1
Consider the matrix

$$
A=\left(\begin{array}{ccc}
-2 a & -6 & 6 a \\
0 & 4 a & 4 a \\
0 & a & 4 a
\end{array}\right)
$$

where a is a real valued parameter.
(a) Find the eigenvalues and eigenvectors of A depending on the values of the parameter a.
(b) For which values of a is the matrix A diagonalizable? For these values, find matrices D diagonal and P such that $A=P D P^{-1}$ (Do not compute P^{-1}).

Solution:

1. The characteristic polynomial of A is

$$
\begin{aligned}
p(\lambda)=\left|A-\lambda I_{3}\right| & =\left|\begin{array}{ccc}
-2 a-\lambda & -6 & 6 a \\
0 & 4 a-\lambda & 4 a \\
0 & a & 4 a-\lambda
\end{array}\right|=-(2 a+\lambda)\left|\begin{array}{cc}
4 a-\lambda & 4 a \\
a & 4 a-\lambda
\end{array}\right| \\
& =-(2 a+\lambda)\left((4 a-\lambda)^{2}-4 a^{2}\right) .
\end{aligned}
$$

One root is $-2 a$ and we get the rest from $(4 a-\lambda)^{2}-4 a^{2}=0$. Solving we get $\lambda=4 a \pm 2|a|$, that is, $2 a$ and $6 a$. Thus, the eigenvalues of A are $-2 a, 2 a, 6 a$. For $a \neq 0$ the eigenvectors are

$$
\begin{aligned}
S(-2 a) & =<(1,0,0)> \\
S(2 a) & =<(6+3 a,-4 a, 2 a)> \\
S(6 a) & =<(-6+3 a, 8 a, 4 a)>.
\end{aligned}
$$

For $a=0$, the only eigenvalue of A is 0 , and $S(0)=<(1,0,0)>$.
2. For $a \neq 0, A$ admits three different eigenvalues, so it is diagonalizable. For $a=0$ the matrix has only one eigenvector, thus it is not diagonalizable. For $a \neq 0, A=P D P^{-1}$ with

$$
D=\left(\begin{array}{ccc}
-2 a & 0 & 0 \\
0 & 2 a & 0 \\
0 & 0 & 6 a
\end{array}\right) \quad P=\left(\begin{array}{ccc}
1 & 6+3 a & -6+3 a \\
0 & -4 a & 8 a \\
0 & 2 a & 4 a
\end{array}\right) .
$$

2
A small beach is visited every summer by 900 families, but not every family remains there. Some of them abandon the beach if it does not show a clean aspect. Let y_{t} be the number of families on the beach at the beginning of summer t. Let x_{t} be the units of trash accumulated on the beach at the end of summer t. Then, out of the 900 families that visit the beach at the beginning of summer $t+1$, $\frac{x_{t}}{2}$ families decide not to spend time on it. On the other hand, beach work maintenance along year t diminishes trash for year $t+1$ to one half the existing trash at the beginning of the session. The trash produced is proportional to the number of families on the beach, $\frac{y_{t}}{8}$ units.
Summarizing, we have the following system that characterizes the evolution of trash/families on the beach

$$
\left\{\begin{aligned}
x_{t+1} & =\frac{x_{t}}{2}+\frac{y_{t}}{8} \\
y_{t+1} & =900-\frac{x_{t}}{2}
\end{aligned}\right.
$$

(a) Calculate the equilibrium values of trash and families on the beach. Suppose that in the summer $t^{*}+1$ there are no families on the beach, $y_{t^{*}+1}=0$. How many units of trash there were at the end of the summer t^{*} ?
(b) Study the stability of the equilibrium.

Solution:

1. The equilibrium is obtained by solving the system

$$
\left\{\begin{array}{l}
x=\frac{x}{2}+\frac{y}{8} \\
y=900-\frac{x}{2}
\end{array}\right.
$$

We find $x^{0}=200$ units of trash and $y^{0}=800$ families. For the second question, from $0=y_{t^{*}+1}=$ $900-\frac{1}{2} x_{t^{*}}$ we easily get $x_{t^{*}}=1800$.
2. To study the stability of the equilibrium, we compute the eigenvalues of the matrix of the system

$$
\left(\begin{array}{rr}
\frac{1}{2} & \frac{1}{8} \\
-\frac{1}{2} & 0
\end{array}\right)
$$

The characteristic polynomial is $\lambda^{2}-\frac{1}{2} \lambda+\frac{1}{16}$, with only one root, $\lambda=\frac{1}{4}$. Since it is smaller than 1 in absolute value, the system is globally asymptotically stable.

3
Find the solution of $x_{t+2}+x_{t+1}-2 x_{t}=3$ satisfying $x_{0}=3, x_{1}=1$.

Solution:

The roots of the characteristic equation $r^{2}+r-2=0$ are 1 and -2 , thus the solution of the homogeneous equation is

$$
C_{1}+C_{2}(-2)^{t} .
$$

Since 1 is a root of the characteristic equation and the independent term is a constant, we try the particular solution $A t$, with A a suitable constant. Plugging it into the equation we get $A=1$. Hence the general solution is

$$
x_{t}=C_{1}+C_{2}(-2)^{t}+t
$$

Imposing the initial conditions we have the linear system

$$
\begin{cases}3 & =C_{1}+C_{2} \\ 1 & =C_{1}-2 C_{2}+1\end{cases}
$$

Solving we get $C_{1}=2$ and $C_{2}=1$. Thus

$$
x_{t}=2+(-2)^{t}+t .
$$

4
Choose to solve one (and only one!) of the following equations
(a)

$$
\frac{d x}{d t}=\frac{t}{x \sqrt{x^{2}+4}}, \quad \text { with } x(0)=0 .
$$

(b) General solution of

$$
\dot{x}+\frac{x}{1+t}=t .
$$

Solution:

1. It is separable

$$
x \sqrt{x^{2}+4} d x=t d t \Rightarrow \frac{1}{3}\left(x^{2}+4\right)^{\frac{3}{2}}=\frac{t^{2}}{2}+C
$$

Plugging in $t=0, x(0)=0$, we get $C=\frac{1}{3} 4^{\frac{3}{2}}=\frac{1}{3} 2^{3}=\frac{8}{3}$. Hence solutions are implicitly given by

$$
\left(x^{2}+4\right)^{\frac{3}{2}}=\frac{3 t^{2}}{2}+8
$$

(If we solve, we find $x(t)= \pm \sqrt{\left.\left(\frac{3 t^{2}}{2}+8\right)^{\frac{2}{3}}-4\right)}$.
2. It is a linear equation with non constant coefficients. The integrating factor is

$$
\mu(t)=e^{\int \frac{d t}{1+t}}=e^{\ln (1+t)}=1+t .
$$

Multiplying the differential equation by the integrating factor we get $\frac{d(x \mu)}{d t}=t \mu$, hence integrating

$$
x(t)(1+t)=\int t(1+t) d t=\frac{t^{2}}{2}+\frac{t^{3}}{3}+C,
$$

where C is an arbitrary constant. Solving for $x(t)$ we find

$$
x(t)=\frac{\frac{t^{2}}{2}+\frac{t^{3}}{3}+C}{1+t} .
$$

5
Consider the differential equation,

$$
(t+x) d t+a t d x=0, \quad t \geq 0, \quad a \neq 0
$$

where $a \neq 0$ is a real valued parameter.
(a) For which values of the parameter a is the above differential exact?
(b) Suppose $a \neq 0$. Find the particular solution of the above differential equation which satisfies $x(1)=0$.

Solution:

1. Note that

$$
\frac{\partial}{\partial x}(t+x)=1, \quad \frac{\partial a t}{\partial t}=a
$$

Hence, the differential equation is exact iff $a=1$.
2. Since

$$
\frac{1-a}{a t}
$$

depends only on t, the differential equation admits an integrating factor $\mu(t)$. This integrating factor satisfies that

$$
\frac{\mu^{\prime}}{\mu}=\frac{1-a}{a} \frac{1}{t}
$$

That is,

$$
\mu=t^{\frac{1-a}{a}}
$$

is an integrating factor. The general solution of the DE is given implicitly by the equation

$$
\frac{a}{1+a} t^{\frac{1+a}{a}}+a x t^{\frac{1}{a}}=C .
$$

Plugging in the values $t=1, x=0$ we obtain

$$
C=\frac{a}{1+a} .
$$

6
Consider the linear system of differential equationsof the linear system of differential equations

$$
\left\{\begin{array}{l}
\dot{x}=-x-y, \\
\dot{y}=a x-y .
\end{array}\right.
$$

(a) Study the stability and classify the equilibrium point when $a=4$.
(b) Study the stability and classify the equilibrium point when $a=-4$.

Solution:

The characteristic equation is $(1+\lambda)^{2}+a=0$.

1. When $a=4$, the roots of the characteristic polynomial are complex with negative real part: $-1 \pm 2 i$. Thus, the system is globally asymptotically stable. The equilibrium point $(0,0)$ is an attractive spiral.
2. When $a=-4$, the roots of the characteristic polynomial are real $\lambda=-1 \pm 2$. One root is negative and the other is positive, thus the system is unstable. The equilibrium point $(0,0)$ is a saddle point.
