Universidad Carlos III de Madrid

Exercise	1	2	3	4	Total
Points					

Department of Economics

Introduction to Mathematics for Economics January 26th 2021, Final Exam. Exam time: 2 hours.
LAST NAME:
ID:
DEGREE:
FIRST NAME:
GROUP:
(1) Consider the function $f(x)=(x+1)^{2} e^{-x}$. Then:
(a) find the asymptotes of the function and the intervals where $f(x)$ increases and decreases.
(b) find the global maximum and minimum, and range (or image) of $f(x)$. Draw the graph of the function.
(c) consider $f_{1}(x)$ to be the function $f(x)$ defined on the interval $[-1,1]$, sketch the graph of the inverse function of $f_{1}(x)$.
(Hint for part (c): do not try to calculate the explicit formula of the inverse function of f_{1})
0.6 points part a); 0.6 points part b); 0.3 points part c)
(a) The domain of the function is \mathbb{R}.

Since f is continuous on its domain, we only need to study its asymptotes at ∞ and $-\infty$:
i) $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{(x+1)^{2}}{e^{x}}=\frac{\infty}{\infty}=$ [applying L'Hopital's Rule twice $]=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=$ $=\frac{2}{\infty}=0$. Therefore $f(x)$ has a horizontal asymptote $y=0$ at ∞.
ii) $\lim _{x \longrightarrow-\infty} \frac{f(x)}{x}=\lim _{x \longrightarrow-\infty} \frac{(x+1)^{2}}{x} \cdot \lim _{x \rightarrow-\infty} e^{-x}=-\infty$, then f has no horizontal neither oblique asymptote at $-\infty$.
As $f^{\prime}(x)=e^{-x}\left(1-x^{2}\right)$, we can deduce: f is increasing $\Longleftrightarrow f^{\prime}(x)>0 \Longleftrightarrow 1-x^{2}>0$; then f is increasing on $[-1,1]$. Analogously, f is decreasing on $(-\infty,-1]$ and $[1, \infty)$.
(b) Interpreting the monotonicity of f, it is deduced that -1 is a local minimizer and 1 is a local maximizer. Since $\lim _{x \longrightarrow-\infty} f(x)=\infty$, there is no global maximum. In addition, as $f(-1)=0$ and $f(x)>0$ (if $x \neq-1$), it is deduced that 0 is a strict (unique) global minimizer. Finally, as $f(-1)=0, f(x) \geqslant 0$ and $\lim _{x \longrightarrow-\infty} f(x)=\infty$, due to the Intermediate Value Theorem we can deduce that the range of the function will be $[0, \infty)$.
The graph of f will have an appearance approximately, similar to the one in figure A.
(c) We know that, f_{1} is increasing on $[-1,1], f_{1}(-1)=0, f_{1}(1)=4 / e$. Therefore, the graph of its inverse will have an appearance approximately, similar to the one in figure B:

(2) Given the implicit function $y=f(x)$, defined by the equation $e^{x}+y e^{y}=2 e$ in a neighbourhood of the point $x=1, y=1$, it is asked:
(a) find the tangent line and the second-order Taylor Polynomial of the function at $a=1$.
(b) sketch the graph of the function f near the point $x=1, y=1$. Use the tangent line to the graph of $f(x)$ to obtain the approximate values of $f(0.9)$ and $f(1.1)$.
Will $f(1)$ be greater, less or equal than the exact value of $\frac{1}{2}(f(0.9)+f(1.1))$?
(Hint for part (b): use that $f^{\prime \prime}(1)<0$.
0.8 points part a); 0.7 points part b)
(a) First of all, we calculate the first-order derivative of the equation:
$e^{x}+y^{\prime} e^{y}+y y^{\prime} e^{y}=e^{x}+y^{\prime}(y+1) e^{y}=0$
evaluating at $x=1, y(1)=1$ we obtain: $y^{\prime}(1)=f^{\prime}(1)=-1 / 2$.
Then the equation of the tangent line is: $y=P_{1}(x)=1-\frac{1}{2}(x-1)$. Secondly, we calculate the second-order derivative of the equation:
$e^{x}+y^{\prime \prime}(y+1) e^{y}+\left(y^{\prime}\right)^{2} e^{y}+y^{\prime}(y+1) y^{\prime} e^{y}=0$
evaluating at $x=1, y(1)=1, y^{\prime}(1)=-1 / 2$ we obtain $y^{\prime \prime}(1)=f^{\prime \prime}(1)=-7 / 8$.
Therefore, the second-order Taylor Polynomial is: $y=P_{2}(x)=1-\frac{1}{2}(x-1)-\frac{7}{16}(x-1)^{2}$.
(b) Using the second-order Taylor Polynomial, the approximate graph of the function f, near the point $x=1$, will be as you can see in the figure underneath. On the other hand, using the tangent line, the first order approximation will be:
$f(1.1) \approx 1-\frac{1}{2}(0.1)=0.95 ; f(0.9) \approx 1-\frac{1}{2}(-0.1)=1.05$.
Finally, since $f(x)$ is concave, $\frac{1}{2}(f(0.9)+f(1.1))$ will be less than $f(1)$, as you can notice looking at the graph below or if you prefer we can calculate its approximate value using the second-order Taylor Polynomial: $\frac{1}{2}(f(0.9)+f(1.1)) \approx 1-\frac{7}{8} 0.01<f(1)=1$.
Naming $f^{*}(1)=\frac{1}{2}(f(0.9)+f(1.1))$, the graph will be:

(3) Let $C(x)=C_{0}+50 x+\frac{1}{2} x^{2}$ be the cost function and $p(x)=710-5 x$ the inverse demand function of a monopolistic firm. Then:
(a) calculate the price p^{*} and the production x^{*} that maximizes the profit.
(b) find C_{0} such that the production obtained in part a) would be the same that minimizes the average cost.
0.6 points part a); 0.9 points part b)
(a) First of all, we calculate the profit function.
$B(x)=(710-5 x) x-\left(C_{0}+50 x+\frac{1}{2} x^{2}\right)=-\frac{11}{2} x^{2}+660 x-C_{0}$
Secondly, we calculate the first and second order derivatives of B :
$B^{\prime}(x)=-11 x+660 ; B^{\prime \prime}(x)=-11<0$
we see that B has a unique critical point at $x^{*}=\frac{660}{11}=60$ and, since B is a concave function, the critical point is the unique global minimizer.
Finally, $p^{*}=p(60)=710-300=410$
(b) The average cost function is $\frac{C(x)}{x}=\frac{C_{0}}{x}+50+\frac{1}{2} x$,
its first order derivative: $\left(\frac{C(x)}{x}\right)^{\prime}=-\frac{C_{0}}{x^{2}}+\frac{1}{2}=0 \Longleftrightarrow x^{2}=2 C_{0}$.
Since $\left(\frac{C(x)}{x}\right)^{\prime \prime}=\frac{2 C_{0}}{x^{3}}>0$, the function is convex and the critical point will be the global minimizer.
Since $x^{*}=60$ must be the minimizer, the solution will be $60=x^{*}=\sqrt{2 C_{0}} \Longrightarrow C_{0}=1800$.
(4) Let $f(x)=\left\{\begin{array}{ll}(x+a)^{2}, & x<2 \\ b, & x=2 \\ -x^{2}+6 x+1, & x>2\end{array}\right.$ be a piece-wise defined function in the interval [1,3]. Then:
(a) state Weierstrass' Theorem for a function g defined in an interval I. Calculate a y b such that $f(x)$ satisfies the hypothesis of this theorem.
(b) suppose that $a=-1$, find the values of b such that the thesis (or conclusion) of Weierstrass' Theorem is satisfied in the interval $[1,3]$. What can you say for the intervals $[1,2]$ or $[2,3]$?
0.6 points part a); 0.9 points part b)
(a) The hypothesis is that g is continuous in an interval I closed and bounded. The thesis (or conclusion) is that the function g attains its global maximum and minimum on I.
Thus, we need that the function f is continuous at $x=2$.
Since, $\lim _{x \longrightarrow 2^{+}} f(x)=-4+12+1=b=f(2) \Longrightarrow b=9$.
And $\lim _{x \longrightarrow 2^{-}} f(x)=(2+a)^{2}=9=f(2) \Longrightarrow a=-5$ or $a=1$.
Therefore, we can deduced that the function will be continuous in $[1,3]$ when: $b=9$ and $(a=-5$ or $a=1$).
(b) For the value $a=-1$ the hypothesis of the theorem is not satisfied in the interval $[1,3]$.

Meanwhile, it could be possible that the thesis is satisfied in this interval depending on the values of b.
If we notice that f is increasing in $[1,2)$ and also in $(2,3]$, and furthermore:
$0=f(1)<\lim _{x \longrightarrow 2^{-}} f(x)=1<9=\lim _{x \longrightarrow 2^{+}} f(x)<f(3)=10$.
We can consider three different cases depending on b :
i) $b \leq 0 \Longrightarrow \min f=b, \max f=10$.
ii) $0 \leq b \leq 10 \Longrightarrow \min f=0, \max f=10$.
iii) $10 \leq b \Longrightarrow \min f=0, \max f=b$.

Then, for any real value of b the thesis of Weierstrass' Theorem is satisfied.
Now, in the case of the interval $[1,2]$ the theorem is only satisfied if $b \geqslant 1$, and it happens that $\min f=0, \max f=b$. Notice that if $b<1$ the maximum doesn't exist as we can appreciate in the left graph below.
Analogously, in the case of the interval $[2,3]$ the theorem is only satisfied if $b \leq 9$, and it happens that $\min f=b, \max f=10$. Notice that if $b>9$ the minimum doesn't exist, as we can appreciate in the right graph below.

