ADVANCED MATHEMATICS FOR ECONOMICS - 2014/2015

Sheet 2. Difference Equations

2-1. Classify the following difference equations
(a) $x_{t+1}=x_{t}^{2}-e^{t}$;
(b) $x_{t+1}=x_{t}-e^{t}$;
(c) $x_{t+1}=3.2 x_{t}\left(1-0.25 x_{t}\right)$;
(d) $x_{t+1}-x_{t}=-\frac{4}{3} x_{t}$;
(e) $x_{t+1}\left(2+3 x_{t}\right)=4 x_{t}$;
(f) $x_{t+2}=3 x_{t+1}-x_{t}+t$;
(g) $x_{t+4}-x_{t+3}=\sqrt[3]{x_{t+1}}$.

2-2. Check that the following sequences are solution of the corresponding difference equation
(a) $x_{t}=2^{t} ; x_{t+2}=x_{t+1}+2 x_{t}$;
(b) $x_{t}=\frac{t(t+1)}{2} ; x_{t+1}=x_{t}+t+1$;
(c) $x_{t}=\cos \pi t ; x_{t+1}=-x_{t}$.

2-3. Consider the difference equation $x_{t+1}=\sqrt{x_{t}-1}$ with $x_{0}=5$. Compute x_{1}, x_{2}. and x_{3}. What about x_{4} ?

2-4. Find the solutions of the following difference equations with the given values of x_{0} :
(a) $x_{t+1}=2 x_{t}+4, x_{0}=1$;
(b) $x_{t+1}=-0.5 x_{t}+3, x_{0}=1$;
(c) $2 x_{t+1}+3 x_{t}+2=0, x_{0}=-1$;
(d) $x_{t+1}-x_{t}=-\frac{4}{3} x_{t}, x_{0}=3$.

Study the long run behavior of the solutions.
2-5. The income Y_{t} evolves according to the equation

$$
Y_{t+1}=C_{t}+I_{t}
$$

where I_{t} denotes investment and C_{t} is consumption. Supposing that $C_{t}=m Y_{t}+c$, with $0 \leq m<1, c>0$, and that $I_{t}=I$ is constant, find a difference equation for income Y_{t}, solve it, and study the long run behavior of the solution.

2-6. Let S_{0} denotes an initial sum of money. There are two basic methods for computing the interest earned in a period, for example, one year:
(a) S_{0} earns simple interest at rate r if each period the interest equals a fraction r of S_{0}.
(b) S_{0} earns compound interest at rate r if each period the interest equals a fraction r of the sum accumulated at the beginning of that period.
Find a difference equation for the two models above, and find the solution.
2-7. Given demand and supply for the cobweb model as follows, find the intertemporal equilibrium price, and determine whether the equilibrium is stable:
(a) $Q_{d}=18-3 P, Q_{s}=-3+4 P$;
(b) $Q_{d}=22-3 P, Q_{s}=-2+P$;
(c) $Q_{d}=16-6 P, Q_{s}=6 P-5$;

2-8. In the cobweb model, suppose that the market clearance still holds in each period, $Q_{d, t}=Q_{s, t}$, but that the the supply function is determined not by the price at the previous period, $Q_{s, t}=S\left(P_{t-1}\right)$, but by the expected price at period t :

$$
Q_{s, t}=-\gamma+\delta P_{t}^{*}
$$

Sellers form expectations about the price according to the following adaptive rule:

$$
P_{t+1}^{*}=P_{t}^{*}+\eta\left(P_{t}-P_{t}^{*}\right), \quad 0<\eta \leq 1,
$$

where η is an expectation-adjustment parameter.
(a) Give an economic interpretation to the preceding equation;
(b) Is the cobweb model a particular case of the present model?
(c) Find a difference equation for this model;
(d) Find the trajectory of price. Is this path necessarily oscillatory? Can it be oscillatory? Under what circumstances?
(e) Show that the time path P_{t}, if oscillatory, will converge only if $1-2 / \eta<-\delta / \beta$. As compared with the cobweb model without adaptive expectations, does the present model have a wider or narrower range for the stability-inducing values of $-\delta / \beta$?

