Consider the function $f(x)=\sqrt{x^{2}-x}$.
(a) (15 points) Determine the domain and calculate the asymptotes of f. Determine the image of f.
(b) (15 points) Find the intervals where f is monotone, as well as the intervals where f is concave or convex. Draw the graph of f.

Solution:

(a) The domain of f is the set $\left\{x: x^{2}-x=x(x-1) \geq 0\right\}=(-\infty, 0] \cup[1, \infty)$. Regarding the asymptotes, note that f is continuous in its domain, and that the domain is the union of closed intervals, thus there are no vertical asymptotes. On the other hand

- $\lim _{x \longrightarrow \pm \infty} \frac{f(x)}{x}=\lim _{x \longrightarrow-\infty} \frac{\sqrt{x^{2}-x}}{ \pm \sqrt{x^{2}}}= \pm \lim _{x \longrightarrow-\infty} \sqrt{1-\frac{1}{x}}= \pm 1$.
- $\lim _{x \longrightarrow \pm \infty}[f(x)- \pm x]=\lim _{x \longrightarrow \pm \infty}\left[\sqrt{x^{2}-x}-\sqrt{x^{2}}\right]=$ [multiply and divide by the conjugate:]

$$
=\lim _{x \rightarrow \pm \infty}\left[\sqrt{x^{2}-x}-\sqrt{x^{2}}\right]\left[\sqrt{x^{2}-x}+\sqrt{x^{2}}\right] /\left[\sqrt{x^{2}-x}+\sqrt{x^{2}}\right]=
$$

$$
=\lim _{x \rightarrow \pm \infty} \frac{x^{2}-x-x^{2}}{\sqrt{x^{2}-x}+\sqrt{x^{2}}}=-\lim _{x \longrightarrow \pm \infty} \frac{x}{\sqrt{x^{2}-x}+\sqrt{x^{2}}}=
$$

[dividing both numerator and denominator by $x=\sqrt{x^{2}}$]

$$
=-\lim _{x \longrightarrow \pm \infty} \frac{ \pm 1}{\sqrt{1-1 / x}+1}=\mp \frac{1}{2}
$$

- Hence, f has $y=x-\frac{1}{2}$ as oblique asymptote at ∞, and $y=x+\frac{1}{2}$ at $-\infty$.

Since $f(1)=0, f(x) \geq 0, f$ is continuous and that $y=x-\frac{1}{2}$ is the oblique asymptote at ∞, the image of f is $[0, \infty)$.
(b) $f^{\prime}(x)=\frac{2 x-1}{2 \sqrt{x^{2}-x}}$, hence f is increasing in $[1, \infty)$ and decreasing in $(-\infty, 0]$. Moreover, $f^{\prime \prime}(x)=\left(\frac{2 x-1}{2 \sqrt{x^{2}-x}}\right)^{\prime}=$ $\frac{4 \sqrt{x^{2}-x}-(2 x-1)^{2} / \sqrt{x^{2}-x}}{4\left(x^{2}-x\right)}<0$, for all x in $(-\infty, 0) \cup(1, \infty)$, thus f is concave both in $(-\infty, 0]$ and in $[1, \infty)$ (f is continuous, thus we can consider the closed intervals).
Note that $4 \sqrt{x^{2}-x}<(2 x-1)^{2} / \sqrt{x^{2}-x} \Longleftrightarrow 4\left(x^{2}-x\right)<(2 x-1)^{2} \Longleftrightarrow 0<1$.

Given the parameters $a, b \in \mathbb{R}$, consider the function $f(x)= \begin{cases}1+a x^{2}, & \text { if } x<-1 ; \\ a b x & \text { if } x \geq-1 .\end{cases}$
(a) (15 points) For what values of the parameters a and b the function f is continuous and differentiable? Justify your answer.
(b) (15 points) For the values of the parameters $a=-\frac{1}{2}$ and $b=1$, find the global and local extrema of the function f in the interval $[-2,0]$.

Solution:

(a) Let us study the continuity and differentiability of the function f at the point $x=-1$, since at other points it is clearly continuous.
Given that $\lim _{x \rightarrow-1^{-}} f(x)=1+a, f(-1)=\lim _{x \longrightarrow-1^{+}} f(x)=-a b$, we obtain that the function is continuous at $x=-1$ if and only if $1+a=-a b$.
On the other hand, assuming that f is continuous at -1 , it shall be differentiable if and only if $-2 a=f$ ${ }_{-}^{\prime}(-1)=f^{\prime}(-1)=a b$.
Hence, f is continuous and differentiable at $x=-1$ if and only if $1+a=-a b,-2 a=a b$. We have the following cases.

- if $a=0$, then the first equation above is not fulfilled;
- if $a \neq 0$, then from the second equation above, $b=-2$ and then, from the first one, $a=1$.

Hence, f is continuous and differentiable at $x=-1$ if and only if $a=1$ and $b=-2$.
(b) The parameters $a=-\frac{1}{2}$ and $b=1$ fulfill the continuity condition $1+a=-a b$ found in the item above. Hence, f is continuous. By the Weierstrass Theorem, f attains global extrema in $[-2,0]$.
On the other hand, the differentiability condition $-2 a=a b$ is not fulfilled, thus f is not differentiable at $x=-1$, thus -1 is a critical point of f. To explore more critical points, we let $f^{\prime}(x)=-x$, if $x<-1$ and $f^{\prime}(x)=-\frac{1}{2}$, if $x>-1$. Hence, f has not more critical points.
The candidates for global extrema of f in $[-2,0]$ are thus $-2,-1$ and 0 , with $f(-2)=-1, f(-1)=\frac{1}{2}$ and $f(0)=0$. We obtain that $x=-2$ is the global minimum, and $x=-1$ is the global maximum of f in $[-2,0]$. Regarding the point $x=0$, it is a local minimum of f in $[-2,0]$, since that f is decreasing in the interval $[-1, \infty)$.

Case (b)

Answer the following questions.
(a) (15 points) Calculate the Taylor polynomial of order two of the function $f(x)=(1+x)^{10}$ at the point $x=0$. With the Taylor polynomial, calculate an approximated value of the number (1.02) ${ }^{10}$.
(b) (15 points) Prove that the equation $y e^{-x}-y^{3}-3 x=0$ defines y as an implicit function of $x, y=f(x)$, around the point $(0,1)$. Calculate the derivative of the implicit function $y=f(x)$ at the point $0, f^{\prime}(0)$.

Solution:

(a) The Taylor polynomial of second order of f at $x=0$, is $P(x)=f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}$. Computing the coefficients we obtain $P(x)=1+10 x+45 x^{2}$. The approximated value of $(1.02)^{10}$ is

$$
(1.02)^{10}=f(0.02) \approx P(0.02)=1+10 \times 0.02+45 \times(0.02)^{2}=1+0.2+0.0180=1.2180
$$

(b) Note that $(x, y)=(0,1)$ satisfies $y e^{-x}-y^{3}-3 x=0$. Also, if we let $F(x, y)=y e^{-x}-y^{3}-3 x$, then $\frac{\partial F}{\partial y}(x, y)=e^{-x}-3 y^{2}$, and $\frac{\partial F}{\partial y}(0,1)=-2 \neq 0$, hence $F(x, y)=0$ defines $y=f(x)$ around $x=0$, with $f(0)=1$. Deriving $F=0$ with respect to $x, y^{\prime} e^{-x}-y e^{-x}-3 y^{\prime} y^{2}-3=0$, and evaluating this expression at $x=0$ and $y=1$, we obtain $y^{\prime}-1-3 y^{\prime}-3=0$. Solving, $y^{\prime}=f^{\prime}(0)=-2$.

Given the cost function $C(x)=4000-40 x+0.02 x^{2}$ and the inverse demand function $p(x)=50-0.01 x$, where x is the number of units of a good produced by a monopolistic firm, answer the following questions.
(a) (15 points) Calculate the unitary price, p^{*}, and the amount of good produced, x^{*}, which maximizes the profits. Justify your findings.
(b) (15 points) Calculate the unitary price $p^{* *}$, and the amount of good produced, $x^{* *}$, which minimizes the average cost. Justify your findings.

Solution:

(a) The profit function is $\pi(x)=(50-0.01 x) x-\left(4000-40 x+0.02 x^{2}\right)=-0.03 x^{2}+90 x-4000$. The first and second order derivatives are $\pi^{\prime}(x)=-0.06 x+90$ and $\pi^{\prime \prime}(x)=-0.06<0$, for all x. Hence π has a unique critical point at $x^{*}=\frac{90}{0.06}=1500$. Since π is concave, this critical point is a unique maximizer of the firm's profits. Finally, $p^{*}=p(1500)=50-0.01 \times 1500=35$.
(b) The average cost function is $\bar{C}(x)=\frac{C(x)}{x}=\frac{4000}{x}-40+0.02 x$. The first and second order derivatives are $\bar{C}^{\prime}(x)=-\frac{4000}{x^{2}}+0.02$, and $\bar{C}^{\prime \prime}(x)=\frac{8000}{x^{3}}>0$, for all $x>0$. The only critical point of \bar{C} in the region $x>0$ is $x^{* *}=\sqrt{5} \times 200$. Since \bar{C} is convex, the critical point is a unique minimizer of the average cost function. Finally, $p^{* *}=p(\sqrt{5} \times 200)=50-0.01 \times \sqrt{5} \times 200=50-2 \sqrt{5}$.

