Consider a market where only one good is traded and that, at time t, the demand is $D=9-P_{t}$ and the supply is $S=P_{t-1}+\frac{1}{4} P_{t-2}$, where P_{t-2}, P_{t-1} and P_{t} are the prices at times $t-2, t-1$ and t, respectively. Find the equilibrium prices P_{t}.
Hint: The equilibrium prices satisfy $D=S$ at every t.

Solution:

$D=S$ is equivalent to $P_{t}+P_{t-1}+\frac{1}{4} P_{t-2}=9$. The general solution of the homogeneous equation is $C_{1} 2^{-t}+C_{2} t 2^{-t}$. A particular solution is $\frac{7}{2}$. Thus

$$
P_{t}=C_{1} 2^{-t}+C_{2} t 2^{-t}+\frac{7}{2} .
$$

2
Consider the matrix

$$
A=\left(\begin{array}{rrc}
a & 0 & 0 \\
-2 & 0 & 2 a \\
b & -a & 3 a
\end{array}\right),
$$

where $a>0$ and $b \in \mathbb{R}$.
(a) (5 points) For what values of the parameters a and b is the matrix A diagonalizable?
(b) (5 points) Calculate the eigenvalues and eigenvectors of A. Write the diagonal form of A and the matrix P when A is diagonalizable.

Solution:

(a) The eigenvalues are $\lambda=a$ double, $\lambda=2 a$ simple. The rank of $A-a I$ is 1 if and only if $b=-2$ (remember that $a \neq 0$). Thus, A is diagonalizable for all $a>0$ if and only if $b=-2$.
(b) Let $b=-2 . S(a)$ is generated by $(a, 0,1)$ and $\left(0,1,-\frac{1}{2}\right) ; S(2 a)$ is generated by $(0,1,1)$.

Consider the following linear system of difference equations,

$$
\left(\begin{array}{c}
x_{t+1} \\
y_{t+1} \\
z_{t+1}
\end{array}\right)=\left(\begin{array}{rrc}
a & 0 & 0 \\
-2 & 0 & 2 a \\
b & -a & 3 a
\end{array}\right)\left(\begin{array}{c}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

with $a>0$ and $a \neq \frac{1}{2}, a \neq 1$. Note that the matrix of the system is the matrix A of Problem 2 .
(a) (5 points) Find the equilibrium point and compute all the values of $a>0$ and $b \in \mathbb{R}$ for which the system is GAS (if any).
(b) (5 points) For the values of a and b for which the matrix is diagonalizable, find the general solution.

Solution:

(a) The vector

$$
\frac{1}{1-3 a+2 a^{2}}\left(\begin{array}{c}
0 \\
2 a \\
1
\end{array}\right)
$$

is the only equilibrium point. Since the eigenvalues are $2 a$ and a, with $a>0$, the equilibrium point is GAS. if and only if $0<a<\frac{1}{2}$.
(b) A is diagonalizable iff $b=-2$. The solution is

$$
C_{1} a^{t}(a, 0,1)^{T}+C_{2}(2 a)^{t}\left(0,1,-\frac{1}{2}\right)^{T}+C_{3}(2 a)^{t}(0,1,1)^{T}+\frac{1}{1-3 a+2 a^{2}}(0,2 a, 1)^{T}
$$

where ${ }^{T}$ indicates transpose.

4
(a) (5 points) Find the general solution of the ODE

$$
x^{\prime}-t^{2} x=t^{2}
$$

(b) (5 points) Find the solution of the ODE

$$
x^{\prime}-t^{2} x=t^{2}
$$

which satisfies $x(0)=x(1)$.

Solution:

$x(t)=-1+C e^{t^{3} / 3} . x(0)=x(1)$ implies $C=e^{-1 / 3}$, hence $x(t)=-1+e^{\left(t^{3}-1\right) / 3}$.

5
Consider the ODE

$$
2 e^{2 t} d t+(1+t+2 x) e^{2 t} d x=0
$$

Find the general solution and calculate $\lim _{t \rightarrow \infty} x(t)$.

Solution:

e^{-t} is an integrating factor. The solution is found after an integration by parts. From $V_{x}=2 e^{t}$ one gets $V=2 x e^{t}+g(t)$ and then $2 x e^{t}+g^{\prime}(t)=V_{t}=e^{t}(1+t+2 x)$, from which

$$
g^{\prime}(t)=(1+t) e^{t} \Rightarrow g(t)=t e^{t}
$$

The solution is given by

$$
(t+2 x) e^{t}=C \quad \Rightarrow x(t)=\frac{1}{2}\left(C e^{-t}-t\right)
$$

The limit is $-\infty$.

6
Answer the following questions.
(a) (5 points) Consider the second order differential equation

$$
x^{\prime \prime}-a x^{\prime}+b x=t e^{t},
$$

where $a, b \in \mathbb{R}$. Find a and b if it is known that $x(t)=t e^{t}$ is a solution of the equation. Justify your answer.
(b) (5 points) Find the solution of the initial value problem

$$
x^{\prime \prime}-2 x^{\prime}+2 x=t e^{t}, \quad x(0)=1, x^{\prime}(0)=-1
$$

Solution:

(a) $x^{\prime}=e^{t}(t+1), x^{\prime \prime}=e^{t}(t+2)$. Hence

$$
(t+2) e^{t}-a(t+1) e^{t}+b t e^{t}=t e^{t}
$$

and matching coefficients we obtain $a=b=2$.
(b) $x(t)=e^{t}\left(C_{1} \cos t+C_{2} \sin t\right)+t e^{t}$ is the general solution. Note that by (a) $t e^{t}$ is a particular solution of the complete ODE, and that the equation $r^{2}-2 r+2=0$ has solutions $1 \pm i$.
$x(t)=e^{t}(\cos t-3 \sin t)+t e^{t}$ is the particular solution satisfying the initial conditions.

