Exercise	1	2	3	4	Total
Points					

Extraordinary Final Exam. Exam time: 1 hour and 35 min.

LAST NAME:	FIRST NAME:	
ID:	DEGREE:	GROUP:

(1) Let $C(x)=b+16 x+4 x^{2}$ be the cost function and $p(x)=a-x$ the inverse demand function of a monopolistic firm, with $a, b>0$. Then:
(a) calculate the value of the parameter a, knowing that the production level to maximize the profit is $x^{*}=5$.
(b) calculate the value of the parameter b, knowing that the production level to maximize the profit per unit is $x^{* *}=4$.
0.5 points part a); 0.5 points part b).
(a) First of all, we calculate the profit function.
$B(x)=(a-x) x-\left(b+16 x+4 x^{2}\right)=-5 x^{2}+(a-16) x-b$
Secondly, we calculate the first and second order derivatives of B :
$B^{\prime}(x)=-10 x+a-16 ; B^{\prime \prime}(x)=-10<0$
we see that B has an unique critical point at $x^{*}=\frac{a-16}{10}$ and, since B is a concave function, the critical point is the global maximizer.
Finally $x^{*}=5=\frac{a-16}{10} \Longrightarrow a-16=50 \Longrightarrow a=66$.
(b) The profit per unit function is $\frac{B(x)}{x}=-5 x+(a-16)-\frac{b}{x}$,
we calculate its first and second order derivative functions: $\left(\frac{B(x)}{x}\right)^{\prime}=-5+\frac{b}{x^{2}}=0 \Longleftrightarrow x^{2}=\frac{b}{5}$.
Since $\left(\frac{B(x)}{x}\right)^{\prime \prime}=-\frac{2 b}{x^{3}}<0$, The function is concave and the critical point is the global maximizer.
Then $x^{* *}=4=\sqrt{\frac{b}{5}} \Longrightarrow b=80$.
(2) Given the implicit function $y=f(x)$, defined by the equation $e^{x+y}+x y^{2}=e$ in a neighbourhood of the point $x=1, y=0$, it is asked:
(a) find the tangent line and the second-order Taylor Polynomial of the function f at $a=1$.
(b) sketch the graph of the function f near the point $x=1, y=0$.
(c) use second-order Taylor Polynomial of $f(x)$ to obtain the approximate values of $f(0,9)$ and $f(1,2)$.

Use this polynomial to compare $f(1)$ with $\frac{2}{3} f(0,9)+\frac{1}{3} f(1,2)$.
(Hint for parts (b) and (c): use that $\left.f^{\prime \prime}(1)<0\right)$.
0.4 points part a); 0.2 points part b) 0.4 points part \mathbf{c}).
(a) First of all, we calculate the first-order derivative of the equation:
$e^{x+y}\left(1+y^{\prime}\right)+y^{2}+2 x y y^{\prime}=0$
evaluating at $x=1, y(1)=0$ we obtain: $y^{\prime}(1)=f^{\prime}(1)=-1$.
Then the equation of the tangent line is: $y=P_{1}(x)=-(x-1)$ o $x+y=1$.
Secondly, we calculate the second-order derivative of the equation:
$e^{x+y}\left[\left(1+y^{\prime}\right)^{2}+y^{\prime \prime}\right]+2 y y^{\prime}+2 y y^{\prime}+2 x\left(y^{\prime}\right)^{2}+2 x y y^{\prime \prime}=0$
evaluating at $x=1, y(1)=0, y^{\prime}(1)=-1$ we obtain $y^{\prime \prime}(1)=f^{\prime \prime}(1)=-2 / e$.
Therefore, the second-order Taylor Polynomial is: $y=P_{2}(x)=-(x-1)-\frac{1}{e}(x-1)^{2}$.
(b) Using the second-order Taylor Polynomial, the approximate graph of the function f, near the point $x=1$, will be as you can see in the figure underneath.
(c) On the other hand, using this Taylor Polynomial, we obtain:
$f(0,9) \approx 0,1-\frac{1}{e} 0,01 ; f(1,2) \approx-0,2-\frac{1}{e} 0,04 \Longrightarrow$
$\frac{2}{3} f(0,9)+\frac{1}{3} f(1,2)=-\frac{1}{e} 0,02<0=f(1)=f\left(\frac{2}{3} 0,9+\frac{1}{3} 1,2\right)$.
And this is reasonable since, $f(x)$ is concave function near $x=1$.

(3) Consider the function $f(x)=\frac{\sqrt{x^{2}+1}}{x+1}$. Then:
(a) find the domain and the asymptotes of function $f(x)$.
(b) find the intervals where $f(x)$ increases and decreases and its range. Draw the graph of the function.
(c) consider $f_{1}(x)$ to be the function $f(x)$ defined on the interval $[0, \infty)$. Find, if they exist, the global extreme points of $f_{1}(x)$.

0.4 points part a); 0.4 points part b); 0.2 points part c)

(a) First of all, the domain of the function is $\mathbb{R}-\{-1\}$.

If we calculate the right-hand sided limit at $x=-1$, we obtain $\lim _{x \rightarrow-1^{+}} \frac{\sqrt{x^{2}+1}}{x+1}=\frac{\sqrt{2}}{0^{+}}=\infty$.
Analogously, we calculate the left-hand sided limit at the point, $\lim _{x \rightarrow-1^{-}} \frac{\sqrt{x^{2}+1}}{x+1}=\frac{\sqrt{2}}{0^{-}}=-\infty$.
Therefore, $f(x)$ has a vertical asymptote at $x=-1$.
Secondly, to find horizontal asymptotes we calculate the limit towards ∞, to obtain $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x+1}=$ (dividing the numerator and denominator by $x)==\lim _{x \rightarrow \infty} \frac{\sqrt{1+1 / x^{2}}}{1+1 / x}=1$.
Then f has an horizontal asymptote $y=1$ at ∞.
Moreover, we calculate the limit at $-\infty$ of f and we obtain $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{x+1}=$ (dividing the numerator and denominator by $-x$, that we introduce inside the square root as $\left.1 / x^{2}\right)=\lim _{x \rightarrow \infty} \frac{\sqrt{1+1 / x^{2}}}{-1-1 / x}=$ -1 .
Then, f has an horizontal asymptote $y=-1$ at $-\infty$. Obviously, because there are both horizontal asymptotes then oblique asymptotes do not exist.
(b) In order to study the monotonicity of the function, we calculate the sign of its derived function: $f^{\prime}(x)=\left(\frac{\sqrt{x^{2}+1}}{x+1}\right)^{\prime}=\frac{\left(2 x / 2 \sqrt{x^{2}+1}\right)(x+1)-\sqrt{x^{2}+1}}{(x+1)^{2}}=\frac{x(x+1)-\left(x^{2}+1\right)}{(x+1)^{2} \sqrt{x^{2}+1}}=$
$=\frac{x-1}{(x+1)^{2} \sqrt{x^{2}+1}}$, since the denominator is always positive the sign of the derived function is calculated by the numerator $x-1$, and we concluded that:
i) $f^{\prime}(x)>0 \Leftrightarrow x \in(1, \infty)$, then f is increasing on $[1, \infty)$.
ii) $f^{\prime}(x)<0 \Leftrightarrow x \in(-\infty,-1) \cup(-1,1)$, then f is decreasing on $(-\infty,-1)$ and $(-1,1)$.

To find the range, since $f(x)$ is continuous in its domain and using the intermediate value theorem we say:
i) the range of the interval $(-\infty,-1)$ is $(-\infty,-1)$.
ii) the range of the interval $(-1, \infty)$, taking into account that $f(1)=\frac{\sqrt{2}}{2}$, is $\left[\frac{\sqrt{2}}{2}, \infty\right)$.

Thus, the range of f is $(-\infty,-1) \cup\left[\frac{\sqrt{2}}{2}, \infty\right)$.
The graph of $f(x)$ will have an appearance approximately, similar to this one:

(c) About the global extreme points of $f_{1}, x=1$ is the global minimizer, since f_{1} is decreasing on $[0,1]$ and increasing on $[1, \infty)$.
On the other hand, $x=0$ is the global maximizer of $f_{1}(x)$ since, f_{1} is decreasing on $[0,1]$ and increasing on $[1, \infty)$ and $f_{1}(x)$ has the horizontal asymptote $y=1=f_{1}(0)$, we can confirm that $f_{1}(x) \leq 1=f_{1}(0)$.
(4) Let

$$
f(x)= \begin{cases}\frac{\ln \left(x^{2}+1\right)}{x} & , x \neq 0 \\ 0 & , x=0\end{cases}
$$

you are asked:

(a) prove that the function is derivable at $x=0$.
(b) find the asymptotes of the function.
(c) consider $f_{1}(x)$ to be the function $f(x)$ defined on the interval $[0, \infty)$. Find the global minimum of this function. Study if this function attains its global maximum. (Hint: You only need to prove if the global maximum exists or not.)
0.4 points part a); 0.2 points part b); 0.4 points part c)
(a) To begin with, we study if the function is continuous $x=0$.
$\lim _{x \longrightarrow 0} f(x)=\lim _{x \longrightarrow 0} \frac{\ln \left(x^{2}+1\right)}{x}=\frac{0}{0}=($ L'Hopital $)=\lim _{x \longrightarrow 0} \frac{2 x}{x^{2}+1}=0$, then it is continuous at $x=0$. Now, we study if the function is derivable at the same point, since it is continuous, we need to prove the existence of the limit:
$\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0} \frac{\left[2 x /\left(x^{2}+1\right)\right] x-\ln \left(x^{2}+1\right)}{x^{2}}=\lim _{x \longrightarrow 0} \frac{2 x^{2} /\left(x^{2}+1\right)}{x^{2}}-\lim _{x \longrightarrow 0} \frac{\ln \left(x^{2}+1\right)}{x^{2}}$.
Obviously the first limit is equal to 2 . And we calculate the second:
$\lim _{x \longrightarrow 0} \frac{\ln \left(x^{2}+1\right)}{x^{2}}=\frac{0}{0}=($ L'Hopital $)=\lim _{x \longrightarrow 0} \frac{2 x /\left(x^{2}+1\right)}{2 x}=1$.
Then, we can say that $f^{\prime}(0)=2-1=1$.
(b) Since the function is continuous in its domain there are not any vertical asymptotes.

About asymptotes at infinitum:
$\lim _{x \longrightarrow \infty} \frac{\ln \left(x^{2}+1\right)}{x}=\frac{\infty}{\infty}=($ L'Hopital $)=\lim _{x \longrightarrow \infty} \frac{2 x}{x^{2}+1}=0$, then there is a horizontal asymptote: $y=0$.
Analogously, $y=0$ is the asymptote at $-\infty$.
(c) Since $f(x)>0$ if $x>0$ (because $\ln \left(1+x^{2}\right)>\ln 1=0$, when $x>0$),
we can say that $x=0$ is the global minimizer and $f(0)=0$ is the global minimum.
The global maximum also exists, as the function is continuous, $\lim _{x \xrightarrow{\longrightarrow}} f(x)=0$ and given $f(1)=\ln 2>0$, we can find $M>0$ such that, $f(x)<f(1)$ if $x>M$.
Now, using Weierstrass' Theorem to f in the interval $[0, M]$, we know that exists x^{*} maximizer of f in the interval.
Obviously, x^{*} is also the maximizer of f in $[0, \infty)$.
You can observe this in the following graph:

