1
Consider the following second order difference equation

$$
x_{t+2}-x_{t+1}+\frac{1}{4} x_{t}=t
$$

(a) (5 points) Find the general solution.
(b) (5 points) Find a solution of the above equation which satisfies

$$
x_{0}=1, \quad x_{1}=0
$$

Solution:

(a) The characteristic equation is $x^{2}-x+\frac{1}{4}=0$, whose unique root is $\frac{1}{2}$. The general solution of the homogeneous equation is $x_{t}=C_{1} 2^{-t}+C_{2} 2^{-t} t$. Now we look for a particular solution of the form $y_{t}=A t+B$. Plugging this solution into the equation we see that $A=4$ and $B=-16$. Hence, the general solution is

$$
x_{t}=C_{1} 2^{-t}+C_{2} 2^{-t} t+4 t-16
$$

(b) From the system $C_{1}-16=1, \frac{1}{2} C_{1}+\frac{1}{2} C_{2}-12=0$ we get $C_{1}=17$ and $C_{2}=7$.

2
Consider the matrix

$$
A=\left(\begin{array}{rrr}
0 & 0 & b \\
-3 & -1 & 3 \\
b & 0 & 0
\end{array}\right)
$$

where $b \in \mathbb{R}$.
(a) (5 points) For what values of the parameter b is the matrix A diagonalizable?
(b) (5 points) Calculate the eigenvalues and eigenvectors of A for the case $\mathbf{b}=\frac{\mathbf{1}}{\mathbf{2}}$. Write the diagonal form of A and the matrix P.

Solution:

(a) The characteristic polynomial es $-(1+\lambda)\left(\lambda^{2}-b^{2}\right)$. Thus, the eigenvalues are $\lambda_{1}=-1, \lambda_{2}=b$, and $\lambda_{3}=-b$.

- $b \neq 0, b \neq 1$ and $b \neq-1$. A is diagonalizable, since it has three distinct eigenvalues.
- $b=0$; the eigenvalues are 0 , double and -1 , simple.
- $b=1$; the eigenvalues are -1 , double and 1 , simple.
- $b=-1$; the eigenvalues are -1 , double and 1 , simple.

In the second case $(b=0), \operatorname{rank}\left(A-0 I_{3}\right)=\operatorname{rank}\left(\begin{array}{rrr}0 & 0 & 0 \\ -3 & -1 & 3 \\ 0 & 0 & 0\end{array}\right)=1 . A$ is diagonalizable.
In the third case $(b=1), \operatorname{rank}\left(A-(-1) I_{3}\right)=\operatorname{rank}\left(\begin{array}{rrr}1 & 0 & 1 \\ -3 & 0 & 3 \\ 1 & 0 & 1\end{array}\right)=2 . A$ is not diagonalizable.
In the fourth case $(b=-1), \operatorname{rank}\left(A-(-1) I_{3}\right)=\operatorname{rank}\left(\begin{array}{rrr}1 & 0 & -1 \\ -3 & 0 & 3 \\ -1 & 0 & 1\end{array}\right)=1 . A$ is diagonalizable.
(b) When $b=\frac{1}{2}$, the eigenvalues are $-1, \pm \frac{1}{2}$, thus A is diagonalizable and it is easy to compute

$$
S(-1)=\langle(0,1,0)\rangle, \quad S\left(\frac{1}{2}\right)=\langle(1,0,1)\rangle, \quad S\left(-\frac{1}{2}\right)=\langle(-1,12,1)\rangle
$$

Hence

$$
D=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2}
\end{array}\right), \quad P=\left(\begin{array}{rrr}
0 & 1 & -1 \\
1 & 0 & 12 \\
0 & 1 & 1
\end{array}\right)
$$

Consider the following linear system of difference equations,

$$
\begin{aligned}
x_{t+1} & =\frac{z_{t}}{2}+3 \\
y_{t+1} & =-3 x_{t}-y_{t}+3 z_{t}+2 \\
z_{t+1} & =\frac{x_{t}}{2}+3 .
\end{aligned}
$$

Note that the matrix of the system is the matrix A of Problem 2, when $b=\frac{1}{2}$ (and thus A is diagonalizable).
(a) (5 points) Compute the equilibrium point and study its stability.
(b) (5 points) Find the general solution of the above linear system of difference equations.

Solution:

The matrix associated to the system of difference equations is the matrix A of Problem 2, when $b=\frac{1}{2}$, thus it is diagonalizable.
(a) The equilibrium satisfies

$$
\begin{aligned}
x & =\frac{z}{2}+3 \\
y & =-3 x-y+3 z+2 \\
z & =\frac{1}{2} x+3
\end{aligned}
$$

thus it is the point $(6,1,6)$. We have showed in Problem 2 above that the eigenvalues of the system are $-1, \frac{1}{2}$ and $-\frac{1}{2}$. Since that not every eigenvalue is smaller than one in absolute value, the system is not asymptotically stable.
(b) The system is diagonalizable; the solution is

$$
X_{t}=C_{1} \lambda_{1}^{t} \mathbf{v}_{1}+C_{2} \lambda_{2}^{t} \mathbf{v}_{2}+C_{3} \lambda_{3}^{t} \mathbf{v}_{3}+X^{0}
$$

where $X=(x, y, z)^{\prime}, C_{1}, C_{2}, C_{3}$ are constants, λ_{i} are eigenvalues and \mathbf{v}_{i} are the corresponding column eigenvectors, for $i=1,2,3$, and X^{0} is the equilibrium. In this case, where $\lambda_{1}=-1, \lambda_{2}=\frac{1}{2}$ and $\lambda_{3}=-\frac{1}{2}$, the general solution is

$$
X_{t}=C_{1}(-1)^{t}(0,1,0)^{\prime}+C_{2} \frac{1}{2^{t}}(1,0,1)^{\prime}+C_{3}\left(-\frac{1}{2}\right)^{t}(-1,12,1)^{\prime}+(6,1,6)^{\prime} .
$$

(the prime denotes column vectors)

Consider the following ordinary differential equation

$$
x(x-t) d t+\left(3 x t-t^{2}+\frac{1}{x^{2}}\right) d x=0
$$

(a) (7 points) Find the general solution.
(b) (3 points) Find the solution that satisfies $x(0)=e^{2}$.

Solution:

(a) The ODE $P(t, x) d t+Q(t, x) d x=0$ is not exact, since

$$
P_{x}=2 x-t \neq 3 x-2 t=Q_{t} .
$$

An integrating factor independent of t is $\mu(x)=e^{\int \frac{Q_{t}-P_{x}}{P} d x}$, since

$$
\frac{Q_{t}-P_{x}}{P}=\frac{3 x-2 t-(2 x-t)}{x(x-t)}=\frac{x-t}{x(x-t)}=\frac{1}{x}
$$

is independent of t. Thus, $\mu(x)=x$ makes the equation exact. Let

$$
x^{2}(x-t) d t+\left(3 x^{2} t-x t^{2}+\frac{1}{x}\right) d x=0
$$

the new ODE obtained. A potential function is $V(t, x)=\int x^{2}(x-t) d t=x^{3} t-\frac{x^{2} t^{2}}{2}+g(x)$; to find g, use $V_{x}=3 x^{2} t-x t^{2}+\frac{1}{x}$ to get the identity

$$
3 x^{2} t-x t^{2}+g^{\prime}(x)=3 x^{2} t-x t^{2}+\frac{1}{x}
$$

Hence $g(x)=\ln x$. The general solution is thus given by

$$
x^{3} t-\frac{x^{2} t^{2}}{2}+\ln x=C, \quad C \text { constant }
$$

(b) $x^{3} t-\frac{x^{2} t^{2}}{2}+\ln x=2$

5
Consider the differential equation

$$
x^{\prime}=\left(1+\frac{x}{3}\right)(1-x)(x-3)
$$

(a) (5 points) Find the equilibrium points, draw the phase diagram of the differential equation and study the stability of its equilibrium points.
(b) (5 points) Draw the graph of the solution $x(t)$ of the differential equation, which starts at $x(0)=2$ and find the limits $\lim _{t \rightarrow \infty} x(t)$ and $\lim _{t \rightarrow-\infty} x(t)$.

Solution:

(a) The equilibrium points are $-3,1$ y 3 .

Clearly, -3 is unstable, 0 locally asymptotically stable 3 is unstable.
(b) $\lim _{t \rightarrow \infty} x(t)=1$ and $\lim _{t \rightarrow-\infty} x(t)=3$.

6
Consider the differential equation

$$
x^{\prime \prime}+3 x^{\prime}+2 x=e^{-t} .
$$

(a) (5 points) Find the general solution.
(b) (5 points) Calculate $\lim _{t \rightarrow \infty} x(t)$ for any solution $x(t)$ found in part (a) above.

Solution:

(a)

$$
x(t)=C_{1} e^{-t}+C_{2} e^{-2 t}+t e^{-t}
$$

(b) The terms e^{-t} and $e^{-2 t}$ tends to zero. The term $t e^{-t}=\frac{t}{e^{t}}$ converges to the same limit than $\frac{1}{e^{t}}$ by l'Hopital. Hence every solution tends to zero.

