1.

Find the solution of $x_{t+2}-x_{t+1}+\frac{1}{2} x_{t}=t$ with $x_{0}=0, x_{1}=0$.

Solution:

The general solution is the sum of the general solution of the homogeneous equation and one particular solution. The characteristic equation is $r^{2}-r+\frac{1}{2}=0$, with complex solutions $r_{1,2}=\frac{1}{2} \pm i \frac{1}{2}$, with module $\sqrt{\frac{1}{2^{2}}+\frac{1}{2^{2}}}=\frac{1}{\sqrt{2}}$ and argument $\arctan \left(\frac{1}{2} / \frac{1}{2}\right)=\arctan 1=\frac{\pi}{4}$. Thus, the general solution of the homogeneous equation is $\left.2^{-t / 2}\left(A \cos t \frac{\pi}{4} t\right)+B \sin \left(\frac{\pi}{4} t\right)\right), A, B \in \mathbb{R}$. Now try a particular solution of the form $a t+b$. To find a, b, plug this expression into the equation to get

$$
a(t+2)+b-a(t+1)-b+\frac{1}{2}(a t+b)=t
$$

thus, $a=2$ and $b=-4$. The general solution of the complete equation is

$$
x_{t}=2^{-t / 2}\left(A \cos \left(\frac{\pi}{4} t\right)+B \sin \left(\frac{\pi}{4} t\right)\right)+2 t-4 .
$$

To find the particular solution passing through $x_{0}=0, x_{1}=0$ we impose

$$
\begin{aligned}
& 0=A-4 \\
& 0=\frac{1}{\sqrt{2}}\left(A \frac{\sqrt{2}}{2}+B \frac{\sqrt{2}}{2}\right)+2-4
\end{aligned}
$$

The solution of this system is $A=4$ and $B=0$. Hence, the final answer is

$$
x_{t}=4 \cdot 2^{-t / 2} \cos \left(\frac{\pi}{4} t\right)+2 t-4 .
$$

2.

Find the solution of the linear system of difference equations

$$
\binom{x_{t+1}}{y_{t+1}}=\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right)\binom{x_{t}}{y_{t}}+\binom{2}{-2}
$$

satisfying initial conditions $x_{0}=0, y_{0}=0$.

Solution:

Let us see if the matrix A of the system is diagonalizable.

$$
|A-\lambda I|=-(\lambda(1-\lambda)-2=0 \Rightarrow \lambda=-1 \text { or } \lambda=2 .
$$

Thus the matrix is diagonalizable since the eigenvalues are distinct. Now we compute a pair of independent eigenvectors by solving $(A-\lambda I) \mathbf{u}=\mathbf{0}$. For $N(-1)$ we solve

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right)\binom{u}{v}=\binom{0}{0}
$$

that gives $u=-2 v$, thus we can choose $(-2,1)$. For $N(2)$ we solve

$$
\left(\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right)\binom{u}{v}=\binom{0}{0}
$$

thus we take $(1,1)$. The general solution of the homogeneous system is thus

$$
a(-1)^{t}\binom{-2}{1}+b 2^{t}\binom{1}{1}
$$

where a, b are arbitrary constants. A particular solution is a constant vector $\binom{u}{v}$. Plugging this vector into the system we find the following linear system

$$
\left\{\begin{aligned}
u & =2 v+2 \\
v & =u+v-2 .
\end{aligned}\right.
$$

Solving we get $u=2, v=0$. Thus, the general solution of the complete system is

$$
a(-1)^{t}\binom{-2}{1}+b 2^{t}\binom{1}{1}+\binom{2}{0} .
$$

Now we employ the initial values to determine the constants a and b. Letting $t=0$ in the general solution we have

$$
a\binom{-2}{1}+b\binom{1}{1}+\binom{2}{0}=\binom{0}{0}
$$

We find $a=2 / 3$ and $b=-2 / 3$.
Note that we could also used more directly the formula

$$
X^{0}+P D^{t} P^{-1}\left(X_{0}-X^{0}\right)
$$

where $X^{0}=\binom{2}{0}, X_{0}=\binom{0}{0}, P=\left(\begin{array}{cc}-2 & 1 \\ 1 & 1\end{array}\right)$ and $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$.
3.
(a) (5 points) Solve $x^{\prime}(t)=\frac{t+2}{x+1}$.
(b) (5 points) Solve $\left(x^{2}-x e^{t}\right) d t+\left(2 t x-e^{t}\right) d x=0, x(0)=10$.

Solution:

(a) $x^{\prime}(x+1)=t+2 ; \int(x+1) d x=\int(t+2) d t ; \frac{x^{2}}{2}+x=\frac{t^{2}}{2}-C$, with C constant.
(b) The equation is exact since $\left(x^{2}-x e^{t}\right)_{x}=2 x-e^{t}=\left(2 t x-e^{t}\right)_{t}$

$$
V(t, x)=\int\left(x^{2}-x e^{t}\right) d t=x^{2} t-x e^{t}+g(x)
$$

and

$$
V_{x}(t, x)=2 x t-e^{t}+g^{\prime}(x)=2 t x-e^{t},
$$

so $g \equiv C$ is constant. The solution is implicitly given by

$$
x^{2} t-x e^{t}+C=0 .
$$

At $t=0$ we have $-10+C=0$, thus finally $x^{2} t-x e^{t}+10=0$.
4.

Find the the equilibrium points of the nonlinear differential equation

$$
x^{\prime}(t)=a x(t)-x^{2}(t),
$$

where $a \in \mathbb{R}$ is a parameter. By using phase diagrams, study whether the equilibrium points are locally asymptotically stable depending on the values of a.

Solution:

Let $f(x)=x(a-x)$. It is a concave parabola. Fixed points are given by $f(x)=0$, so we get $x_{1}=0$ and $x_{2}=a$. Case (i) $a>0$. Then f is negative in $(-\infty, 0)$ and (a, ∞) and positive in $(0, a)$. Thus, $x^{\prime}<0$ in the two former intervals and $x^{\prime}>0$ ion the latter interval and hence x_{1} is unstable and x_{2} is l.a.s. Case (ii) $a<01$. Then f is negative in $(-\infty, a)$ and $(0, \infty)$ and positive in $(a, 0)$. Thus, $x^{\prime}<0$ in the two former intervals and $x^{\prime}>0$ ion the latter interval and hence, x_{1} is l.a.s. and x_{2} is unstable. Case (iii) $a=0$. Clearly 0 is unstable.
5.

The demand and supply functions for a given commodity are

$$
\begin{aligned}
& Q_{d}(t)=100-2 P(t)+\dot{P}(t) \\
& Q_{s}(t)=-50+P(t)
\end{aligned}
$$

respectively, where $P(t)$ is the price of the commodity at time $t \geq 0$. The price evolves according to

$$
\dot{P}(t)=\frac{1}{6}\left(Q_{d}(t)-Q_{s}(t)\right), \quad P(0)=10
$$

(a) (5 points) Find a first order ODE for the price $P(t)$ and the equilibrium price, P^{0}.
(b) (5 points) Find the time path of the price $P(t)$. Is it convengent?

Solution:

(a) By plugging Q_{d} and Q_{s} into the equation for \dot{P} and simplifying we get $\dot{P}=30-\frac{3}{5} P$. The equilibrium point, $\dot{P}=0$, is $P^{0}=50$.
(b) The solution is $P(t)=50+10 e^{-3 / 5 t}$. Yes, it converges to 50 .

