Consider the following second order difference equation

$$
x_{t+2}+x_{t+1}+\frac{1}{4} x_{t}=1
$$

(a) (5 points) Find the general solution.
(b) (5 points) Find the solution of the initial value problem

$$
x_{t+2}+x_{t+1}+\frac{1}{4} x_{t}=1, \quad x_{0}=-1, x_{1}=1 .
$$

(c) (5 points) Consider the solution of the initial value problem

$$
x_{t+2}+x_{t+1}+\frac{1}{4} x_{t}=1, \quad x_{0}=-1, x_{1}=1,
$$

found in the item above. Which is the value of x_{3} ?

Solution:

(a) The characteristic equation is $\left(r+\frac{1}{2}\right)^{2}=0$, with double root $-\frac{1}{2}$. The general solution of the homogeneous equation is $x_{t}^{h}=C_{1}(-2)^{-t}+C_{2} t(-2)^{-t}$. We look for a constant particular solution, $y_{t}=A$, since 1 is not a solution of the characteristic equation. Plugging this solution into the difference equation we get $A=\frac{4}{9}$. Hence the general solution is

$$
x_{t}=C_{1}(-2)^{-t}+C_{2} t(-2)^{-t}+\frac{4}{9}
$$

(b) $C_{1}=-\frac{13}{9}$ and $C_{2}=\frac{3}{9}\left(\frac{1}{3}\right)$. Thus

$$
x_{t}=-\frac{13}{9}(-2)^{-t}+\frac{1}{3} t(-2)^{-t}+\frac{4}{9} .
$$

(c) A way is to calculate $x_{2}=1-x_{1}-\frac{1}{4} x_{0}=1-1+\frac{1}{4}=\frac{1}{4}$ and $x_{3}=1-x_{2}-\frac{1}{4} x_{1}=1-\frac{1}{4}-\frac{1}{4}=\frac{1}{2}$. Another way is by using the solution formula:

$$
x_{3}=-\frac{13}{9}\left(-2^{-3}\right)+\frac{3}{9}\left(-3 \cdot 2^{-3}\right)+\frac{4}{9}=\frac{13-9+32}{9 \cdot 8}=\frac{1}{2} .
$$

Consider the matrix

$$
A=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & a & \frac{1}{2} \\
1 & \frac{1}{2} & a
\end{array}\right)
$$

where $a \in \mathbb{R}$.
(a) (5 points) For what values of the parameter a is the matrix A diagonalizable?
(b) (10 points) Calculate the eigenvalues and eigenvectors of A. Write the diagonal form of A and the matrix P when A is diagonalizable.

Solution:

(a) The characteristic polynomial is

$$
\left(\frac{1}{2}-\lambda\right)\left((a-\lambda)^{2}-\frac{1}{4}\right) .
$$

Its roots are $\frac{1}{2}, a+\frac{1}{2}$, and $a-\frac{1}{2}$. Thus, the eigenvalues of A are:

- $\lambda=\frac{1}{2}$ (multiplicity 2) and $\lambda=-\frac{1}{2}$, if $a=0$;
- $\lambda=\frac{1}{2}$ (multiplicity 2) and $\lambda=\frac{3}{2}$, if $a=1$;
- $\lambda=\frac{1}{2}, \lambda=a+\frac{1}{2}$, and $\lambda=a-\frac{1}{2}$, all of multiplicity 1 , if $a \neq 0$ and $a \neq 1$. In this case the matrix has 3 different eigenvalues, thus A is diagonalizable.

When $a=0$ or $a=1$, the rank of $A-\frac{1}{2} I$ is $2>1$, thus A is not diagonalizable.
(b) Let $a \neq 0$ and $a \neq 1$.

$$
S\left(\frac{1}{2}\right)=\left\langle\left(2 a^{2}-2 a, 1,1-2 a\right)\right\rangle, \quad S\left(a+\frac{1}{2}\right)=\langle(0,1,1)\rangle, \quad S\left(a-\frac{1}{2}\right)=\langle(0,-1,1)\rangle .
$$

Hence

$$
D=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & a+\frac{1}{2} & 0 \\
0 & 0 & a-\frac{1}{2}
\end{array}\right), \quad P=\left(\begin{array}{ccc}
2 a^{2}-2 a & 0 & 0 \\
1 & 1 & -1 \\
1-2 a & 1 & 1
\end{array}\right)
$$

In the case $a=0$, in which A is not diagonalizable, $S\left(\frac{1}{2}\right)=\langle(0,1,1)\rangle, S\left(-\frac{1}{2}\right)=\langle(0,-1,1)\rangle$. In the case $a=1$, in which A is not diagonalizable, $S\left(\frac{1}{2}\right)=\langle(0,-1,1)\rangle, S\left(\frac{3}{2}\right)=\langle(0,1,1)\rangle$.

Consider the following linear system of difference equations,

$$
\left(\begin{array}{c}
x_{t+1} \\
y_{t+1} \\
z_{t+1}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & a & \frac{1}{2} \\
1 & \frac{1}{2} & a
\end{array}\right)\left(\begin{array}{c}
x_{t} \\
y_{t} \\
z_{t}
\end{array}\right)
$$

with $a \neq \frac{1}{2}$ and $a \neq \frac{3}{2}$. Note that the matrix of the system is the matrix A of Problem 2.
(a) (5 points) Find the equilibrium points.
(b) (5 points) Find all the values of a for which the system is GAS (if any).
(c) (10 points) Find all the values of a for which the system is unstable but there is a stable manifold. Say whether the stable manifold is a line or a plane and if this depends on the values of a. Justify your answers.

Solution:

The matrix associated to the system of difference equations is the matrix A of Problem 2, with $a \neq \frac{1}{2}$ and $a \neq \frac{3}{2}$. The matrix A has eigenvalues $\frac{1}{2}$ and $a \pm \frac{1}{2}$. Note that $a \pm \frac{1}{2} \neq 1$ for all $a \neq \frac{1}{2}$ and $a \neq \frac{3}{2}$.
(a) The equilibrium is $(0,0,0)$ since the determinant $|I-A| \neq 0$ because 1 is not an eigenvalue of A.
(b) We know that the eigenvalues are $\frac{1}{2}$, and $a \pm \frac{1}{2}$. Thus, the system is GAS iff both $\left|a+\frac{1}{2}\right|<1$ and $\left|a-\frac{1}{2}\right|<1$. The first inequality is $a \in\left(-\frac{3}{2}, \frac{1}{2}\right)$ and the second one is $a \in\left(-\frac{1}{2}, \frac{3}{2}\right)$. The intersection of both intervals is $\left(-\frac{1}{2}, \frac{1}{2}\right)$, thus the system is GAS iff $|a|<\frac{1}{2}$.
(c) For $|a|>\frac{1}{2}$ the system is unstable but saddle point stable. For $a=-\frac{1}{2}$ the system is not asymptotically stable.

- For $\frac{1}{2}<|a|<\frac{3}{2}$, or $a=-\frac{1}{2}$, two of the eigenvalues are smaller than 1 in absolute value, thus there is a stable manifold of dimension 2, (a plane). The stable manifold is a plane passing through the origin, since that there are two independent eigenvectors associated to eigenvalues smaller than one in absolute value.
- For $|a|>\frac{3}{2}$ or $a=-\frac{3}{2}$, there is only one eigenvalue smaller than 1 in absolute value, thus there is a stable manifold of dimension 1, (a line). The stable manifold is a line passing through the origin, since that there is one eigenvector associated to eigenvalue smaller than one in absolute value.

Please, answer the following questions.
(a) (5 points) Find the general solution of the following ODE

$$
x^{\prime \prime}+x^{\prime}-12 x=0
$$

(b) (10 points) Find the general solution of the following ODE

$$
x^{\prime \prime}+x^{\prime}-12 x=e^{-4 t}(2-14 t)
$$

(c) (5 points) Find the solution of the following initial value problem

$$
x^{\prime \prime}+x^{\prime}-12 x=e^{-4 t}(2-14 t), \quad x(0)=0, \quad x^{\prime}(0)=-7
$$

(d) (5 points) Find the solution of the following problem

$$
x^{\prime \prime}+x^{\prime}-12 x=e^{-4 t}(2-14 t), \quad \lim _{t \rightarrow \infty} x(t)=0, \quad x(0)=100
$$

Solution:

1. The characteristic equation is $r^{2}+r-12$. The roots are -4 and 3 . The general solution is $x(t)=A e^{-4 t}+B e^{3 t}$.
2. We look for a particular solution of the form $x(t)=t(C+D t) e^{-4 t}$. We have

$$
\begin{aligned}
x^{\prime}(t) & =e^{-4 t}(-4 C t+C+2 D(1-2 t) t) \\
x^{\prime \prime}(t) & =2 e^{-4 t}\left(8 C t-4 C+8 D t^{2}-8 D t+D\right)
\end{aligned}
$$

So,

$$
x^{\prime \prime}+x^{\prime}-12 x=e^{-4 t}(2 D(1-7 t)-7 C)=e^{-4 t}(2-14 t) .
$$

Hence $C=0, D=1$. The particular solution is $e^{-4 t} t^{2}$. The general solution is

$$
x(t)=A e^{-4 t}+B e^{3 t}+t^{2} e^{-4 t}
$$

3. From the general solution, we have

$$
\begin{aligned}
x(0) & =A+B=0 \\
x^{\prime}(0) & =3 B-4 A=-7
\end{aligned}
$$

The solution is $A=1, B=-1$. The solution is

$$
e^{-4 t} t^{2}+e^{-4 t}-e^{3 t}
$$

4. The limit is finite, only if $B=0$. Consider $x(t)=A e^{-4 t}+t^{2} e^{-4 t}$ Note that

$$
\lim _{t \rightarrow \infty} x(t)=0
$$

and $x(0)=A$. Hence, the solution is

$$
100 e^{-4 t}+e^{-4 t} t^{2}
$$

5
Consider the ODE

$$
3 t^{2} x^{2} d t-e^{\frac{1}{x}} d x=0
$$

(a) (5 points) Find the general solution.
(b) (10 points) Find the solution $x(t)$ of the initial value problem

$$
3 t^{2} x^{2} d t-e^{\frac{1}{x}} d x=0, \quad x(0)=\frac{1}{\ln 2}
$$

For what values of t is the solution $x(t)$ defined?

Solution:

(a)
(b) The function

$$
\mu(x)=\frac{1}{x^{2}}
$$

is an integrating factor. Multiplying by this integrating factor, we obtain the ODE

$$
3 t^{2} d t-\frac{1}{x^{2}} e^{\frac{1}{x}} d x=0
$$

We obtain

$$
V=t^{3}+e^{\frac{1}{x}}
$$

and the general solution is given by

$$
t^{3}+e^{\frac{1}{x}}=C
$$

Note: The ODE is also separable.
(c) Plugging in the values $t=0, x=\frac{1}{\ln 2}$ we obtain the equation $e^{\ln 2}=C$. So, $C=2$. The solution is defined implicitly by

$$
t^{3}+e^{\frac{1}{x}}=2
$$

Solving for x we have

$$
x(t)=\frac{1}{\ln \left(2-t^{3}\right)}
$$

Hence, we need $2-t^{3}>0$ and $t^{3} \neq 1$. That is, $t<1$. The solution is defined in the interval $(-\infty, 1)$.

6
Consider the differential equation

$$
t x^{\prime}+2 x=\frac{\ln t}{t}, \quad t>0
$$

(a) (5 points) Find the general solution.
(b) (5 points) Find the solution of the following initial value problem

$$
t x^{\prime}+2 x=\frac{\ln t}{t}, \quad x(1)=0
$$

Solution:

(a) Let $\mu(t)=e^{\int(2 / t) d t}=t^{2}$ and multiply both sides of the equation by μ to obtain

$$
\left(x(t) t^{2}\right)^{\prime}=\frac{\ln t}{t^{2}} t^{2},
$$

hence, integrating

$$
x(t) t^{2}=\int \ln t d t=t \ln t-t+C
$$

where we have used integration by parts to find the expression of the integral ($u=\ln t, d v=d t$). Hence,

$$
x(t)=\frac{\ln t-1}{t}+\frac{C}{t^{2}}
$$

(b) $0=x(1)=-1+C$, thus $x(t)=\frac{\ln t-1}{t}+\frac{1}{t^{2}}$.

