1

- Consider the function $f(x) = \sqrt{x^2 x}$.
- (a) (15 points) Determine the domain and calculate the asymptotes of f. Determine the image of f.
- (b) (15 points) Find the intervals where f is monotone, as well as the intervals where f is concave or convex. Draw the graph of f.

Solution:

(a) The domain of f is the set $\{x : x^2 - x = x(x-1) \ge 0\} = (-\infty, 0] \cup [1, \infty)$. Regarding the asymptotes, note that f is continuous in its domain, and that the domain is the union of closed intervals, thus there are no vertical asymptotes. On the other hand

•
$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2 - x}}{\pm \sqrt{x^2}} = \pm \lim_{x \to -\infty} \sqrt{1 - \frac{1}{x}} = \pm 1.$$

• $\lim_{x \to \pm \infty} [f(x) - \pm x] = \lim_{x \to \pm \infty} [\sqrt{x^2 - x} - \sqrt{x^2}] = [\text{multiply and divide by the conjugate:}]$ $= \lim_{x \to \pm \infty} [\sqrt{x^2 - x} - \sqrt{x^2}] [\sqrt{x^2 - x} + \sqrt{x^2}] / [\sqrt{x^2 - x} + \sqrt{x^2}] =$ $= \lim_{x \to \pm \infty} \frac{x^2 - x - x^2}{\sqrt{x^2 - x} + \sqrt{x^2}} = -\lim_{x \to \pm \infty} \frac{x}{\sqrt{x^2 - x} + \sqrt{x^2}} =$ $[\text{dividing both numerator and denominator by } x = \sqrt{x^2}]$

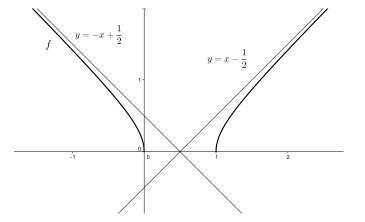
$$= -\lim_{x \to \pm \infty} \frac{\pm 1}{\sqrt{1 - 1/x} + 1} = \mp \frac{1}{2};$$

• Hence, f has $y = x - \frac{1}{2}$ as oblique asymptote at ∞ , and $y = x + \frac{1}{2}$ at $-\infty$.

Since f(1) = 0, $f(x) \ge 0$, f is continuous and that $y = x - \frac{1}{2}$ is the oblique asymptote at ∞ , the image of f is $[0, \infty)$.

(b) $f'(x) = \frac{2x-1}{2\sqrt{x^2-x}}$, hence f is increasing in $[1,\infty)$ and decreasing in $(-\infty,0]$. Moreover, $f''(x) = \left(\frac{2x-1}{2\sqrt{x^2-x}}\right)' = \frac{4\sqrt{x^2-x}-(2x-1)^2/\sqrt{x^2-x}}{4(x^2-x)} < 0$, for all x in $(-\infty,0) \cup (1,\infty)$, thus f is concave both in $(-\infty,0]$ and in $[1,\infty)$ (f is continuous, thus we can consider the closed intervals). Note that $4\sqrt{x^2-x} < (2x-1)^2/\sqrt{x^2-x} \iff 4(x^2-x) < (2x-1)^2 \iff 0 < 1$.

one that $4\sqrt{x^2 - x} < (2x - 1) / \sqrt{x^2 - x} \iff 4(x - x) < (2x - 1) \iff 0 < 1.$



Introduction to Mathematics for Economics 16 January 2019

- (a) (15 points) For what values of the parameters a and b the function f is continuous and differentiable? Justify your answer.
- (b) (15 points) For the values of the parameters $a = -\frac{1}{2}$ and b = 1, find the global and local extrema of the function f in the interval [-2, 0].

Solution:

(a) Let us study the continuity and differentiability of the function f at the point x = -1, since at other points it is clearly continuous.

Given that $\lim_{x \to -1^-} f(x) = 1 + a$, $f(-1) = \lim_{x \to -1^+} f(x) = -ab$, we obtain that the function is continuous at x = -1 if and only if 1 + a = -ab.

On the other hand, assuming that f is continuous at -1, it shall be differentiable if and only if $-2a = f {'}_{-}(-1) = f {'}_{+}(-1) = ab$.

Hence, f is continuous and differentiable at x = -1 if and only if 1 + a = -ab, -2a = ab. We have the following cases.

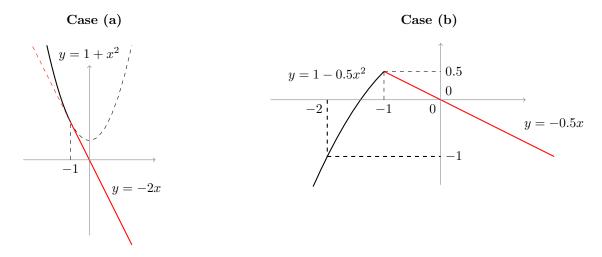
- if a = 0, then the first equation above is not fulfilled;
- if $a \neq 0$, then from the second equation above, b = -2 and then, from the first one, a = 1.

Hence, f is continuous and differentiable at x = -1 if and only if a = 1 and b = -2.

(b) The parameters $a = -\frac{1}{2}$ and b = 1 fulfill the continuity condition 1 + a = -ab found in the item above. Hence, f is continuous. By the Weierstrass Theorem, f attains global extrema in [-2, 0].

On the other hand, the differentiability condition -2a = ab is not fulfilled, thus f is not differentiable at x = -1, thus -1 is a critical point of f. To explore more critical points, we let f'(x) = -x, if x < -1 and $f'(x) = -\frac{1}{2}$, if x > -1. Hence, f has not more critical points.

The candidates for global extrema of f in [-2, 0] are thus -2, -1 and 0, with f(-2) = -1, $f(-1) = \frac{1}{2}$ and f(0) = 0. We obtain that x = -2 is the global minimum, and x = -1 is the global maximum of f in [-2, 0]. Regarding the point x = 0, it is a local minimum of f in [-2, 0], since that f is decreasing in the interval $[-1, \infty)$.



Introduction to Mathematics for Economics 16 January 2019

3

- (a) (15 points) Calculate the Taylor polynomial of order two of the function $f(x) = (1+x)^{10}$ at the point x = 0. With the Taylor polynomial, calculate an approximated value of the number $(1.02)^{10}$.
- (b) (15 points) Prove that the equation $ye^{-x} y^3 3x = 0$ defines y as an implicit function of x, y = f(x), around the point (0,1). Calculate the derivative of the implicit function y = f(x) at the point 0, f'(0).

Solution:

(a) The Taylor polynomial of second order of f at x = 0, is $P(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2$. Computing the coefficients we obtain $P(x) = 1 + 10x + 45x^2$. The approximated value of $(1.02)^{10}$ is

$$(1.02)^{10} = f(0.02) \approx P(0.02) = 1 + 10 \times 0.02 + 45 \times (0.02)^2 = 1 + 0.2 + 0.0180 = 1.2180$$

(b) Note that (x, y) = (0, 1) satisfies $ye^{-x} - y^3 - 3x = 0$. Also, if we let $F(x, y) = ye^{-x} - y^3 - 3x$, then $\frac{\partial F}{\partial y}(x, y) = e^{-x} - 3y^2$, and $\frac{\partial F}{\partial y}(0, 1) = -2 \neq 0$, hence F(x, y) = 0 defines y = f(x) around x = 0, with f(0) = 1. Deriving F = 0 with respect to $x, y'e^{-x} - ye^{-x} - 3y'y^2 - 3 = 0$, and evaluating this expression at x = 0 and y = 1, we obtain y' - 1 - 3y' - 3 = 0. Solving, y' = f'(0) = -2.

Introduction to Mathematics for Economics 16 January 2019

4

Given the cost function $C(x) = 4000 - 40x + 0.02x^2$ and the inverse demand function p(x) = 50 - 0.01x, where x is the number of units of a good produced by a monopolistic firm, answer the following questions.

- (a) (15 points) Calculate the unitary price, p^* , and the amount of good produced, x^* , which maximizes the profits. Justify your findings.
- (b) (15 points) Calculate the unitary price p^{**} , and the amount of good produced, x^{**} , which minimizes the average cost. Justify your findings.

Solution:

(a) The profit function is $\pi(x) = (50 - 0.01x)x - (4000 - 40x + 0.02x^2) = -0.03x^2 + 90x - 4000$. The first and second order derivatives are $\pi'(x) = -0.06x + 90$ and $\pi''(x) = -0.06 < 0$, for all x. Hence π has a unique critical point at $x^* = \frac{90}{0.06} = 1500$. Since π is concave, this critical point is a unique maximizer of the firm's profits. Finally, $p^* = p(1500) = 50 - 0.01 \times 1500 = 35$.

(b) The average cost function is $\overline{C}(x) = \frac{C(x)}{x} = \frac{4000}{x} - 40 + 0.02x$. The first and second order derivatives are $\overline{C}'(x) = -\frac{4000}{x^2} + 0.02$, and $\overline{C}''(x) = \frac{8000}{x^3} > 0$, for all x > 0. The only critical point of \overline{C} in the region x > 0 is $x^{**} = \sqrt{5} \times 200$. Since \overline{C} is convex, the critical point is a unique minimizer of the average cost function. Finally, $p^{**} = p(\sqrt{5} \times 200) = 50 - 0.01 \times \sqrt{5} \times 200 = 50 - 2\sqrt{5}$.