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(1) Consider the function f(x) = xe
1
x , defined in the interval (0,∞). Then:

(a) find the asymptotes of the function and the intervals where f(x) increases and decreases.

(b) find the global and local maximum and minimum, and range (or image) of f(x). Draw the graph

of the function.

(c) consider f1(x) to be the function f(x) defined on the interval [1,∞). Sketch the graph of the

inverse function of f1(x).

0.4 points part a); 0.4 points part b); 0.2 points part c)

a) The domain of the function is (0,∞).

Since f is continuous on its domain, we only need to study its asymptotes at 0 on its right-hand

side and at +∞:

i) using the change of variable x = 1
t (in this case x −→ 0+ if t −→ +∞ ) we obtain:

lim
x−→0+

f(x) = lim
t−→∞

f

(
1

t

)
= lim

t−→∞

et

t
=
∞
∞

= [using L’ Hopital’s Rule] = lim
t−→∞

et

1
=∞

Therefore f(x) has a right-sided vertical asymptote at x = 0.

ii) lim
x−→∞

f(x)

x
= lim

x−→∞
e

1
x = 1, and lim

x−→∞
f(x)− x = lim

x−→∞
x(e

1
x − 1) = lim

x−→∞

e
1
x − 1
1
x

=

=
0

0
= [using L’Hopital’s Rule] = lim

x−→∞

e
1
x (−1/x2)

(−1/x2)
= 1.

So, f(x) has an oblique asymptote y = x + 1 at ∞.

Finally, since f ′(x) = e
1
x (1 − 1

x ), we can deduce from the sign of f ′(x) that f(x) is increasing on

[1,∞), since f ′(x) > 0 on the interval. Analogously, f is decreasing on (0, 1] since f ′(x) < 0.

b) Interpreting the monotonicity of f , it is deduced that x = 1 is a local and global minimizer.

Furthermore, as there is not local maximizer then can not be a global one either.

On the other hand, since f is decreasing on (0, 1], increasing on [1,∞) and lim
x−→0+

f(x) = lim
x−→∞

f(x) =

∞, due to the Intermediate Value Theorem we can deduce that the range of the function in the

interval (0,∞) will be [f(1),∞) = [e,∞).

The graph of f will have an appearance approximately, similar to the one in the figure underneath.

c) We know that, f1 is increasing on [1,∞), f1(1) = e and f1(x) has an oblique asymptote y = x+ 1.

Therefore, its inverse function is increasing on [e,∞), takes the value 1 at the point e, will have an

oblique asymptote with equation y = x − 1 and the graph of its inverse will have an appearance

approximately, similar to the one in this figure:



(2) Given the implicit function y = f(x), defined by the equation

−3x + 3y + e−x + ey = 2

in a neighbourhood of the point x = 0, y = 0, it is asked:

(a) find the tangent line and the second-order Taylor Polynomial of the function f at a = 0.

(b) sketch the graph of the function f near the point x = 0.

(c) use the second-order Taylor Polynomial of f(x) to obtain the approximate values of f(−0.1) and

f(0, 1). Will f(0) be greater, less or equal than the exact value of 1
2 (f(−0.1) + f(0.1))?

(Hint for part (b) and (c): use f ′′(0) < 0).

0.4 points part a); 0.2 points part b); 0.4 points part c).

a) First of all, we calculate the first-order derivative of the equation:

−3 + 3y′ − e−x + y′ey = 0

evaluating at x = 0, y(0) = 0 we obtain: y′(0) = f ′(0) = 1.

Then the equation of the tangent line is: y = P1(x) = x.

Secondly, we calculate the second-order derivative of the equation:

3y′′ + e−x + y′′ey + (y′)2ey = 0

evaluating at x = 0, y(0) = 0, y′(0) = 1 we obtain: y′′(0) = f ′′(0) = −1/2.

Therefore, the second-order Taylor Polynomial is: y = P2(x) = x− 1
4x

2.

b) Using the second-order Taylor Polynomial, the approximate graph of the function f , near the point

x = 0 will be as you can see in the figure underneath.

c) Finally, using the second-order Taylor Polynomial we obtain:

f(−0.1) ≈ −0.1− 1
4 (−0.1)2 = −0.1025 and f(0.1) ≈ 0.1− 1

4 (0.1)2 = 0.0975 =⇒
1
2 (f(−0.1) + f(0.1)) ≈ − 1

4 (0.1)2 = −0.0025.

Finally, since f(x) is concave, 1
2 (f(−0.1) + f(0.1)) will be less than f(0), as you can notice looking

at the graph below or if you prefer we can calculate its approximate value using the second-order

Taylor Polynomial: 1
2 (f(−0.1) + f(0.1)) ≈ −0.0025 is less than f(0) = 0

Naming f∗(1) = 1
2 (f(0.9) + f(1.1)), the graph will be:

(¡0.1; f(¡0.1))

(0.1; f(0.1))

(0; f ¤(0))

y = x

y = f(x)



(3) Let C(x) = 36 + 16x + ax2 be the cost function and p(x) = 76 − x the inverse demand

function of a monopolistic firm, with a > 0. Then:

(a) Calculate the value of the parameter a, knowing that the production level to maximize the profit

is x∗ = 6.

(b) Calculate the value of the parameter a, knowing that the production level to minimize the average

cost is x∗ = 6.

0.5 points part a); 0.5 points part b).

a) First of all, we calculate the profit function.

B(x) = (76− x)x− (36 + 16x + ax2) = −(a + 1)x2 + 60x− 36

Secondly, we calculate the first and second order derivatives of B:

B′(x) = −2(a + 1)x + 60; B′′(x) = −2(a + 1) < 0

we see that B has a unique critical point at x∗ =
60

2(a + 1)
and, since B is a concave function, the critical point is the unique global minimizer.

Finally, x∗ = 6 =
60

2(a + 1)
=⇒ a + 1 = 5 =⇒ a = 4

b) The average cost function is
C(x)

x
=

36

x
+ 16 + ax,

its first order derivative:

(
C(x)

x

)′
= −36

x2
+ a = 0⇐⇒ x2 =

36

a
.

Since

(
C(x)

x

)′′
=

72

x3
> 0, the function is convex and the critical point will be the global minimizer.

Then x∗ = 6 =
6√
a

=⇒ a = 1



(4) Let

f(x) =

{
x2 − 2x + a , x ≤ 1

bx2 + 2x + 1 , x > 1

be a piece-wise defined function in the interval [0, 2]. Then:

(a) state Bolzano’s Theorem for any function f defined in the interval [0, 2]. Calculate a and b such

that f(x) satisfies the hypothesis (or conditions) of this theorem.

Are the hypotheses (or initial conditions) satisfied for any b < 0?

(b) state Lagrange’s Theorem (or Mean Value Theorem) for any function f defined in the interval

[0, 2]. Find a, b that satisfy the hypotheses of the theorem.

For the found values of a, b calculate the values of c that satisfy the thesis or conclusion of the

theorem.

0.5 points part a); 0.5 points part b)

a) The hypotheses are f is continuous on [0, 2] and f(0) · f(2) < 0.

The thesis or conclusion is, there is a c ∈ (0, 2) such that f(c) = 0.

First of all, we need that the function f is continuous at x = 1. Since, lim
x−→1−

f(x) = f(1) = −1 + a

and lim
x−→1+

f(x) = b+3, we can deduced that the function will be continuous in [0, 2] when: a = b+4

or if you prefer, b = a− 4.

Secondly, supposing f continuous (b = a− 4), the condition f(0) · f(2) < 0 will be satisfied, when:

i) f(0) = a < 0 and f(2) = 4b + 5 > 0; or

ii) f(0) = a > 0 and f(2) = 4b + 5 < 0.

So, in the first case if a < 0 (or b < −4 since b = a − 4), we need f(2) = 4b + 5 > 0 =⇒ b > −5
4

which is impossible. Then in the first case i), when a < 0, the hypothesis is never satisfied.

And in the other case, if a > 0 (or b > −4 since b = a− 4), we need f(2) = 4b + 5 < 0 =⇒ b < −5
4

and we obtain the solution −4 < b < −5
4 < 0 or equivalently 0 < a < 11

4 , that satisfies the initial

conditions for the theorem in case ii).

b) The hypotheses are that f is continuous on [0, 2] and differentiable on (0, 2).

The thesis (or conclusion) is that there is a c ∈ (0, 2) such that f(2)− f(0) = 2f ′(c).

We have seen that the function is continuous on [0, 2] when: a = b + 4.

Supposing the continuity of f , we need it to be differentiable at x = 1.

Since f ′(x) =

{
2x− 2 , x < 1

2bx + 2 , x > 1
then

lim
x−→1−

f ′(x) = 0, lim
x−→1+

f ′(x) = 2b + 2

Supposing the continuity of f ′(x) at x = 1

when 2b+2 = 0. The hypotheses of the theorem

are satisfied if b = −1, a = 3. Now, with those

values the point c must satisfy f(2) − f(0) =

−2 = 2f ′(c). Obviously, c 6= 1; so then:

i) if c < 1 : 2c − 2 = −1 =⇒ c = 1
2

ii) if c > 1 : −2c + 2 = −1 =⇒ c = 3
2

And the situation can be seen at the figure.


