Exercise	1	2	3	4	Total
Points					

Exam time: 1 hour and 30 minutes.

DEGREE:

GROUP:
(1) Consider the function $f(x)=x e^{\frac{1}{x}}$, defined in the interval $(0, \infty)$. Then:
(a) find the asymptotes of the function and the intervals where $f(x)$ increases and decreases.
(b) find the global and local maximum and minimum, and range (or image) of $f(x)$. Draw the graph of the function.
(c) consider $f_{1}(x)$ to be the function $f(x)$ defined on the interval $[1, \infty)$. Sketch the graph of the inverse function of $f_{1}(x)$.
0.4 points part a); 0.4 points part b); 0.2 points part c)
a) The domain of the function is $(0, \infty)$.

Since f is continuous on its domain, we only need to study its asymptotes at 0 on its right-hand side and at $+\infty$:
i) using the change of variable $x=\frac{1}{t}$ (in this case $x \longrightarrow 0^{+}$if $t \longrightarrow+\infty$) we obtain:
$\lim _{x \longrightarrow 0^{+}} f(x)=\lim _{t \longrightarrow \infty} f\left(\frac{1}{t}\right)=\lim _{t \longrightarrow \infty} \frac{e^{t}}{t}=\frac{\infty}{\infty}=$ [using L'Hopital's Rule] $=\lim _{t \longrightarrow \infty} \frac{e^{t}}{1}=\infty$
Therefore $f(x)$ has a right-sided vertical asymptote at $x=0$.
ii) $\lim _{x \longrightarrow \infty} \frac{f(x)}{x}=\lim _{x \longrightarrow \infty} e^{\frac{1}{x}}=1, \quad$ and $\lim _{x \longrightarrow \infty} f(x)-x=\lim _{x \longrightarrow \infty} x\left(e^{\frac{1}{x}}-1\right)=\lim _{x \longrightarrow \infty} \frac{e^{\frac{1}{x}}-1}{\frac{1}{x}}=$ $=\frac{0}{0}=[$ using L'Hopital's Rule $]=\lim _{x \longrightarrow \infty} \frac{e^{\frac{1}{x}}\left(-1 / x^{2}\right)}{\left(-1 / x^{2}\right)}=1$.
So, $f(x)$ has an oblique asymptote $y=x+1$ at ∞.
Finally, since $f^{\prime}(x)=e^{\frac{1}{x}}\left(1-\frac{1}{x}\right)$, we can deduce from the sign of $f^{\prime}(x)$ that $f(x)$ is increasing on $[1, \infty)$, since $f^{\prime}(x)>0$ on the interval. Analogously, f is decreasing on $(0,1]$ since $f^{\prime}(x)<0$.
b) Interpreting the monotonicity of f, it is deduced that $x=1$ is a local and global minimizer. Furthermore, as there is not local maximizer then can not be a global one either.
On the other hand, since f is decreasing on (0,1$]$, increasing on $[1, \infty)$ and $\lim _{x \longrightarrow 0^{+}} f(x)=\lim _{x \longrightarrow \infty} f(x)=$ ∞, due to the Intermediate Value Theorem we can deduce that the range of the function in the interval $(0, \infty)$ will be $[f(1), \infty)=[e, \infty)$.
The graph of f will have an appearance approximately, similar to the one in the figure underneath.
c) We know that, f_{1} is increasing on $[1, \infty), f_{1}(1)=e$ and $f_{1}(x)$ has an oblique asymptote $y=x+1$. Therefore, its inverse function is increasing on $[e, \infty)$, takes the value 1 at the point e, will have an oblique asymptote with equation $y=x-1$ and the graph of its inverse will have an appearance approximately, similar to the one in this figure:

(2) Given the implicit function $y=f(x)$, defined by the equation

$$
-3 x+3 y+e^{-x}+e^{y}=2
$$

in a neighbourhood of the point $x=0, y=0$, it is asked:
(a) find the tangent line and the second-order Taylor Polynomial of the function f at $a=0$.
(b) sketch the graph of the function f near the point $x=0$.
(c) use the second-order Taylor Polynomial of $f(x)$ to obtain the approximate values of $f(-0.1)$ and $f(0,1)$. Will $f(0)$ be greater, less or equal than the exact value of $\frac{1}{2}(f(-0.1)+f(0.1)) ?$
(Hint for part (b) and (c): use $f^{\prime \prime}(0)<0$).
0.4 points part a); 0.2 points part b); 0.4 points part c).
a) First of all, we calculate the first-order derivative of the equation:
$-3+3 y^{\prime}-e^{-x}+y^{\prime} e^{y}=0$
evaluating at $x=0, y(0)=0$ we obtain: $y^{\prime}(0)=f^{\prime}(0)=1$.
Then the equation of the tangent line is: $y=P_{1}(x)=x$.
Secondly, we calculate the second-order derivative of the equation:
$3 y^{\prime \prime}+e^{-x}+y^{\prime \prime} e^{y}+\left(y^{\prime}\right)^{2} e^{y}=0$
evaluating at $x=0, y(0)=0, y^{\prime}(0)=1$ we obtain: $y^{\prime \prime}(0)=f^{\prime \prime}(0)=-1 / 2$.
Therefore, the second-order Taylor Polynomial is: $y=P_{2}(x)=x-\frac{1}{4} x^{2}$.
b) Using the second-order Taylor Polynomial, the approximate graph of the function f, near the point $x=0$ will be as you can see in the figure underneath.
c) Finally, using the second-order Taylor Polynomial we obtain:
$f(-0.1) \approx-0.1-\frac{1}{4}(-0.1)^{2}=-0.1025$ and $f(0.1) \approx 0.1-\frac{1}{4}(0.1)^{2}=0.0975 \Longrightarrow$ $\frac{1}{2}(f(-0.1)+f(0.1)) \approx-\frac{1}{4}(0.1)^{2}=-0.0025$.
Finally, since $f(x)$ is concave, $\frac{1}{2}(f(-0.1)+f(0.1))$ will be less than $f(0)$, as you can notice looking at the graph below or if you prefer we can calculate its approximate value using the second-order Taylor Polynomial: $\frac{1}{2}(f(-0.1)+f(0.1)) \approx-0.0025$ is less than $f(0)=0$
Naming $f^{*}(1)=\frac{1}{2}(f(0.9)+f(1.1))$, the graph will be:

(3) Let $C(x)=36+16 x+a x^{2}$ be the cost function and $p(x)=76-x$ the inverse demand function of a monopolistic firm, with $a>0$. Then:
(a) Calculate the value of the parameter a, knowing that the production level to maximize the profit is $x^{*}=6$.
(b) Calculate the value of the parameter a, knowing that the production level to minimize the average cost is $x^{*}=6$.
0.5 points part a); 0.5 points part b).
a) First of all, we calculate the profit function.
$B(x)=(76-x) x-\left(36+16 x+a x^{2}\right)=-(a+1) x^{2}+60 x-36$
Secondly, we calculate the first and second order derivatives of B :
$B^{\prime}(x)=-2(a+1) x+60 ; B^{\prime \prime}(x)=-2(a+1)<0$
we see that B has a unique critical point at $x^{*}=\frac{60}{2(a+1)}$
and, since B is a concave function, the critical point is the unique global minimizer.
Finally, $x^{*}=6=\frac{60}{2(a+1)} \Longrightarrow a+1=5 \Longrightarrow a=4$
b) The average cost function is $\frac{C(x)}{x}=\frac{36}{x}+16+a x$,
its first order derivative: $\left(\frac{C(x)}{x}\right)^{\prime}=-\frac{36}{x^{2}}+a=0 \Longleftrightarrow x^{2}=\frac{36}{a}$.
Since $\left(\frac{C(x)}{x}\right)^{\prime \prime}=\frac{72}{x^{3}}>0$, the function is convex and the critical point will be the global minimizer.
Then $x^{*}=6=\frac{6}{\sqrt{a}} \Longrightarrow a=1$
(4) Let

$$
f(x)= \begin{cases}x^{2}-2 x+a & , x \leq 1 \\ b x^{2}+2 x+1 & , x>1\end{cases}
$$

be a piece-wise defined function in the interval $[0,2]$. Then:
(a) state Bolzano's Theorem for any function f defined in the interval [0,2]. Calculate a and b such that $f(x)$ satisfies the hypothesis (or conditions) of this theorem.
Are the hypotheses (or initial conditions) satisfied for any $b<0$?
(b) state Lagrange's Theorem (or Mean Value Theorem) for any function f defined in the interval $[0,2]$. Find a, b that satisfy the hypotheses of the theorem.
For the found values of a, b calculate the values of c that satisfy the thesis or conclusion of the theorem.
0.5 points part a); 0.5 points part b)
a) The hypotheses are f is continuous on $[0,2]$ and $f(0) \cdot f(2)<0$.

The thesis or conclusion is, there is a $c \in(0,2)$ such that $f(c)=0$.
First of all, we need that the function f is continuous at $x=1$. Since, $\lim _{x \longrightarrow 1^{-}} f(x)=f(1)=-1+a$ and $\lim _{x \longrightarrow 1^{+}} f(x)=b+3$, we can deduced that the function will be continuous in $[0,2]$ when: $a=b+4$ or if you prefer, $b=a-4$.
Secondly, supposing f continuous $(b=a-4)$, the condition $f(0) \cdot f(2)<0$ will be satisfied, when:
i) $f(0)=a<0$ and $f(2)=4 b+5>0$; or
ii) $f(0)=a>0$ and $f(2)=4 b+5<0$.

So, in the first case if $a<0$ (or $b<-4$ since $b=a-4$), we need $f(2)=4 b+5>0 \Longrightarrow b>\frac{-5}{4}$ which is impossible. Then in the first case i), when $a<0$, the hypothesis is never satisfied.
And in the other case, if $a>0$ (or $b>-4$ since $b=a-4$), we need $f(2)=4 b+5<0 \Longrightarrow b<\frac{-5}{4}$ and we obtain the solution $-4<b<\frac{-5}{4}<0$ or equivalently $0<a<\frac{11}{4}$, that satisfies the initial conditions for the theorem in case ii).
b) The hypotheses are that f is continuous on $[0,2]$ and differentiable on $(0,2)$.

The thesis (or conclusion) is that there is a $c \in(0,2)$ such that $f(2)-f(0)=2 f^{\prime}(c)$.
We have seen that the function is continuous on [0,2] when: $a=b+4$.
Supposing the continuity of f, we need it to be differentiable at $x=1$.
Since $f^{\prime}(x)=\left\{\begin{array}{ll}2 x-2 & , x<1 \\ 2 b x+2 & , x>1\end{array}\right.$ then $\lim _{x \longrightarrow 1^{-}} f^{\prime}(x)=0, \lim _{x \longrightarrow 1^{+}} f^{\prime}(x)=2 b+2$
Supposing the continuity of $f^{\prime}(x)$ at $x=1$ when $2 b+2=0$. The hypotheses of the theorem are satisfied if $b=-1, a=3$. Now, with those values the point c must satisfy $f(2)-f(0)=$ $-2=2 f^{\prime}(c)$. Obviously, $c \neq 1$; so then:
i) if $c<1: 2 c-2=-1 \Longrightarrow c=\frac{1}{2}$
ii) if $c>1:-2 c+2=-1 \Longrightarrow c=\frac{3}{2}$ And the situation can be seen at the figure.

