Universidad Carlos III de Madrid

Exercise	1	2	3	4	Total
Points					

Exam time: 1 hour and 35 minutes.

LAST NAME:

FIRST NAME:
ID: DEGREE: GROUP:
(1) Let $p(x)=13-\beta x$ be the inverse demand function and $C(x)=16+x+x^{2}$ be the cost function of a monopolistic firm, with $\beta>0$.
(a) Calculate the value of β such that the firm's profits are maximized at $x^{*}=3$.
(b) Show that the minimum average cost is obtained at a higher level of production \widetilde{x}.
(c) If the regulator forces the firm to produce at its minimum average cost, with the value of β found in part (a), what will be the compensation that the firm will demand?
0.4 points part a); 0.4 points part b); 0.2 points part c).
(a) The profit function is $B(x)=(13-\beta x) x-16-x-x^{2}$. Then $B^{\prime}(x)=13-2 \beta x-1-2 x=12-2(\beta+1) x$ and $B^{\prime \prime}(x)=-2(\beta+1)<0$, i.e., $B(x)$ is a concave function.
Then, $x^{*}=3$ solves $B^{\prime}(x)=0$, i.e., $12-2(\beta+1) 3=0 \Longrightarrow \beta=1$.
(b) As $C(x)=16+x+x^{2}$, the average cost is $A C(x)=\frac{16}{x}+1+x$, with $A C^{\prime}(x)=-\frac{16}{x^{2}}+1$ and $A C^{\prime \prime}(x)=\frac{32}{x^{3}}>0$, i.e., $A C$ is a convex function.
Then \widetilde{x} such that $A C^{\prime}(\widetilde{x})=0$ minimizes firm's average cost: $\widetilde{x}=4>x^{*}=3$
(c) Substituting $x^{*}=3$ and $\beta=1$ into profits, we get $B^{*}=2$. Substituting $\widetilde{x}=4$ and $\beta=1$ into profits, we get $\widetilde{B}=0$.
So the compensation that the firm will demand will be, at least, 2 monetary units.
(2) Given the implicit function $y=f(x)$, defined by the equation $2 x y-e^{y}+x^{2}=0$ in a neighbourhood of the point $x=1, y=0$, it is asked:
(a) find the tangent line and the second-order Taylor Polynomial of the function f at $a=1$.
(b) approximately sketch the graph of the function f near the point $x=1$.
(c) approximately sketch the graph of the inverse function of f.
(Hint for part (b) and (c): use $\left.f^{\prime}(1)<0, f^{\prime \prime}(1)>0\right)$.
0.4 points part a); $\mathbf{0 . 2}$ points part b); 0.4 points part $c)$.
(a) First of all, we notice that $(1,0)$ is a solution of the equation and the first-order derivative of the equation with respect to the implicit variable $y: 2 x-e^{y}$, at the point $x=1, y=0$ satisfies the condition $2-1 \neq 0$, so the equation can define an implicit function $y=f(x)$ near the point $x=$ $1, y=0$. Secondly, we calculate the first-order derivative of the equation: $2 y+2 x y^{\prime}-y^{\prime} e^{y}+2 x=0$ evaluating at $x=1, y(1)=0$ we obtain: $y^{\prime}(1)=f^{\prime}(1)=-2$.
Then the equation of the tangent line is: $y=P_{1}(x)=0-2(x-1)$ or $y=-2 x+2$.
Analogously, we calculate the second-order derivative of the equation: $2 y^{\prime}+2 y^{\prime}+2 x y^{\prime \prime}-y^{\prime \prime} e^{y}-$ $\left(y^{\prime}\right)^{2} e^{y}+2=0$ evaluating at $x=1, y(1)=0, y^{\prime}(1)=-2$ we obtain: $y^{\prime \prime}(1)=f^{\prime \prime}(1)=10$.
Therefore, the second-order Taylor Polynomial is: $y=P_{2}(x)=0-2(x-1)+5(x-1)^{2}=$ $-2(x-1)+5(x-1)^{2}$
(b) Using the second-order Taylor Polynomial, the approximate graph of the function f, near the point $x=1$, will be as you can see in the figure underneath.
(c) The graph of the inverse function $f^{-1}(x)$, will exist in a neighbourhood of the point $(0,1)$.

Using symmetry with respect to the principal diagonal $(y=x)$, the tangent line to the inverse function at $(0,1)$ has slope $-\frac{1}{2}$ and its equation is $y=-\frac{1}{2} x+1$. Therefore, the approximate graph of $f^{-1}(x)$ can also be seen in the same figure below.

(3) Consider the function $f(x)=\frac{\ln x}{\sqrt[3]{x}}$, defined on the interval $(0, \infty)$. Then:
(a) find its asymptotes, the intervals where the function $f(x)$ is increasing/decreasing, and its global extreme points.
(b) find the range and sketch the graph of the function.
(c) state the Weierstrass' theorem. Now, consider the new function $f_{b}(x)$ as $f(x)$ restricted on the interval $[b, \infty)$, where $b>0$. Discuss for which values of b the thesis (or conclusion) of the Weierstrass' theorem is satisfied.
0.4 points part a); 0.3 points part b); 0.3 points part \mathbf{c})
(a) First of all, since $f(x)$ is continuous in its domain we only need to look for asymptotes at 0 and ∞. $\lim _{x \rightarrow 0^{+}} f(x)=\frac{-\infty}{0^{+}}=-\infty$, then $f(x)$ has a vertical asymptote at $x=0$.
$\lim _{x \rightarrow \infty} f(x)=\frac{\infty}{\infty}=($ using L'Hopital $)=\lim _{x \rightarrow \infty} \frac{1 / x}{x^{-2 / 3} / 3}=\lim _{x \rightarrow \infty} \frac{3}{x^{1 / 3}}=0$
then $f(x)$ has a horizontal asymptote $y=0$ at ∞.
Since,

$$
f^{\prime}(x)=\frac{\frac{1}{x} \cdot x^{1 / 3}-(\ln x) x^{-2 / 3} / 3}{x^{2 / 3}}=\frac{3 x^{-2 / 3}-(\ln x) x^{-2 / 3}}{3 x^{2 / 3}}=\frac{3-\ln x}{3 x^{4 / 3}}
$$

we know that $x=e^{3}$ is the unique critical point.
Calculating $f^{\prime}(1)>0$, then $f^{\prime}(x)>0$ if $x \in\left(0, e^{3}\right)$, and $f(x)$ is increasing on $\left(0, e^{3}\right]$.
Calculating $f^{\prime}\left(e^{4}\right)<0$, then $f^{\prime}(x)<0$ if $x \in\left(e^{3}, \infty\right)$, then $f(x)$ is decreasing on $\left[e^{3}, \infty\right)$.
Obviously, $x=e^{3}$ is the global maximizer of $f(x)$ and $f(x)$ has not global minimizer or minimum point.
(b) Based on the above, the maximum value of the function is $f\left(e^{3}\right)=\frac{3}{e}$ and since $\lim _{x \longrightarrow 0^{+}} f(x)=-\infty$, using the Intermediate Value theorem for continuous functions, we can deduce that the range of $f(x)$ is $\left(-\infty, \frac{3}{e}\right]$.
Therefore, The graph of $f(x)$ will have an appearance, approximately, similar to the one in the figure underneath.
(c) We have seen that $f(x)$ is increasing on $\left(0, e^{3}\right]$, decreasing on $\left[e^{3}, \infty\right)$ and also, $\lim _{x \rightarrow \infty} f(x)=0^{+}$. Then, whenever $y=0$ belongs to the range of $f_{b}(x)$ the conclusion of the Weierstrass' theorem will be satisfied. Bearing in mind that $f(1)=0$, we obtain two cases to discuss:
i) if $b \leq 1 \Longrightarrow \min \left(f_{b}\right)=f(b), \max \left(f_{b}\right)=\frac{3}{e}$ then the conclusion of the Weierstrass' theorem will be satisfied.
ii) if $b>1 \Longrightarrow \min \left(f_{b}\right)$ does not exist, and the conclusion of the theorem is not satisfied.

Again, have a Look at the graph of the function.

(4) Let $f(x)=\left\{\begin{array}{ll}e^{a(x-1)} & , x \leq 1 \\ \frac{b}{2 x} & , x>1\end{array}\right.$ be a piecewise-defined function on \mathbb{R} where $a<0, b>0$, it is asked:
(a) state the Mean Value theorem (or Lagrange) for a function defined on $[0,2]$.
(b) find the values of a, b for the function f, so the hypothesis or initial conditions of the theorem are satisfied on $[0,2]$.
(c) suppose that $a=-\ln 2$ and $b=2$. Is the thesis or conclusion of the theorem satisfied for the function f on $[0,2]$?
(Hint for part c: In order to find the number or point c of the conclusion, start finding it in the interval (1,2)).
0.2 points part a); 0.6 points part b); 0.2 points part c)
(a) The hypothesis are f is continuous on $[0,2]$ and derivable on $(0,2)$.

The thesis or conclusion is that there exists a point $c \in(0,2)$ such that $f^{\prime}(c)=(f(2)-f(0)) / 2$.
(b) First of all, we need that $f(x)$ is continuous on $x=1 . \lim _{x \rightarrow-1+} f(x)=b / 2 ; f(1)=\lim _{x \rightarrow-1-} f(x)=1$ so, $f(x)$ is continuous at $x=1$ if $b=2$.
Secondly, supposing f continuous at $x=1$, the function will be derivable at $x=1$ when:
$f^{\prime}\left(1^{+}\right)=f^{\prime}\left(1^{-}\right)$. Then, we obtain:
i) $f^{\prime}\left(1^{+}\right)=\lim _{x \rightarrow 1+} f^{\prime}(x)=\lim _{x \rightarrow 1+} \frac{-b}{2 x^{2}}=\frac{-b}{2}=-1$;
ii) $f^{\prime}\left(1^{-}\right)=a$, since $f^{\prime}(x)=a e^{a(x-1)}$.

Finally, the Lagrange's theorem is satisfied when: $b=2, a=-1$.

(c) The thesis or conclusion is that there is a number $c \in(0,2)$ such that $2 f^{\prime}(c)=f(2)-f(0)$, this is: i) if $c>1,-2 / c^{2}=1 / 2-e^{\ln 2}=1 / 2-2=-3 / 2$ then $c^{2}=4 / 3>1 \Longrightarrow c=\frac{2 \sqrt{3}}{3}>1$, and the thesis of the theorem is satisfied.
ii) meanwhile, for the case $c \leq 1$ there is no need to be studied.

