, 2] a minimum and a maximum value.

Solution: The graph of f is shown below.
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We can see that f is continuous in [−1, 2], actually f is continuous in R, and f attains
the minimum value at x = 0, f(0) = 1, and the maximum value at x = 2, f(2) = 5.

Example 2.3.15. The assumptions in the Theorem of Weierstrass are essential.

� The interval is not closed, or not bounded.

– Take I = (0, 1] and f(x) = 1/x; f is continuous in I, but it does not have global
maximum.

– Take I = [0,∞) and f(x) = 1/(1 + x); f is continuous in I, but it does not have
global minimum, since limx→∞ f(x) = 0, but f(x) > 0 is strictly positive for
every x ∈ I.

� The function is not continuous. Take I = [0, 1] and f(x) =

{
x, if 0 ≤ x < 1;
0, if x = 1.

; f

has a global minimum at x = 0, but there is no global maximum since limx→1 f(x) = 1
but f(x) < 1 for every x ∈ I.

2.3.6 Fixed points

Definition 2.3.16. Let f : I → J. We say that the point x∗ ∈ I is a fixed point of f when
f(x∗) = x∗.

Graphically, x∗ is a fixed point when the graph of f(x) intersects the main diagonal
y = x.

Note 2.3.17. If we consider the function g(x) = f(x)− x, then it is obvious that the fixed
points of f(x) corresponds to the zeroes of g(x).

Example 2.3.18. Let’s consider the function f(x) = x2 on [0, 1]. Then, obviously, the fixed
points are 0 and 1.

Example 2.3.19. Let f : [a, b] → be continuous and such that [a, b] ⊂ Im(f) Then, f has
at least a fixed point. Observe that there are points xa and xb such that f(xa) = a and
f(xb) = b.

If we consider the interval limited by the points xa and xb, we observe that g(x) =
f(x) − x satisfies that g(xa) ≤ 0, g(xb) ≥ 0, so g(x) has a zero and then f(x) has a fixed
point.
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Note 2.3.20. It is important to note that, though an increasing or decreasing function on
an interval I has an unique root, or none, this result for fixed points remains true only for
decreasing functions, but not for increasing ones. Consider the example 1.

2.3.7 Equilibrium of a market

We know that if f and g are defined on an interval [a, b], both functions are continuous, the
first one is increasing, the second one decreasing and f(a) < g(a), f(b) > g(b), then, there
exists a single point x0 such that f(x0) = g(x0).

To prove that equality, you have only to observe that the function g(x) − f(x) (or
f(x) − g(x)) has a zero. If we consider x to be the quantity of a certain commodity, and
f(x), g(x), respectively, the price at which this quantity is offered and demanded, we call:

1. x0 the quantity of equilibrium for that market,

2. f(x0) = p0 = g(x0) the price of equilibrium; and

3. the pair (x0, p0) the equilibrium of that market.

The situation is a bit more complicated if we consider the interval [0,∞) instead of the
interval [a, b]. In this case, it is reasonable to assume for the offer function that f(0) = 0,
i.e., that, at a price of zero the offer is null, and that if x → ∞, then f(x) → ∞, as the
constraints to the production provoke that the price is higher and higher.

For the demand function is also reasonable to argue that if x → ∞, then g(x) → 0, as
the market will be saturated with such a big production.

With respect to the demand near zero, we have two possibilities:
i) lim

x→0+
g(x) is finite; or

ii) lim
x→0+

g(x) = ∞.

In the case i), if we consider the interval [a, b] = [0,M ], where M satisfies that f(M) >
g(M), it is clear that we have an equilibrium for that market.

The case ii) is a bit more complicated. In this case, we consider the interval [a, b] =
[m,M ] where m > 0 satisfies that f(m) < g(m) and M satisfies, again, that f(M) > g(M);
then, it is clear again that we have an equilibrium for that market.

In both cases the equilibrium is unique.
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