1
Consider the function $f(x)=\frac{\ln (1+x)}{\sqrt{1+x}}$. Then:
(a) (5 points) Find its domain and its asymptotes.
(b) (10 points) find the intervals where $f(x)$ increases and decreases, its local and global extrema and range (or image). Draw the graph of the function.

Solution:

(a) The domain of the given function is $(-1, \infty)$. Therefore, there isn't an asymptote at $-\infty$.

Since the function is continuous on its domain we only need to study its possible vertical asymptotes at -1^{+}:
$\lim _{x \rightarrow-1^{+}} f(x)=\frac{\ln \left(0^{+}\right)}{0^{+}}=\frac{-\infty}{0^{+}}=-\infty$; thus, the function has a vertical asymptote at $x=-1^{+}$.
Since $\lim _{x \rightarrow \infty} f(x)=\lim _{x \longrightarrow \infty} \frac{\ln (1+x)}{\sqrt{1+x}}=\frac{\infty}{\infty}=$ (applying L'Hopital) $=$
$=\lim _{x \rightarrow \infty} \frac{1 /(1+x)}{1 / 2 \sqrt{1+x}}=\lim _{x \longrightarrow \infty} \frac{2}{\sqrt{1+x}}=0$.
we know that the function has a horizontal asymptote $y=0$ at ∞.
(b) Since $f^{\prime}(x)=\frac{(1+x)^{-1} \sqrt{1+x}-(1 / 2 \sqrt{1+x}) \ln (1+x)}{1+x}$, we can deduce that:
f is increasing $\Longleftrightarrow f^{\prime}(x)>0 \Longleftrightarrow(1+x)^{-1} \sqrt{1+x}-(1 / 2 \sqrt{1+x}) \ln (1+x)>0 \Longleftrightarrow$ (multiplying by
$2 \sqrt{1+x}) \Longleftrightarrow 2-\ln (1+x)>0 \Longleftrightarrow 2>\ln (1+x) \Longleftrightarrow 1+x<e^{2}$; so, f is increasing on $\left(-1, e^{2}-1\right]$. Analogously, f is decreasing on $\left[e^{2}-1, \infty\right)$. We can deduce that f attains a local and global maximum at $x=e^{2}-1$ but it hasn't got a global or a local minimum.
Since $f\left(e^{2}-1\right)=\frac{\ln \left(e^{2}\right)}{\sqrt{e^{2}}}=\frac{2}{e}, \lim _{x \longrightarrow 0^{+}} f(x)=-\infty$ and $\lim _{x \longrightarrow \infty} f(x)=0$, due to the Intermediate Value
Theorem we can deduce that the range of the function will be $\left(-\infty, f\left(e^{2}-1\right)\right]=\left(-\infty, \frac{2}{e}\right]$.
Thus, the graph of f will have an appearance approximately similar to:

(a) (8 points) Show that the equation $\ln (x+2 y)-y=0$ defines an implicit function $y=f(x)$ around the point $x=1, y=0$. Find $f^{\prime}(1)$ and $f^{\prime \prime}(1)$.
(b) (7 points) Find both the tangent line to the graph of $f(x)$ at $x=1$ and the Taylor polynomial of $f(x)$ of order 2 at $x=1$. Sketch the graph of the function f next to the point $x=1$.

Solution:

(a) The point $x=1, y=0$ satisfies the equation, since $\ln (1+2 \cdot 0)-0=\ln 1=0$; the equation is defined by the function $F(x, y)=\ln (x+2 y)+3 y$, which of class C^{2} around the point and $\frac{\partial F}{\partial y}=\frac{2}{x+2 y}-1$, which evaluated at $(1,0)$ has the value $1 \neq 0$. Thus, the conditions imposed in the Implicit Function Theorem are fulfilled, and the equation defines a unique implicit function $y=f(x)$ in a certain interval centered at $x=1$, such that $f(1)=0$. To find $f^{\prime}(1)$, we derive the equation with respect to x and substitute the values $x=1$ and $y=0$:

$$
\frac{1+2 y^{\prime}}{x+2 y}-y^{\prime}=0 \quad \Rightarrow \quad 1+2 f^{\prime}(1)-f^{\prime}(1)=0 \quad \Rightarrow f^{\prime}(1)=-1
$$

To calculate $f^{\prime \prime}(1)$, derive again in $\frac{1+2 y^{\prime}}{x+2 y}-y^{\prime}=0$ with respect to x, and substitute the values $x=1, y=0$ and $y^{\prime}=-1$, to obtain

$$
\frac{2 y^{\prime \prime}(x+2 y)-\left(1+2 y^{\prime}\right)^{2}}{(x+2 y)^{2}}-y^{\prime \prime}=0 \quad \Rightarrow \quad 2 y^{\prime \prime}-(1-2)^{2}-y^{\prime \prime}=0 \quad \Rightarrow f^{\prime \prime}(1)=1
$$

(b) By part (a), the tangent line of the implicit function is given by $y-f(1)=f^{\prime}(1)(x-1)=-(x-1)$. The second order Taylor polynomial is

$$
P_{2}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{1}{2} f^{\prime \prime}(1)(x-1)^{2}=-(x-1)+\frac{1}{2}(x-1)^{2} .
$$

The graph of the implicit function near $x=1$ is depicted below

3
Let $C^{\prime}(x)=a+10 x$ be the marginal cost function and $C_{0}=80$ the fixed cost of a monopolistic firm, being $x \geqslant 0$ the number of units produced of certain goods. Then:
(a) (8 points) Calculate the production x_{0} such that minimizes the average cost of the firm.

Hint: the production x_{0} could depend on a or not.
(b) (7 points) Suppose now that $p(x)=100-5 x$ is the inverse demand function of the firm, calculate a such that the maximum profit is attained at the production $x=4$.

Solution:

(a) First of all, we calculate the total cost function $C(x)=80+a x+5 x^{2}$

Secondly, the average cost function is $\frac{C(x)}{x}=\frac{80}{x}+a+5 x$
Now, we calculate the critical points of this function:
$\left(\frac{C(x)}{x}\right)^{\prime}=-\frac{80}{x^{2}}+5=0 \Longleftrightarrow x^{2}=16 \Longleftrightarrow x=4 ;$
Since the average cost function is convex, because $\left(\frac{C(x)}{x}\right)^{\prime \prime}=\frac{160}{x^{3}}>0$,
we can deduce that $x=4$ is the unique global minimizer of the average cost function.
Notice that a can take any value.
(b) The profit function is:
$B(x)=(100-5 x) x-\left(80+a x+5 x^{2}\right)=-10 x^{2}+(100-a) x-80$.
we calculate its first and second order derivatives:
$B^{\prime}(x)=-20 x+100-a ; B^{\prime \prime}(x)=-20<0$
we see that $B^{\prime}(x)=0 \Longleftrightarrow x=\frac{100-a}{20}=4 \Longleftrightarrow a=20$. Thus, $x=4$ is the only critical point of the function $B(x)$.
Since the profit function is concave this critical point is the unique global maximizer when $a=20$.

Given the function $f(x)=x e^{2-x}$, answer the following questions.
(a) (5 points) Find the inflection points of $f(x)$ and its convexity and concavity intervals.
(b) (10 points) Study the global extrema of $f(x)$ in the interval $[0,3]$.

Hint for (b): Use that $2<e<3$, or study the monotonicity of f.

Solution:

(a) We calculate the first and second order derivatives of the function $f(x)$:
$f^{\prime}(x)=e^{2-x}-x e^{2-x}=(1-x) e^{2-x} ;$
$f^{\prime \prime}(x)=-e^{2-x}-(1-x) e^{2-x}=(x-2) e^{2-x}$
So, f is concave if $x<2$, since $f^{\prime \prime}(x)<0$
and f is convex if $x>2$, because $f^{\prime \prime}(x)>0$
Therefore, $x=2$ is the only inflection point of the function.
(b) The only point that vanishes the derivative is $x=1$, by part (a). Thus, since Weierstrass Theorem holds for this function and interval, the global extrema are 0,1 or 2 . Evaluating f we find the maximum and the minimum: $f(0)=0, f(1)=e$ and $f(3)=\frac{3}{e}$. Clearly, $x=0$ is the global minimum and $x=1$ is the global maximum, since

$$
f(0)=0<f(3)=\frac{3}{e}<1<e=f(1)
$$

Another way: as f is increasing for $x<1$ and decreasing for $x>1$, then $x=1$ is a global maximum (even in the whole real line). Since $f(0)=0<f(3)=\frac{3}{e}$, then f has its global minimum in [0, 3] at $x=0$.

