Consider the function $f(x) = x^3 e^{-x}$.

- (a) (5 points) Calculate the domain and the asymptotes of the function f.
- (b) (10 points) Calculate the intervals where f is increasing or decreasing, as well as the local and global maxima and minima of f. Find the image of f and draw its graph.

Solution:

- (a) Since that f is continuous in its domain, only asymptotes at ∞ and $-\infty$ are taken into consideration:
 - i) $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} x^2 e^{-x} = \infty$, thus f has neither horizontal nor oblique asymptotes at $-\infty$. ii) $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x^3}{e^x} = \frac{\infty}{\infty} = [$ after three applications of L'Hopital rule $] = \lim_{x \to \infty} \frac{6}{e^x} = \frac{6}{\infty} = 0$.

Hence, f(x) has horizontal asymptote y = 0 at ∞ .

(b) Since $f'(x) = e^{-x}(-x^3 + 3x^2)$, we deduce that:

f is increasing $\Leftrightarrow f'(x) > 0 \Leftrightarrow -x^3 + 3x^2 = x^2(-x+3) > 0$; So f increasing in $(-\infty, 3]$. In the same way, f is decreasing in $[3, \infty)$.

From this study we conclude that 3 is both a local and global maximizer. Since there are no other critical points, there cannot be minimizers.

Finally, since $\lim_{x \to -\infty} f(x) = -\infty$ and that a continuous function satisfies the Theorem of the Intermediate Values, we get that the image of f is $(-\infty, f(3)] = (-\infty, 27e^{-3}]$.

The figure below shows the graph of f.

Given the function y = f(x) defined implicitly by the equation

$$xe^y + ye^x = 2e$$

around the point x = 1, y = 1, answer the following questions:

- (a) (8 points) Find the tangent line and the Taylor polynomial of degree two of the implicit function at the point a = 1.
- (b) (7 points) Draw the graph of f around the point x = 1 and using the tangent line, obtain approximated values of f(0.9) and f(1.2).

Justify if some of the above approximations are by excess or by default.

Solution:

(a) Differentiating once in the equation we get:

$$(1 + xy')e^y + (y' + y)e^x = 0$$

and plugging into x = 1, y(1) = 1, we have $2e(y' + 1) = 0 \Longrightarrow y'(1) = f'(1) = -1$. The equation of the tangent line is: $y = P_1(x) = 1 - (x - 1)$; that is, y = 2 - x. Differentiating again we get:

$$(y' + xy'' + (1 + xy')y')e^y + (y'' + 2y' + y)e^x = 0$$

and plugging into x = 1, y(1) = 1, y'(1) = -1 we have $2e(y'' - 1) = 0 \Rightarrow y''(1) = f''(1) = 1$. The second order Taylor polynomial is: $y = P_2(x) = 1 - (x - 1) + \frac{1}{2}(x - 1)^2$.

(b) The second order Taylor polynomial approximates the graph of f near to the point x = 1 and it is shown in the figure below.

On the other hand the approximated values of first order are:

$$f(0.9) \approx P_1(0.9) = 1 - (-0,1) = 1,1, \qquad f(1,2) \approx P_1(1.2) = 1 - (0.2) = 0.8.$$

Since the function is convex near x = 1, due to f''(1) > 0, the approximated values obtained with the tangent line are by default in both cases.

Let $C(x) = 85 + 100x - x^2$ be the cost function and p(x) = 200 - 3x be the inverse demand function of a monopolist firm, with $0 \le x \le 50$ being the number of units produced of a given good. Answer the following questions:

- (a) (6 points) Find the price p^* and production level x^* which maximize the profits of the firm.
- (b) (9 points) Suppose that the government diminishes production cost by means of a subsidy of S euros per unit produced. Find the new production level $x^*(S)$ and the new price $p^*(S)$ which maximize the profit of the company.

Compare the results obtained with those obtained in part (a) above.

Solution:

(a) Profits:

 $B(x) = (200 - 3x)x - (85 + 100x - x^{2}) = -2x^{2} + 100x - 85.$

The first and the second derivatives are: B'(x) = -4x + 100; B''(x) = -4 < 0, hence B has $x^* = \frac{10}{4} = 25$ as its unique critical point, which is the unique global maximizer of B since this function is strictly concave.

Finally, $p^* = p(25) = 200 - 75 = 125$.

(b) The cost function becomes $C(x) = 85 + (100 - S)x - x^2$, and consequently the new profit function is $B(x) = -2x^2 + (100 + S)x - 85$. The first and the second derivatives are: B'(x) = -4x + 100 + Sand B''(x) = -4 < 0, hence B has $x^*(S) = \frac{100 + S}{4} = 25 + \frac{S}{4}$ as its unique critical point, which is the unique global maximizer of B since this function is strictly concave.

Finally,
$$p^*(S) = 200 - 3\left(25 + \frac{S}{4}\right) = 125 - 3\frac{S}{4}$$

In comparison with the case without subsidies (S = 0), the output has increased and the price has decreased, for every S > 0.

Given the function $f(x) = x^2 \ln x$, answer the following questions:

- (a) (8 points) Find the intervals where the function f is increasing or decreasing, and calculate $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to\infty} f(x)$.
- (b) (7 points) Discuss whether f attains global maximum and/or global minimum in the interval (0, b], where b > 0 is a parameter.

Hint: draw the graph of f.

Solution:

(a) The first derivative is

$$f'(x) = 2x \ln x + x^2(\frac{1}{x}) = x(2\ln x + 1).$$

Since that the domain of f is $(0, \infty)$, we can infer:

f is increasing if $2\ln x + 1 > 0 \iff \ln x > -\frac{1}{2} \iff x \ge e^{-1/2}$; and

f is decreasing if $2\ln x + 1 < 0 \iff \ln x < -\frac{1}{2} \iff 0 < x \le e^{-1/2}$.

Thus, $x = e^{-1/2}$ is the unique global minimizer in $(0, \infty)$.

On the other hand, $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\ln x}{1/x^2} = \frac{-\infty}{\infty} = [L'Hopital] = \lim_{x \to 0^+} \frac{1/x}{-2/x^3} = 0$; finally: $\lim_{x \to \infty} f(x) = \infty$

(b) The figure below shows the graph of f.

We observe the following facts:

i) when $0 < b \le e^{-1/2}$, f is decreasing in (0, b].

As a consequence, b is the global minimizer of f but there is no global maximizer.

ii) when $e^{-1/2} < b < 1$, f is decreasing in $(0, e^{-1/2}]$ and increasing in $[e^{-1/2}, b]$; but f(b) < f(1) = 0 since b < 1, thus f does not have global maximum in (0, b], given that $\lim_{x \to +0^+} f(x) = 0$.

Obviously, the global minimum is attained at $x = e^{-1/2}$.

iii) when $1 \le b$, f is decreasing in $(0, e^{-1/2}]$ and increasing in $[e^{-1/2}, b]$; but $0 = f(1) \le f(b)$ since $1 \le b$, thus f attains the global maximum at x = b, given that $\lim_{x \to 0^+} f(x) = 0$.

Obviously, the global minimum is attained at $x = e^{-1/2}$.