Universidad Carlos III de Madrid

Exercise	1	2	3	4	Total
Points					

Department of Economics. Introduction to Maths for Economics. Final Exam June 25th 2021

Exam time: 1 hour and 30 minutes.

LAST NAME:

FIRST NAME:

ID: DEGREE:

GROUP:

(1) Consider the function $f(x)=\ln \left(e x-x^{2}\right)$. Then:
(a) find the asymptotes of the function and the intervals where $f(x)$ increases and decreases.
(b) find the local and/or global maximum and minimum, and range (or image) of $f(x)$. Draw the graph of the function.
(c) Consider $f_{1}(x)$ to be the function $f(x)$ defined on the interval where it is increasing, sketch the graph of the inverse function of $f_{1}(x)$.
(Hint for the graphs: use that $1<\ln 4<2$).
0.6 points part a); 0.6 points part b); 0.3 points part c)
a) The domain of the funcion is $(0, e)$.

Since f is continuous on its domain, a bounded set, it is only needed to study the asymptotes at 0 and e :
i) $\lim _{x \longrightarrow 0^{+}} f(x)=\ln \left(0^{+}\right)=-\infty, \lim _{x \longrightarrow e^{-}} f(x)=\ln \left(0^{+}\right)=-\infty$.

Therefore $f(x)$ has a vertical asymptote at $x=0$ and $x=e$.
Moreover, as $f^{\prime}(x)=\frac{e-2 x}{e x-x^{2}}$, we can deduce: f is increasing \Longleftrightarrow
$\Longleftrightarrow f^{\prime}(x)>0 \Longleftrightarrow e-2 x>0$;
then f is increasing on ($0, \frac{e}{2}$]. Analogously, f is decreasing on $\left[\frac{e}{2}, e\right.$).
b) Interpreting the monotonicity of f, it is deduced that there are not local or global minimizers and $x=\frac{e}{2}$ is the only local and global maximizer.
Finally, as $f\left(\frac{e}{2}\right)=\ln \left(e^{2} / 4\right)=2-\ln 4$ and $\lim _{x \longrightarrow 0^{+}} f(x)=-\infty$ due to the Intermediate Value Theorem we can deduce that the range of the function will be $(-\infty, 2-\ln 4]$.
The graph of f will have an appearance approximately, similar to the one in figure A.
c) We know that, f_{1} is increasing on $\left(0, \frac{e}{2}\right], f_{1}\left(0^{+}\right)=-\infty, f_{1}\left(\frac{e}{2}\right)=2-\ln 4$. Therefore, the graph of its inverse will be increasing as well, $\lim _{x \rightarrow-\infty} f_{1}^{-1}(x)=0^{+}, f_{1}^{-1}(2-\ln 4)=\frac{e}{2}$.
Therefore, the graph of its inverse will have an appearance approximately, similar to the one in figure B:

(A)

(в)
(2) Given the implicit function $y=f(x)$, defined by the equation $e^{x y}+x^{2}+y^{2}=5$ in a neighbourhood of the point $x=2, y=0$, it is asked:
(a) find the tangent line and the second-order Taylor Polynomial of the function at $a=2$.
(b) sketch the graph of the function f near the point $x=2, y=0$.

Use the tangent line to the graph of $f(x)$ to obtain the approximate values of $f(1.9)$ and $f(2.1)$.
(c) Will $f(2)$ be greater, less or equal than the exact value of $\frac{1}{2}(f(1.9)+f(2.1))$?
(Hint for part (c): use that $f^{\prime \prime}(2)<0$).
0.6 points part a); 0.5 points part b) 0.4 points part c)
a) First of all, we calculate the first-order derivative of the equation:
$e^{x y}\left(y+x y^{\prime}\right)+2 x+2 y y^{\prime}=0$
evaluating at $x=2, y=0$ we obtain: $2 y^{\prime}+4=0 \Longrightarrow y^{\prime}(2)=f^{\prime}(2)=-2$.
Then the equation of the tangent line is: $y=P_{1}(x)=-2(x-2)$.
Secondly, we calculate the second-order derivative of the equation:
$e^{x y}\left(y+x y^{\prime}\right)^{2}+e^{x y}\left(2 y^{\prime}+x y^{\prime \prime}\right)+2+2\left(y^{\prime}\right)^{2}+2 y y^{\prime \prime}=0$
evaluating at $x=2, y=0, y^{\prime}=-2$ we obtain $y^{\prime \prime}(2)=f^{\prime \prime}(2)=-11$.
Therefore, the second-order Taylor Polynomial is: $y=P_{2}(x)=-2(x-2)-\frac{11}{2}(x-2)^{2}$
b) Using the second-order Taylor Polynomial, the approximate graph of the function f, near the point $x=2$ will be as you can see in the figure underneath. On the other hand, using the tangent line, the first order approximation will be:
$f(1.9) \approx-2(-0.1)=0.2 ; f(2.1) \approx-2(0.1)=-0.2$.
c) Finally, since $f(x)$ is concave near $x=2, \frac{1}{2}(f(1.9)+f(2.1))$ will be less than $f(2)=0$, as you can notice looking at the graph below or if you prefer we can calculate its approximate value using the second-order Taylor Polynomial of $f(1.9)$ y $f(2.1)) ; \frac{1}{2}(f(1.9)+f(2.1)) \approx-\frac{11}{2} \cdot 0.1^{2}$.
Naming $f^{*}(2)=\frac{1}{2}(f(1.9)+f(2.1))$, the graph will be:

(3) Let $C(x)=\sqrt{5 x^{2}-6 x+9}$ be the cost function of a monopolistic firm, where $x \geq 1$ represents the quantity in kilograms of the goods. Then:
(a) find the tangent line of $C(x)$ at $x=3$, and obtain the approximate value of $C(3.1)$.
(b) suppose now that $p(x)=29-b x^{2}$ is the inverse demand function with
$b \neq 1$, and b very close to 1.
If we know that in the previous period the firm produced 3 units, will the firm encrease or decrease its production in this period?
0.7 points part a); 0.8 points part b)
a) First of all, we calculate the first-order derivative of the equation: $C^{\prime}(x)=\frac{10 x-6}{2 \sqrt{5 x^{2}-6 x+9}}$, so $C^{\prime}(3)=\frac{24}{2 \sqrt{36}}=2$.
Secondly, since $C(3)=6$, the equation of the tangent line will be:
$y=6+2(x-3)$
If we approximate the value of $C(3.1)$ using the tangent line, we obtain:
$C(3.1) \approx 6+2(3.1-3)=6.2$ monetary units.
b) The profits of the monopolistic firm are:
$B(x)=\left(29-b x^{2}\right) x-C(x)$ then,
$B^{\prime}(x)=29-3 b x^{2}-C^{\prime}(x) \Longrightarrow B^{\prime}(3)=29-27 b-C^{\prime}(3)=27(1-b)$.
Thus, we have two difference cases:
i) if $b<1$, then the firm would like to increase its production.
ii)but if, $b>1$ then the firm would reduce its production.
(4) Let $f(x)=x^{4}-2 x^{2}$, you are asked:
(a) state Bolzano's Theorem (Intermediate Zero Theorem) for the function g defined in the interval $[a, b]$.
(b) suppose that $a=-2$. Find a and b such that $f(x)$ satisfies the hypothesis of this theorem.
(c) suppose that $a=-2$. Find a and b such that $f(x)$ satisfies the thesis of this theorem.
(Hint for part b) and c): sketch the graph of the function)
0.3 points part a); 0.5 points part b); 0.7 points part c)
a) Bolzanos' Theorem states that if g is continuous on the interval $[a, b]$, and the function satisfies that
i) $g(a)<0<g(b)$; or
ii) $g(b)<0<g(a)$
then there exists a point c in (a, b) such that $g(c)=0$.
b) since $f(-2)>0$, then b must satisfy $f(b)<0$; this is, $b \in(-\sqrt{2}, 0) \cup(0, \sqrt{2})$.
c) It is needed a zero of the given polynomial in the interval (a, b).

Thus, $b \in(-\sqrt{2}, \infty)$.
Notice: since $f(x)=x^{2}(x-\sqrt{2})(x+\sqrt{2})$, we can deduce:
i) $f(x)<0$ if $x \in(-\sqrt{2}, 0) \cup(0, \sqrt{2})$;
ii) $f(x)>0$ if $x \in(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$.

Therefore, the graph of f will be approximately:

