Universidad Carlos III de Madrid

Starting time: 9:00 a.m.
Time: 90 minutes.
SURNAME:

NAME:
ID: GRADE:
GROUP:
(1) Consider the function $f(x)=x^{2} e^{-x}$. Then:
(a) Calculate the domain and the asymptotes of the function $f(x)$.
(b) Calculate the intervals where $f(x)$ is increasing, as well as the local and global maxima and minima of $f(x)$. Find the range of $f(x)$ and draw its graph.
Part (a) 0.4 points; Part (b) 0.6 points
a) The domain of the function is \mathbb{R}.

Since f is continuous in its domain, only asymptotes at ∞ and $-\infty$ are taken into consideration:
i) $\lim _{x \longrightarrow-\infty} \frac{f(x)}{x}=\lim _{x \longrightarrow-\infty} x e^{-x}=-\infty$, thus f has neither horizontal or oblique asymptotes at $-\infty$. Furthermore, $\lim _{x \longrightarrow-\infty} f(x)=\infty$
ii) $\lim _{x \longrightarrow \infty} f(x)=\lim _{x \longrightarrow \infty} \frac{x^{2}}{e^{x}}=\frac{\infty}{\infty}=$ [using L'Hopital's rule twice] $=\lim _{x \longrightarrow \infty} \frac{2}{e^{x}}=\frac{2}{\infty}=0$.

So $f(x)$ has horizontal asymptote $y=0$ at ∞.
b) Since $f^{\prime}(x)=e^{-x}\left(-x^{2}+2 x\right)$, we deduce that: f is increasing $\Longleftrightarrow f^{\prime}(x)>0 \Longleftrightarrow-x^{2}+2 x=$ $x(-x+2)>0 ;$
so f is increasing in $[0,2]$. Analogously, f is decreasing in $(-\infty, 0]$ y en $[2, \infty)$. Since f is never negative and $\lim _{x \longrightarrow-\infty} f(x)=\infty$, we can deduce that 2 is a local maximizer and 0 is a local and global minimizer.
Because there are no other critical points, there cannot be any other local or global minimizer.
Finally, since $\lim _{x \longrightarrow-\infty} f(x)=\infty$, and the intermediate value theorem we can deduce that the range is $[0, \infty)$.
We conclude that the graph of f is represented approximately like this:

(2) Given the function $y=f(x)$, defined implicitly by the equation $x e^{-y}+2 y=1$ around the point $x=1, y=0$, answer the following questions:
(a) find the tangent line and the second order Taylor polynomial of the implicit function at the point $a=1$.
(b) draw the graph of f around the point $x=1$ and using the tangent line, obtain the approximated values of $f(0.9)$ and $f(1.2)$.
Justify if some of the above approximations are by excess or by default.
Part (a) 0.6 points; Part (b) 0.4 points
a) Firstly, we calculate the first order derivative of the function: $\left(1-x y^{\prime}\right) e^{-y}+2 y^{\prime}=0$
evaluating at $x=1, y(1)=0$ we can deduce:
$1-y^{\prime}+2 y^{\prime}=0 \Longrightarrow y^{\prime}(1)=f^{\prime}(1)=-1$.
So, the tangent line is: $y=P_{1}(x)=0-(x-1)$ or $y=1-x$.

Analogously, we calculate the second order derivative of the function:
$\left[-y^{\prime}-x y^{\prime \prime}+\left(1-x y^{\prime}\right)\left(-y^{\prime}\right)\right] e^{-y}+2 y^{\prime \prime}=0$.
evaluating at $x=1, \quad y(1)=0, \quad y^{\prime}(1)=-1$ we know that:
$\left[1-y^{\prime \prime}+2\right]+2 y^{\prime \prime}=0 \Longrightarrow y^{\prime \prime}(1)=f^{\prime \prime}(1)=-3$.
So, the second order Taylor polynomial is: $y=P_{2}(x)=1-x-\frac{3}{2}(x-1)^{2}$.
b) Using the second order Taylor polynomial, the graph of the function f around the point $x=1$ will be approximately as follows:

On the other hand, the first order approximations will be:

$$
f(0.9) \approx P_{1}(0.9)=1-(0.9)=0.1 ; f(1.2) \approx P_{1}(1.2)=1-(1.2)=-0.2
$$

Since the function is concave around $x=1$, because $f^{\prime \prime}(1)<0$, the approximation of the values of f using the tangent line will be in both cases by excess.
(3) Let $C(x)=100+150 x+x^{2}$ be the cost function and $p(x)=250-x$ be the inverse demand function of a monopolist firm, with $0 \leq x \leq 50$ being the number of units produced of a given good then:
(a) find the price p^{*} and the production level x^{*} which maximize the profits of the firm.
(b) Suppose that the government increases the costs of production by a tax of T euros per unit produced. Find the new production level $x^{*}(T)$ and the new price $p^{*}(T)$ which maximize the profit of the company.
Compare the results obtained with those obtained in part (a) above.
Part (a) 0.5 points; Part (b) 0.5 points
a) First of all, we calculate the profit function.
$B(x)=(250-x) x-\left(100+150 x+x^{2}\right)=-2 x^{2}+100 x-100$.
Then, we calculate the first and second order derivatives of B :
$B^{\prime}(x)=-4 x+100 ; B^{\prime \prime}(x)=-4<0$
we can see that B has only one critical point at $x^{*}=\frac{100}{4}=25$ and since B is a concave function, that point is the only global maximizer.
Finally, $p^{*}=p(25)=250-25=225$.
b) Since, the new cost function becomes $C(x)=100+(150+T) x+x^{2}$,
the new profit function is $B(x)=-2 x^{2}+(100-T) x+100$.
we calculate the first and second order derivatives of B :
$B^{\prime}(x)=-4 x+100-T \quad B^{\prime \prime}(x)=-4<0$,
then we see that B has only one critical point at $x^{*}(T)=\frac{100-T}{4}=25-\frac{T}{4}$.
Since B is a concave function, the critical point is the only global maximizer.
Finally, $p^{*}(T)=250-\left(25-\frac{T}{4}\right)=225+\frac{T}{4}$.
In comparison with the case without taxes $(T=0)$, the output has decreased and the price has increased.
(4) Let the function $f(x)=\left\{\begin{array}{ll}a x+3 & \text { si } x<2 \\ -x^{2}+2 a x+b & \text { si } x \geqslant 2\end{array}\right.$ and let us consider the interval $[0,4]$. Then:
(a) Find a and b in order that $f(x)$ satisfies the hypothesis (or initial conditions) of Lagrange's theorem (or mean value theorem) in that interval.
(b) For those values a, b find the intermediate value or values c in such a way that the thesis (or conclusion) of this theorem is satisfied.
Hint for both parts: state the mean value theorem.
Part (a) 0.5 points; Part (b) 0.5 points
a) We need to set the continuity and derivability at $x=2$.

For that reason, as $\lim _{x \longrightarrow 2^{-}} f(x)=2 a+3, f(2)=\lim _{x \longrightarrow 2^{+}} f(x)=-4+4 a+b$
it can be deduced that the function will be continuous at that point when:
$2 a+3=-4+4 a+b \Longleftrightarrow 2 a+b=7$.
On the other hand, supposing the the function is continuous at $x=2$, it will have a derivative at that point if: $a=f_{-}^{\prime}(2)=f_{+}^{\prime}(2)=-4+2 a \Longleftrightarrow a=4$.

So the function will be continuous and derivable at $x=2$ when $a=4, b=-1$.
b) By the mean value theorem we know that:

There exists $c \in(0,4): f(4)-f(0)=f^{\prime}(c)(4-0)$.
Taking into account that $a=4, b=-1$, the former equation is equivalent to $(-16+32-1)-(3)=$ $12=4 f^{\prime}(c)$.
In other words: $f^{\prime}(c)=3$.
When $x \leq 2, f^{\prime}(x)=a=4 \neq 3$, so it is not possible that $c \leq 2$.
When $x>2, f^{\prime}(x)=-2 x+2 a=-2 x+8=3 \Longleftrightarrow x=\frac{5}{2}$.
So the only possible value is $c=\frac{5}{2}$.

