UC3M TOPICS Advanced Mathematics for Economics Final January 18th, 2022

1

Consider a market where only one good is traded and that, at time t, the demand is $D = 9 - P_t$ and the supply is $S = P_{t-1} + \frac{1}{4}P_{t-2}$, where P_{t-2} , P_{t-1} and P_t are the prices at times t-2, t-1 and t, respectively. Find the equilibrium prices P_t .

Hint: The equilibrium prices satisfy D = S at every t.

Solution:

D = S is equivalent to $P_t + P_{t-1} + \frac{1}{4}P_{t-2} = 9$. The general solution of the homogeneous equation is $C_1 2^{-t} + C_2 t 2^{-t}$. A particular solution is $\frac{7}{2}$. Thus

$$P_t = C_1 2^{-t} + C_2 t 2^{-t} + \frac{7}{2}.$$

2

Consider the matrix

$$A = \left(\begin{array}{rrrr} a & 0 & 0 \\ -2 & 0 & 2a \\ b & -a & 3a \end{array} \right),$$

where a > 0 and $b \in \mathbb{R}$.

- (a) (5 points) For what values of the parameters a and b is the matrix A diagonalizable?
- (b) (5 points) Calculate the eigenvalues and eigenvectors of A. Write the diagonal form of A and the matrix P when A is diagonalizable.

Solution:

- (a) The eigenvalues are $\lambda = a$ double, $\lambda = 2a$ simple. The rank of A aI is 1 if and only if b = -2 (remember that $a \neq 0$). Thus, A is diagonalizable for all a > 0 if and only if b = -2.
- (b) Let b = -2. S(a) is generated by (a, 0, 1) and $(0, 1, -\frac{1}{2})$; S(2a) is generated by (0, 1, 1).

3

Consider the following linear system of difference equations,

$$\left(\begin{array}{c} x_{t+1} \\ y_{t+1} \\ z_{t+1} \end{array}\right) = \left(\begin{array}{ccc} a & 0 & 0 \\ -2 & 0 & 2a \\ b & -a & 3a \end{array}\right) \left(\begin{array}{c} x_t \\ y_t \\ z_t \end{array}\right) + \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right),$$

with a > 0 and $a \neq \frac{1}{2}$, $a \neq 1$. Note that the matrix of the system is the matrix A of Problem 2.

- (a) (5 points) Find the equilibrium point and compute all the values of a > 0 and $b \in \mathbb{R}$ for which the system is GAS (if any).
- (b) (5 points) For the values of a and b for which the matrix is diagonalizable, find the general solution.

Solution:

(a) The vector

$$\frac{1}{1-3a+2a^2} \left(\begin{array}{c} 0\\ 2a\\ 1 \end{array}\right)$$

is the only equilibrium point. Since the eigenvalues are 2a and a, with a > 0, the equilibrium point is GAS. if and only if $0 < a < \frac{1}{2}$.

(b) A is diagonalizable iff b = -2. The solution is

$$C_1 a^t (a, 0, 1)^T + C_2 (2a)^t (0, 1, -\frac{1}{2})^T + C_3 (2a)^t (0, 1, 1)^T + \frac{1}{1 - 3a + 2a^2} (0, 2a, 1)^T,$$

where T indicates transpose.

4

(a) (5 points) Find the general solution of the ODE

$$x' - t^2 x = t^2.$$

 $x' - t^2 x = t^2$

(b) (5 points) Find the solution of the ODE

which satisfies
$$x(0) = x(1)$$
.

Solution:

 $x(t) = -1 + Ce^{t^3/3}$. x(0) = x(1) implies $C = e^{-1/3}$, hence $x(t) = -1 + e^{(t^3-1)/3}$.

5

Consider the ODE

$$2e^{2t}dt + (1+t+2x)e^{2t}dx = 0$$

Find the general solution and calculate $\lim_{t\to\infty} x(t)$.

Solution:

 e^{-t} is an integrating factor. The solution is found after an integration by parts. From $V_x = 2e^t$ one gets $V = 2xe^t + g(t)$ and then $2xe^t + g'(t) = V_t = e^t(1 + t + 2x)$, from which

$$g'(t) = (1+t)e^t \Rightarrow g(t) = te^t$$

The solution is given by

$$(t+2x)e^t = C \quad \Rightarrow x(t) = \frac{1}{2}\left(Ce^{-t} - t\right).$$

The limit is $-\infty$.

6

Answer the following questions.

(a) (5 points) Consider the second order differential equation

$$x'' - ax' + bx = te^t.$$

where $a, b \in \mathbb{R}$. Find a and b if it is known that $x(t) = te^t$ is a solution of the equation. Justify your answer. (b) (5 points) Find the solution of the initial value problem

$$x'' - 2x' + 2x = te^t$$
, $x(0) = 1$, $x'(0) = -1$.

Solution:

(a) $x' = e^t(t+1), x'' = e^t(t+2)$. Hence

$$(t+2)e^t - a(t+1)e^t + bte^t = te^t$$

and matching coefficients we obtain a = b = 2.

(b) $x(t) = e^t(C_1 \cos t + C_2 \sin t) + te^t$ is the general solution. Note that by (a) te^t is a particular solution of the complete ODE, and that the equation $r^2 - 2r + 2 = 0$ has solutions $1 \pm i$.

 $x(t) = e^t(\cos t - 3\sin t) + te^t$ is the particular solution satisfying the initial conditions.