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(1) Consider the function f(x) = (x + 1)2e−x. Then:

(a) find the asymptotes of the function and the intervals where f(x) increases and decreases.

(b) find the global maximum and minimum, and range (or image) of f(x). Draw the graph of the

function.

(c) consider f1(x) to be the function f(x) defined on the interval [−1, 1], sketch the graph of the inverse

function of f1(x).

(Hint for part (c): do not try to calculate the explicit formula of the inverse function of f1)

0.6 points part a); 0.6 points part b); 0.3 points part c)

(a) The domain of the function is R.

Since f is continuous on its domain, we only need to study its asymptotes at ∞ and −∞ :

i) lim
x−→∞

f(x) = lim
x−→∞

(x + 1)2

ex
= ∞
∞ = [ applying L’Hopital’s Rule twice ] = lim

x−→∞

2

ex
=

=
2

∞
= 0. Therefore f(x) has a horizontal asymptote y = 0 at ∞.

ii) lim
x−→−∞

f(x)

x
= lim

x−→−∞

(x + 1)2

x
. lim
x−→−∞

e−x = −∞, then f has no horizontal neither oblique

asymptote at −∞.

As f ′(x) = e−x(1 − x2), we can deduce: f is increasing ⇐⇒ f ′(x) > 0 ⇐⇒ 1 − x2 > 0; then f is

increasing on [−1, 1]. Analogously, f is decreasing on (−∞,−1] and [1,∞).

(b) Interpreting the monotonicity of f , it is deduced that −1 is a local minimizer and 1 is a local

maximizer. Since lim
x−→−∞

f(x) = ∞, there is no global maximum. In addition, as f(−1) = 0

and f(x) > 0 (if x 6= −1), it is deduced that 0 is a strict (unique) global minimizer. Finally, as

f(−1) = 0, f(x) > 0 and lim
x−→−∞

f(x) = ∞, due to the Intermediate Value Theorem we can deduce

that the range of the function will be [0,∞).

The graph of f will have an appearance approximately, similar to the one in figure A.

(c) We know that, f1 is increasing on [−1, 1], f1(−1) = 0, f1(1) = 4/e. Therefore, the graph of its

inverse will have an appearance approximately, similar to the one in figure B:

(a) (b)



(2) Given the implicit function y = f(x), defined by the equation ex + yey = 2e in a neighbour-

hood of the point x = 1, y = 1, it is asked:

(a) find the tangent line and the second-order Taylor Polynomial of the function at a = 1.

(b) sketch the graph of the function f near the point x = 1, y = 1. Use the tangent line to the graph

of f(x) to obtain the approximate values of f(0.9) and f(1.1).

Will f(1) be greater, less or equal than the exact value of 1
2 (f(0.9) + f(1.1))?

(Hint for part (b): use that f ′′(1) < 0.

0.8 points part a); 0.7 points part b)

(a) First of all, we calculate the first-order derivative of the equation:

ex + y′ey + yy′ey = ex + y′(y + 1)ey = 0

evaluating at x = 1, y(1) = 1 we obtain: y′(1) = f ′(1) = −1/2.

Then the equation of the tangent line is: y = P1(x) = 1 − 1
2 (x − 1). Secondly, we calculate the

second-order derivative of the equation:

ex + y′′(y + 1)ey + (y′)2ey + y′(y + 1)y′ey = 0

evaluating at x = 1, y(1) = 1, y′(1) = −1/2 we obtain y′′(1) = f ′′(1) = −7/8.

Therefore, the second-order Taylor Polynomial is: y = P2(x) = 1− 1
2 (x− 1)− 7

16 (x− 1)2.

(b) Using the second-order Taylor Polynomial, the approximate graph of the function f , near the point

x = 1, will be as you can see in the figure underneath. On the other hand, using the tangent line,

the first order approximation will be:

f(1.1) ≈ 1− 1
2 (0.1) = 0.95; f(0.9) ≈ 1− 1

2 (−0.1) = 1.05.

Finally, since f(x) is concave, 1
2 (f(0.9) + f(1.1)) will be less than f(1), as you can notice looking

at the graph below or if you prefer we can calculate its approximate value using the second-order

Taylor Polynomial: 1
2 (f(0.9) + f(1.1)) ≈ 1− 7

80.01 < f(1) = 1.

Naming f∗(1) = 1
2 (f(0.9) + f(1.1)), the graph will be:



(3) Let C(x) = C0 + 50x + 1
2x

2 be the cost function and p(x) = 710 − 5x the inverse demand

function of a monopolistic firm. Then:

(a) calculate the price p∗ and the production x∗ that maximizes the profit.

(b) find C0 such that the production obtained in part a) would be the same that minimizes the average

cost.

0.6 points part a); 0.9 points part b)

(a) First of all, we calculate the profit function.

B(x) = (710− 5x)x− (C0 + 50x + 1
2x

2) = − 11
2 x2 + 660x− C0

Secondly, we calculate the first and second order derivatives of B:

B′(x) = −11x + 660; B′′(x) = −11 < 0

we see that B has a unique critical point at x∗ =
660

11
= 60 and, since B is a concave function, the

critical point is the unique global minimizer.

Finally, p∗ = p(60) = 710− 300 = 410

(b) The average cost function is
C(x)

x
=

C0

x
+ 50 + 1

2x,

its first order derivative:

(
C(x)

x

)′
= −C0

x2
+ 1

2 = 0⇐⇒ x2 = 2C0.

Since

(
C(x)

x

)′′
=

2C0

x3
> 0, the function is convex and the critical point will be the global

minimizer.

Since x∗ = 60 must be the minimizer, the solution will be

60 = x∗ =
√

2C0 =⇒ C0 = 1800.



(4) Let f(x) =


(x + a)2, x < 2

b, x = 2

−x2 + 6x + 1, x > 2

be a piece-wise defined function in the interval [1, 3]. Then:

(a) state Weierstrass’ Theorem for a function g defined in an interval I. Calculate a y b such that f(x)

satisfies the hypothesis of this theorem.

(b) suppose that a = −1, find the values of b such that the thesis (or conclusion) of Weierstrass’

Theorem is satisfied in the interval [1, 3]. What can you say for the intervals [1, 2] or [2, 3]?

0.6 points part a); 0.9 points part b)

(a) The hypothesis is that g is continuous in an interval I closed and bounded. The thesis (or conclusion)

is that the function g attains its global maximum and minimum on I.

Thus, we need that the function f is continuous at x = 2.

Since, lim
x−→2+

f(x) = −4 + 12 + 1 = b = f(2) =⇒ b = 9.

And lim
x−→2−

f(x) = (2 + a)2 = 9 = f(2) =⇒ a = −5 or a = 1.

Therefore, we can deduced that the function will be continuous in [1, 3] when: b = 9 and (a = −5

or a = 1).

(b) For the value a = −1 the hypothesis of the theorem is not satisfied in the interval [1, 3].

Meanwhile, it could be possible that the thesis is satisfied in this interval depending on the values

of b.

If we notice that f is increasing in [1, 2) and also in (2, 3], and furthermore:

0 = f(1) < lim
x−→2−

f(x) = 1 < 9 = lim
x−→2+

f(x) < f(3) = 10.

We can consider three different cases depending on b:

i) b ≤ 0 =⇒ min f = b,max f = 10.

ii) 0 ≤ b ≤ 10 =⇒ min f = 0,max f = 10.

iii) 10 ≤ b =⇒ min f = 0,max f = b.

Then, for any real value of b the thesis of Weierstrass’ Theorem is satisfied.

Now, in the case of the interval [1, 2] the theorem is only satisfied if b > 1, and it happens that

min f = 0,max f = b. Notice that if b < 1 the maximum doesn’t exist as we can appreciate in the

left graph below.

Analogously, in the case of the interval [2, 3] the theorem is only satisfied if b ≤ 9, and it happens

that min f = b, max f = 10. Notice that if b > 9 the minimum doesn’t exist, as we can appreciate

in the right graph below.


