TOPICS OF ADVANCED MATHEMATICS FOR ECONOMICS

Sheet 5. Differential Equations (1)
Solutions
$5-1$. Is the equation $\dot{x}(t)=x\left(t^{2}\right)$ an ordinary differential equation?
Solution: No, it is a functional equation.

5 -2. Check that $x(t)= \pm \sqrt{\ln \left(C\left(t^{2}+1\right)\right)}$, where C is a positive constant, is solution of the $O D E$

$$
\dot{x}(t)=\frac{t}{x(t)\left(t^{2}+1\right)} .
$$

Solution: It is only a matter of computing.
5-3. Write the second order ODE

$$
\ddot{x}(t)+a(t) \dot{x}(t)+b(t) x(t)=c(t)
$$

as a first order system.

Solution: Let $y=\dot{x}$. Then

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-a(t) y-b(t) x+c(t) .
\end{aligned}
$$

5-4. It is snowing with regularity. At 12 am, a snow plow began to remove snow. The machine took 2 $k m$. in the first hour, and only 1 km . in the second hour. Knowing that the snow plow remove a constant amount of snow per unit of time, When did it start snowing?

Solution: Let $x(t)$ the function given the displacement (in km.) of the snow plow. As we know from elementary Physics, the velocity is the derivative of the displacement, $v(t)=\dot{x}(t)$. The conditions of the problem say that the velocity of the snow plow is inversely proportional to the height of snow at time $t, h(t)$. But the height is proportional to the time elapsed, $h(t)=k_{1}$, with $k_{1}>0$. Hence,

$$
\dot{x}(t)=v(t)=\frac{k_{2}}{h(t)}=\frac{k_{2}}{k_{1} t}, \quad k_{2}>0 .
$$

This is a very simple ODE, with solution

$$
x(t)=k \ln t+C, \quad k=\frac{k_{2}}{k_{1}} .
$$

Let T be the period of time (in hours) that it has been snowing before 12 am and observe the following picture.

We have the following data:

$$
\begin{aligned}
t=T & \Rightarrow x(T)=0=k \ln T+C \\
t=T+1 & \Rightarrow x(T+1)=2=k \ln (T+1)+C \\
t=T+2 & \Rightarrow x(T+2)=3=k \ln (T+2)+C
\end{aligned}
$$

Plugging $C=-k \ln T$ into the two remainder equations we have

$$
\begin{aligned}
& 2=k(\ln (T+1)-\ln (T))=k \ln \left(\frac{T+1}{T}\right) \\
& 3=k(\ln (T+2)-\ln (T))=k \ln \left(\frac{T+2}{T}\right),
\end{aligned}
$$

Dividing both equations to eliminate k we get

$$
2 \ln \left(\frac{T+2}{T}\right)=3 \ln \left(\frac{T+1}{T}\right)
$$

or

$$
\left(\frac{T+2}{T}\right)^{2}=\left(\frac{T+1}{T}\right)^{3}
$$

We find an equation for T :

$$
T\left(T^{2}+4 T+4\right)=T^{3}+3 T^{2}+3 T+1
$$

or

$$
T^{2}+T-1=0
$$

Solving gives $T=0,618 \ldots$ hours, that is, 37 minutes and 5 seconds approximately, thus it began to snow at $11: 22: 55 \mathrm{am}$.

5-5. Find the solution of the following problems:
(a) $\dot{x}=\frac{e^{t}}{x\left(1+e^{t}\right)}$.
(b) $\dot{x}=e^{t-x}, x(0)=1$.

Solution:

Both equations are separable.
(a)

$$
\begin{aligned}
\dot{x} x & =\frac{e^{t}}{\left(1+e^{t}\right)} \\
\int x d x & =\int \frac{e^{t} d t}{\left(1+e^{t}\right)} \\
\frac{x^{2}}{2} & =\ln \left(1+e^{t}\right)+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
\dot{x} e^{x} & =e^{t} \\
\int e^{x} d x & =\int e^{t} d t \\
e^{x} & =e^{t}+C \\
x(t) & =\ln \left(e^{t}+C\right)
\end{aligned}
$$

Plugging $x(0)=1$ into the above expression we have

$$
1=\ln (1+C)
$$

Hence, $C=e-1$ and thus $x(t)=\ln \left(e^{t}+e-1\right)$.

5-6. Show that a separable equation is exact.
Solution: The ODE $P d t+Q d x=0$ is exact if $\partial P / \partial x=\partial Q / \partial t$. For a separable equation

$$
\dot{x}=g(t) h(x)
$$

we can write

$$
-g(t) d t+\frac{d x}{h(x)}=0
$$

Since

$$
\frac{\partial}{\partial x} g(t)=0=\frac{\partial}{\partial t} \frac{1}{h(x)},
$$

we are done.

5-7. Check whether the following ODEs are exact and solve them.
(a) $(\alpha t+\beta x) d t+(\beta t+\gamma x) d x=0$.
(b) $\left(-2 t x^{3}+t \ln t\right) d t-\left(3 t^{2} x^{2}\right) d x=0$.

Solution: Both are exact.
(a) We know

$$
V(t, x)=\int P d t=\int \alpha t+\beta x d t=\alpha \frac{t^{2}}{2}+\beta t x+\psi(x) .
$$

Hence

$$
V_{x}=\beta t+\psi^{\prime}(x) .
$$

On the other hand, $V_{x}=Q=\beta t+\gamma x$, thus

$$
\psi^{\prime}(x)=\gamma x \Rightarrow \psi(x)=\gamma \frac{x^{2}}{2} .
$$

Finally, the solution is given by $V(t, x(t))=C$, hence

$$
\alpha \frac{t^{2}}{2}+\beta t x(t)+\gamma \frac{x^{2}}{2}=C
$$

is the general solution.
(b)

$$
V(t, x)=\int Q d x=-3 \int t^{2} x^{2} d x=-t^{2} x^{3}+\psi(t)
$$

thus,

$$
V_{t}=-2 t x^{3}+\psi^{\prime}(t) .
$$

On the other hand, $V_{t}=P=-2 t x^{3}+t \ln t$, hence

$$
\psi^{\prime}(t)=t \ln t
$$

Using integration by parts we get $\psi(t)=\int t \ln t d t=\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}$.
Parts: $\int u d v=u v-\int v d u$. Take here $u=\ln t$ and $d v=t d t$. Then, $d u=d t / t$ and $v=t^{2} / 2$ and so on.

5-8. Consider the following supply and demand functions: $Q_{s}(P)=P-6, Q_{d}(P)=15-2 P$. The prices depends on time, $P(t)$, which derivative satisfies

$$
\dot{P}=2\left(Q_{d}(P)-Q_{s}(P)\right) .
$$

Calculate $P(t)$, the equilibrium price and the equilibrium quantity and study if the price converges to the equilibrium price in the long run.

