UC3M
Advanced Mathematics for Economics
Final Exam, 23/06/2016

1
Consider the matrix

$$
A=\left(\begin{array}{ccc}
3 a & 0 & 0 \\
a & 2 a & -1 \\
a^{2} & -a^{2} & 2 a
\end{array}\right)
$$

where a is a real valued parameter.
(a) Find the eigenvalues and eigenvectors of A depending on the values of the parameter a.
(b) For which values of a is the matrix A diagonalizable? For the values of a for which the matrix A diagonalizable, find matrices D and P such that $A=P D P^{-1}$.
(c) Plugging $a=1$ into the matrix A, compute the general solution of the following system of difference equations and study its stability.

$$
\left(\begin{array}{l}
x_{t+1} \\
y_{t+1} \\
z_{t+1}
\end{array}\right)=\left(\begin{array}{rrr}
3 & 0 & 0 \\
1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right)+\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

You may leave A^{t} as the product of three matrices.

Solution:

1. The eigenvalues of A are $a, 3 a, 3 a$.

For $a \neq 0$ the eigenvectors are

$$
\begin{aligned}
S(a) & =\langle(0,1, a)\rangle \\
S(3 a) & =\langle(1,0, a),(1,1,0)\rangle
\end{aligned}
$$

For $a=0$ the matrix A is

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

The eigenvalues are $0,0,0$ and the eigenvectors are $S(0)=<(1,0,0),(0,1,0)>$.
2. For $a \neq 0$, the matrix A is diagonalizable, $A=P D P^{-1}$ with

$$
D=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & 3 a & 0 \\
0 & 0 & 3 a
\end{array}\right) \quad P=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
a & a & 0
\end{array}\right)
$$

For $a=0$, the matrix is not diagonalizable.
3. The matrix

$$
\left(\begin{array}{ccc}
3 & 0 & 0 \\
1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

is obtained by plugging in the value $a=1$ in the matrix A above. Thus

$$
I-A=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & -1 & 1 \\
-1 & 1 & -1
\end{array}\right)
$$

and we solve the system of equations

$$
\left(\begin{array}{ccc}
-2 & 0 & 0 \\
-1 & -1 & 1 \\
-1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

The solution is $x=-1, y=0, z=0$.

We have shown that

$$
\left(\begin{array}{ccc}
3 & 0 & 0 \\
1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)^{t}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3^{t} & 0 \\
0 & 0 & 3^{t}
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)^{-1}
$$

Thus, the general solution is

$$
\left(\begin{array}{l}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right)=\left(\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{ccc}
3 & 0 & 0 \\
1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)^{t}\left(\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)
$$

with C_{1}, C_{2}, C_{3} arbitrary real numbers. Since the eigenvalues are $1,3,3$, the system is unstable.

2
Consider the equation

$$
x_{t+2}-x_{t+1}-6 x_{t}=5+6 t .
$$

(a) Find the general solution.
(b) Find the solution satisfying $x_{0}=0, x_{1}=0$.

Solution:

1. The characteristic polynomial is $r^{2}-r-6$ whose roots are $r_{1}=2, r_{2}=-3$. Thus, the general solution of

$$
x_{t+2}-x_{t+1}-6 x_{t}=5+6 t
$$

is $C_{1} 2^{t}+C_{2}(-3)^{t}$ with C_{1}, C_{2} arbitrary real numbers. Now we look for a solution of the form $y_{t}=a t+b$ of the equation $x_{t+2}-x_{t+1}-6 x_{t}=5+6 t$. We see that there is a solution with $a=b=-1$. Hence, the general solution is

$$
x_{t}=C_{1} 2^{t}+C_{2}(-3)^{t}-t-1
$$

2. Plugging in the values $t=0$ and $t=1$ in the general solution we have that

$$
\begin{aligned}
& 0=c_{1}+c_{2}-1 \\
& 0=2 c_{1}-3 c_{2}-2
\end{aligned}
$$

and solving this system of equations we obtain $c_{1}=1, c_{2}=0$ Hence, the solution is $x_{t}=2^{t}-t-1$.

3
(a) Find the solution of

$$
t^{2} y^{\prime}(t)+y(t)=1
$$

(b) Find the solution of

$$
y^{\prime}(t)=\frac{t^{2}}{y(t)}
$$

satisfying $y(0)=1$.

Solution:

1. The equation is linear. The general solution is

$$
y(t)=C_{1} e^{\frac{1}{t}}+1
$$

2. The equation is separable. The general solution satisfies

$$
y^{2}(t)=\frac{2}{3} t^{3}+C
$$

The solution is $y(t)=\sqrt{\frac{2}{3} t^{3}+1}$.

4
(a) Consider the differential equation

$$
y^{\prime}=y^{3}-y
$$

Find and classify its stationary points.
(b) Let $y(t)$ be the solution of initial value problem

$$
y^{\prime}=y^{3}-y, \quad y(0)=\frac{1}{2}
$$

Compute $\lim _{t \rightarrow-\infty} y(t)$ and $\lim _{t \rightarrow \infty} y(t)$. Can you determine if $y(t)$ is increasing or decreasing?

Solution:

1. Note that $f(y)=y^{3}-y=y\left(y^{2}-1\right)=y(y-1)(y+1)$. Then the stationary points are $-1,0,1$. Note that $f<0$ for $y<-1, f>0$ for $-1<y<0, f<0$ for $0<y<1$ and $f>0$ for $y>1$. Thus, we conclude that -1 and 1 are unstable and 0 is locally asymptotically stable.
2. $y(0)=1 / 2 \in(0,1)$ is in the region of stability of the differential equation, thus we see $\lim _{t \rightarrow-\infty} y(t)=1$, $\lim _{t \rightarrow \infty} y(t)=0$; moreover, $y(t)$ is decreasing, since $f(1 / 2)<0$.

5
Consider the following linear system of differential equations

$$
\left\{\begin{array}{l}
\dot{x}=x+b y \\
\dot{y}=b x+y
\end{array}\right.
$$

with $b \in \mathbb{R}$. Compute the equilibrium points and classify its stability depending on the values of b.

Solution:

The equilibrium point is $(0,0)$. The matrix associated to the linear system of differential equations is

$$
A=\left(\begin{array}{ll}
1 & b \\
b & 1
\end{array}\right)
$$

The eigenvalues of the matrix A are $\lambda_{1}=1-b$ and $\lambda_{2}=1+b$.
If $-1<b<1$, then $\lambda_{1}>0$ and $\lambda_{2}>0$ and $(0,0)$ is an unstable node.
If $b=-1$ or $b=1$, then the eigenvalues are 0 and 2 , so $(0,0)$ is an unstable node.
If $b<-1$, then $\lambda_{1}>0$ and $\lambda_{2}<0$, or if $b>1$, then $\lambda_{1}<0$ and $\lambda_{2}>0$, thus $(0,0)$ is a saddle point.

