1
Consider the function $f(x)=x^{3} e^{-x}$.
(a) (5 points) Calculate the domain and the asymptotes of the function f.
(b) (10 points) Calculate the intervals where f is increasing or decreasing, as well as the local and global maxima and minima of f. Find the image of f and draw its graph.

Solution:

(a) Since that f is continuous in its domain, only asymptotes at ∞ and $-\infty$ are taken into consideration:
i) $\lim _{x \longrightarrow-\infty} \frac{f(x)}{x}=\lim _{x \longrightarrow-\infty} x^{2} e^{-x}=\infty$, thus f has neither horizontal nor oblique asymptotes at $-\infty$.
ii) $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}=\frac{\infty}{\infty}=$ [after three applications of L'Hopital rule] $=\lim _{x \longrightarrow \infty} \frac{6}{e^{x}}=\frac{6}{\infty}=0$.

Hence, $f(x)$ has horizontal asymptote $y=0$ at ∞.
(b) Since $f^{\prime}(x)=e^{-x}\left(-x^{3}+3 x^{2}\right)$, we deduce that:
f is increasing $\Leftrightarrow f^{\prime}(x)>0 \Leftrightarrow-x^{3}+3 x^{2}=x^{2}(-x+3)>0$; So f increasing in $(-\infty, 3]$. In the same way, f is decreasing in $[3, \infty)$.
From this study we conclude that 3 is both a local and global maximizer. Since there are no other critical points, there cannot be minimizers.
Finally, since $\lim _{x \longrightarrow-\infty} f(x)=-\infty$ and that a continuous function satisfies the Theorem of the Intermediate Values, we get that the image of f is $(-\infty, f(3)]=\left(-\infty, 27 e^{-3}\right]$.
The figure below shows the graph of f.

2
Given the function $y=f(x)$ defined implicitly by the equation

$$
x e^{y}+y e^{x}=2 e
$$

around the point $x=1, y=1$, answer the following questions:
(a) (8 points) Find the tangent line and the Taylor polynomial of degree two of the implicit function at the point $a=1$.
(b) (7 points) Draw the graph of f around the point $x=1$ and using the tangent line, obtain approximated values of $f(0.9)$ and $f(1.2)$.
Justify if some of the above approximations are by excess or by default.

Solution:

(a) Differentiating once in the equation we get:

$$
\left(1+x y^{\prime}\right) e^{y}+\left(y^{\prime}+y\right) e^{x}=0
$$

and plugging into $x=1, y(1)=1$, we have $2 e\left(y^{\prime}+1\right)=0 \Longrightarrow y^{\prime}(1)=f^{\prime}(1)=-1$.
The equation of the tangent line is: $y=P_{1}(x)=1-(x-1)$; that is, $y=2-x$.
Differentiating again we get:

$$
\left(y^{\prime}+x y "+\left(1+x y^{\prime}\right) y^{\prime}\right) e^{y}+\left(y "+2 y^{\prime}+y\right) e^{x}=0
$$

and plugging into $x=1, y(1)=1, y^{\prime}(1)=-1$ we have $2 e(y "-1)=0 \Rightarrow y^{\prime \prime}(1)=f^{\prime \prime}(1)=1$.
The second order Taylor polynomial is: $y=P_{2}(x)=1-(x-1)+\frac{1}{2}(x-1)^{2}$.
(b) The second order Taylor polynomial approximates the graph of f near to the point $x=1$ and it is shown in the figure below.

On the other hand the approximated values of first order are:

$$
f(0.9) \approx P_{1}(0.9)=1-(-0,1)=1,1, \quad f(1,2) \approx P_{1}(1.2)=1-(0.2)=0.8
$$

Since the function is convex near $x=1$, due to $f^{\prime \prime}(1)>0$, the approximated values obtained with the tangent line are by default in both cases.

3
Let $C(x)=85+100 x-x^{2}$ be the cost function and $p(x)=200-3 x$ be the inverse demand function of a monopolist firm, with $0 \leq x \leq 50$ being the number of units produced of a given good. Answer the following questions:
(a) (6 points) Find the price p^{*} and production level x^{*} which maximize the profits of the firm.
(b) (9 points) Suppose that the government diminishes production cost by means of a subsidy of S euros per unit produced. Find the new production level $x^{*}(S)$ and the new price $p^{*}(S)$ which maximize the profit of the company.
Compare the results obtained with those obtained in part (a) above.

Solution:

(a) Profits:

$$
B(x)=(200-3 x) x-\left(85+100 x-x^{2}\right)=-2 x^{2}+100 x-85
$$

The first and the second derivatives are: $B^{\prime}(x)=-4 x+100 ; B "(x)=-4<0$, hence B has $x^{*}=\frac{10}{4}=25$ as its unique critical point, which is the unique global maximizer of B since this function is strictly concave.
Finally, $p^{*}=p(25)=200-75=125$.
(b) The cost function becomes $C(x)=85+(100-S) x-x^{2}$, and consequently the new profit function is $B(x)=-2 x^{2}+(100+S) x-85$. The first and the second derivatives are: $B^{\prime}(x)=-4 x+100+S$ and $B "(x)=-4<0$, hence B has $x^{*}(S)=\frac{100+S}{4}=25+\frac{S}{4}$ as its unique critical point, which is the unique global maximizer of B since this function is strictly concave.
Finally, $p^{*}(S)=200-3\left(25+\frac{S}{4}\right)=125-3 \frac{S}{4}$.
In comparison with the case without subsidies $(S=0)$, the output has increased and the price has decreased, for every $S>0$.

Given the function $f(x)=x^{2} \ln x$, answer the following questions:
(a) (8 points) Find the intervals where the function f is increasing or decreasing, and calculate $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow \infty} f(x)$.
(b) (7 points) Discuss whether f attains global maximum and/or global minimum in the interval $(0, b]$, where $b>0$ is a parameter.
Hint: draw the graph of f.

Solution:

(a) The first derivative is

$$
f^{\prime}(x)=2 x \ln x+x^{2}\left(\frac{1}{x}\right)=x(2 \ln x+1) .
$$

Since that the domain of f is $(0, \infty)$, we can infer:
f is increasing if $2 \ln x+1>0 \Longleftrightarrow \ln x>-\frac{1}{2} \Longleftrightarrow x \geq e^{-1 / 2}$; and
f is decreasing if $2 \ln x+1<0 \Longleftrightarrow \ln x<-\frac{1}{2} \Longleftrightarrow 0<x \leq e^{-1 / 2}$.
Thus, $x=e^{-1 / 2}$ is the unique global minimizer in $(0, \infty)$.
On the other hand, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \longrightarrow 0^{+}} \frac{\ln x}{1 / x^{2}}=\frac{-\infty}{\infty}=\left[L^{\prime}\right.$ Hopital $]==\lim _{x \longrightarrow 0^{+}} \frac{1 / x}{-2 / x^{3}}=0$; finally: $\lim _{x \rightarrow \infty} f(x)=\infty$
(b) The figure below shows the graph of f.

We observe the following facts:
i) when $0<b \leq e^{-1 / 2}, f$ is decreasing in $(0, b]$.

As a consequence, b is the global minimizer of f but there is no global maximizer.
ii) when $e^{-1 / 2}<b<1, f$ is decreasing in $\left(0, e^{-1 / 2}\right]$ and increasing in $\left[e^{-1 / 2}, b\right]$; but $f(b)<f(1)=0$ since $b<1$, thus f does not have global maximum in ($0, b$, given that $\lim _{x \longrightarrow 0^{+}} f(x)=0$.
Obviously, the global minimum is attained at $x=e^{-1 / 2}$.
iii) when $1 \leq b, f$ is decreasing in $\left(0, e^{-1 / 2}\right]$ and increasing in $\left[e^{-1 / 2}, b\right]$; but $0=f(1) \leq f(b)$ since $1 \leq b$, thus f attains the global maximum at $x=b$, given that $\lim _{x \rightarrow 0^{+}} f(x)=0$.
Obviously, the global minimum is attained at $x=e^{-1 / 2}$.

