1
Answer the following questions.
(a) (5 points) Find the general solution of the second order difference equation

$$
x_{t+2}-2 x_{t+1}+2 x_{t}=0
$$

(b) (5 points) Find the general solution of the second order difference equation

$$
x_{t+2}-2 x_{t+1}+2 x_{t}=t
$$

Solution:

(a) The characteristic equation is $r^{2}-2 r+2=0$. The solutions are complex, $1 \pm i$

$$
r=\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm \sqrt{-4}}{2}=\frac{2 \pm i \sqrt{4}}{2}=1 \pm i
$$

The module of $1+i$ is $\sqrt{2}$ and the $\operatorname{argument} \theta=\arctan (1 / 1)=\arctan 1=\pi / 4$.
Thus the solution is

$$
\rho^{t}\left(C_{1} \cos \theta t+C_{2} \sin \theta t\right)=(\sqrt{2})^{t}\left(C_{1} \cos (t \pi / 4)+C_{2} \sin (t \pi / 4)\right)
$$

(b) A particular solution has the form $A t+B$. This is a solution iff

$$
A(t+2)+B-2 A(t+1)-2 B+2 A t+2 B=t
$$

This is possible iff $A-2 A+2 A=1$ and $2 A-2 A+B-2 B+2 B=0$. Thus, $A=1$ and $B=0$.
We have already solved the homogenous equation, thus the general solution is

$$
(\sqrt{2})^{t}\left(C_{1} \cos (t \pi / 4)+C_{2} \sin (t \pi / 4)\right)+t
$$

Consider the matrix

$$
A=\left(\begin{array}{rrr}
2 & \frac{9}{a} & 3 \\
a & 2 & a \\
0 & 0 & -1
\end{array}\right)
$$

where $a \neq 0$.
(a) (5 points) For what values of the parameter a is the matrix A diagonalizable?
(b) (5 points) Calculate the eigenvalues and eigenvectors of A. Write the diagonal form of A and the matrix P associated when A is diagonalizable.

Solution:

(a) Eigenvalues: -1 double and 5 simple.

This is because the characteristic polynomial is $|A-\lambda I|=(-1-\lambda)\left((2-\lambda)^{2}-9\right)=-(\lambda+1)(\lambda+1)(\lambda-5)$. A will be diagonalizable iff the rank of $A+I$ is 1 . The matrix $A+I$ is

$$
A+I=\left(\begin{array}{ccc}
3 & \frac{9}{a} & 3 \\
a & 3 & a \\
0 & 0 & 0
\end{array}\right)
$$

The two non-null rows are proportional, thus the rank is 1 . In consequence, A is diagonalizable for all $a \neq 0$.
(b) - $S(-1)$ is generated by $(1,0,-1)$ and $(-3, a, 0)$.

To prove this, we solve the system $(A+I) \mathbf{x}=\mathbf{0}$:

$$
\left(\begin{array}{ccc}
3 & \frac{9}{a} & 3 \\
a & 3 & a \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

It reduces to the single equation $a x+3 y+a z=0$. The solutions are as described above.

- $S(5)$ is generated by $(3, a, 0)$.

To prove this, we solve the system $(A-5 I) \mathbf{x}=\mathbf{0}$:

$$
\left(\begin{array}{rrc}
-3 & \frac{9}{a} & 3 \\
a & -3 & a \\
0 & 0 & -6
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We get $z=0$ and $a x-3 y+a z=0$ as independent equations. The solutions are as described above.

Thus, we can choose

$$
D=\operatorname{diag}(-1,-1,5)
$$

and then

$$
P=\left(\begin{array}{rrr}
1 & -3 & 3 \\
0 & a & a \\
-1 & 0 & 0
\end{array}\right)
$$

Consider the following linear system of difference equations,

$$
\left(\begin{array}{c}
x_{t+1} \\
y_{t+1} \\
z_{t+1}
\end{array}\right)=\left(\begin{array}{rrr}
2 & \frac{9}{a} & 3 \\
a & 2 & a \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right)+\left(\begin{array}{l}
8 \\
0 \\
0
\end{array}\right),
$$

with $a \neq 0$. Note that the matrix of the system is the matrix A of Problem 2.
(a) (5 points) Find the equilibrium point.
(b) (5 points) For the values of a for which the matrix is diagonalizable find the general solution.

Solution:

(a) The equilibrium point is the solution of the system

$$
\left\{\begin{aligned}
x & =2 x+\frac{9}{a} y+3 z+8 \\
y & =a x+2 y+a z \\
z & =-z
\end{aligned}\right.
$$

From the third equation $z=0$ and the two first equations become

$$
\left\{\begin{aligned}
x+\frac{9}{a} y & =-8 \\
a x+y & =0
\end{aligned}\right.
$$

Multiplying the first equation by a and subtracting the resulting equation from the second one, we obtain $-8 y=8 a$, thus $y^{0}=-a$. Then, $x^{0}=1$. Thus, the equilibrium point is $\left(x^{0}, y^{0}, z^{0}\right)=(1,-a, 0)$.
(b) The solution is

$$
\left(\begin{array}{c}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right)=C_{1}(-1)^{t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+C_{2}(-1)^{t}\left(\begin{array}{c}
-3 \\
a \\
0
\end{array}\right)+C_{3} 5^{t}\left(\begin{array}{l}
3 \\
a \\
0
\end{array}\right)+\left(\begin{array}{c}
-1 \\
a \\
0
\end{array}\right)
$$

where C_{1}, C_{2} and C_{3} are arbitrary constants.

Consider the ODE

$$
\left(t x^{2}+2 t x\right) d t+\left(2 t^{2} x+3 t^{2}+2 x\right) d x
$$

(a) (5 points) Show that the above ODE is not exact and find an integrating factor.

Solution:
Let $P(t, x)=t x^{2}+2 t x, Q(t, x)=\left(2 t^{2} x+3 t^{2}+2 x\right)$. We have

$$
\frac{\partial P}{\partial x}=2 t+2 t x \neq \frac{\partial Q}{\partial t}=6 t+4 t x
$$

Hence, the ODE is not exact.
We have

$$
\frac{\frac{\partial Q}{\partial t}-\frac{\partial P}{\partial x}}{P}=\frac{2}{x}
$$

Hence,

$$
\mu(x)=e^{\int \frac{2}{x} d x}=x^{2}
$$

is an integrating factor of the equation.
(b) (5 points) Find the solution of the following Cauchy problem.

$$
t x(x+2) d t+\left(2 t^{2} x+3 t^{2}+2 x\right) d x, \quad x(-1)=1
$$

Solution:

Multiplying the ODE by

$$
\mu(x)=x^{2}
$$

we obtain that the ODE

$$
\left(2 t x^{3}+t x^{4}\right), d t+\left(3 t^{2} x^{2}+2 x^{3}+2 t^{2} x^{3}\right) d x
$$

is exact. A potential function is of the form $V=\frac{1}{2}\left(t^{2} x^{4}+2 t^{2} x^{3}+x^{4}\right)$. So, the general solution is defined implicitly by the equation

$$
t^{2} x^{4}+2 t^{2} x^{3}+x^{4}=C
$$

Plugging in the values $x=1, t=-1$, we obtain $C=4$. The solution is defined implicitly by the equation

$$
t^{2} x^{4}+2 t^{2} x^{3}+x^{4}=4
$$

Consider the ODE

$$
t y^{\prime}+4 y=6 t^{2}, \quad y(1)=y_{0}
$$

(a) (5 points) Find the solution for any $y_{0} \in \mathbb{R}$.
(b) (5 points) For which value of y_{0} do we have that $\lim _{t \rightarrow 0+} y(t)$ exist? Is there any value of y_{0} such that $\lim _{t \rightarrow 0+} y(t)=1$? Is there any value of y_{0} such that $\lim _{t \rightarrow 0+} y(t)=-\infty$?

Solution:

The equation is linear. The solution is

$$
y(t)=t^{2}+\frac{y_{0}-1}{t^{4}}
$$

For $y_{0}=1$ we have $\lim _{t \rightarrow 0+} y(t)=0$. For $y_{0}>1$ we have $\lim _{t \rightarrow 0+} y(t)=\infty$. For $y_{0}<1$ we have $\lim _{t \rightarrow 0+} y(t)=$ $-\infty$.

6
Consider the differential equation

$$
x^{\prime \prime}-6 x^{\prime}-7 x=16 e^{-t}-14
$$

(a) (5 points) Find the general solution.
(b) (5 points) Find the solution $x(t)$ of the following initial value problem

$$
x^{\prime \prime}-6 x^{\prime}-7 x=16 e^{-t}-14 . \quad x(0)=7, x^{\prime}(0)=17 .
$$

Solution:

$x(t)=2-2 e^{-t} t+c_{1} e^{-t}+c_{2} e^{7 t}$.
$x(t)=2-2 e^{-t} t+2 e^{-t}+3 e^{7 t}$.

